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Abstract This paper computes the Thom map on 72 and proves that it is represented by
2b2,0h1,2 in the ASS. The authors also compute the higher May differential of ba o, from
which it is proved that 4s(bohn — hibn—1) for 2 < s < p — 1 are permanent cycles in the
ASS.
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1 Introduction

Let p be a prime and let S be the sphere spectrum localized at p. To determine the stable
homotopy groups .S is one of the central problems in stable homotopy. One of the main tools to
reach it is the Adams spectral sequence (ASS) with Fs-term Eg’t = Extf;"t(Z/p, Z[p) = S,
where Ext%"(Z/p, Z/p) denotes the cohomology of the Steenrod algebra A.

From [5] we know that for odd prime p, Ext'*(Z/p, Z/p) is the Z/p-module generated by
ag and h; for i > 0. Exti’*(Z/p, Z/p) is the Z/p-module generated by aihg, a2, agh; (i > 0), g;
(i >0), ki (i >0), b; (i >0) and hyhj (j > i+ 2> 2). The Ext groups Ext’*(Z/p, Z/p) were
detected in [2].

If a family of homology elements z; in Ey” converges nontrivially in the ASS, then we
get a family of homotopy elements f; in m,S. In this case we say that the homotopy element
fi is represented by x; in the ASS. So far, not so many families of homotopy elements were
detected. For example, a family (, € 7S for n > 1 was detected in [3] which is represented by
hoby, € Exti’l’*(Z/p, Z/p) in the ASS. In this paper, we detect a family of homotopy elements
which has filtration s + 3.

Let M denote the mod p Moore spectrum and vy : X9M — M denote the Adams map

which is known to exist for p > 2 (cf. [9]). Then we have the cofibre sequence
YIM 2 M — V(1),

where ¢ = 2(p — 1) and V(1) is known to be the Smith-Toda spectrum. For p > 3, there exists
the Smith-Toda map vy : 2PTD9V (1) — V(1), and its cofibre is denoted by V/(2). For p > 7,
there exists the Smith-Toda map vz : S®* P04V (2) — V(2) (cf. [9]). From [10] we know that
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the following composition of maps denoted by ~; in 7.5,

gs (P*+p+1)g P, ZS-(p2+p+1)qv(2) R (2) BEIR S(p+2)a+3,

is represented in the ASS by 7, = (Si%!g.)!agik?,hg’ohllhlg for s > 3 and # 0,1, 2 mod p.
In [4], Lin detected a new family in the stable homotopy groups of spheres and proved the
following theorem:

Theorem 1.1 (See [4, Theorem A]) Letp > 5, n > 3. Then

(1) ix(Prhy) € E){txzq’(’ﬂrpn)q(H*]W7 Z/p) is a permanent cycle in the ASS and converges to
a nontrivial element §, € T(pypn)q—2M.

(2) For &, € mpipnyg—2M obtained in (1), j&n € T(pypn)q—3S is a nontrivial element of
order p represented (up to nonzero scalar) by (boh, — hib,_1) € Exti{(ﬁpn)q(Z/p, Z/p) in the
ASS.

In this paper we will prove that 7, is represented by J2 = 2bs ghi 2 € Ext‘j{’*(Z/p7 Z/p) in
the ASS and from which we prove

Theorem A Let p > 7 be an odd prime and n > 4. Then for 3 <s<p—1,
s (bohn — hiby_1) € BExt? 3= 2tsptst™ 00+ (=3) (7, 7,
and
2 n
Fo(bohn — habu—1) € Ext§ P07 (7 /p 7 /p)
are permanent cycles in the ASS, and then they converge to nontrivial elements in 7.5, where

q=2(p—-1).

2 The Representation of v, in the ASS

In this section we will consider some of the Thom maps
D Extg}*BP(BP*,BP*K) — Ext%1(Z/p, H.K) = Ext"(H*K, Z/p)

for the spectrum K = V (1), M and S, from which we get the representation of 75 in the
classical ASS. The result might be known to many people, but we had not seen it appearing.
Here we give a brief proof of the result.

Consider the Brown-Peterson ring spectrum BP at a prime p with BP, = 7w,BP =
Zpylvi,v2,- -+ ,vp, -] (cf. [7, Chapters 4, 5]). There is the Thom map ® : BP — KZ/p
which induces

¢ : 71, (BP)=BP. — m.(KZ/p)=Z/p

and
¢ : 7, (BPNBP)=BP.BP — m.(KZ/pNKZ/p) = A",

where BP,BP = BP,[t1,to, - ,tn, -], A* is the dual of the Steenrod algebra A,

A* :Z/p[fl,fz,“' ,§n7...]®E[7-0’7-1’... ,Tn’...}.
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The Thom map sends v; to 0 and t, to t,, where £, is the Hopf conjugate of Milnor’s &,.
Applying the cobar construction, we get the Thom map

@ : Extyp pp(BPs, BP.K) — Ext%(Z/p, H.K).

To compute the Ext groups Ext‘j‘i{t(Z/p7 Z/p), we have the May spectral sequence (MSS) (cf.
[6] and [7, Chapter 3]) whose Ej"*-term is the filtrated cobar complex and the Ej-term is the

cohomology of Eg™"*,
EPY = FElhij|i>0,7>0®Pbij|i>0,5>0]® Pla;|i>0],

where h; ; is the cohomology class represented by &}’ J, b; ; is the cohomology class represented by

p . .
> (112) /p (ffpj® fi(p_k)pj) and a; is the cohomology class represented by 7;. Thus the homological

dimensions of a;, h; ; and b; ; are 1, 1 and 2 respectively. The inner degrees are

deg(a;) =2(p— 1) A +p+---+p ") +1,
deg(hij) =2(p = 1)) + /" - p"tTY), (2.1)
deg(bij) =2(p = 1)’ + /24 4+ p").

The May filtration M’s are M (a;) = 2i + 1, M(h; ;) = 2i — 1 and M (b; j) = p(2¢ — 1). For the
May differentials, we have d, : ES4M — EstLEM=" where M denotes the May filtration. If
v € Bty e B then vy = (=) y g and d, (2-y) = de(2)-y+(=1) - d,(y).
For the first May differential, we have

di(hij) = Y higjerheg, di(a) = > higgar, di(bij)=0.
0<k<i 0<k<i

To compute the Ext groups Ext%;* pp(BPy, BP,K), we have the chromatic spectral se-

quence (cf. [7]), induced by the short exact sequences
0— Ng Lo Mg £ Nt o, (2:2)

where N = BP, /I, I, is the ideal of BP, generated by {p,v1,- - v,_1} with Iy = 0. M3 is
inductively defined by Mg = v, ! Ng.

From [7], we jot down some of the structure maps ngr : BP, — BP,BP and A : BP,BP —
BP,BP @pp, BP,BP,

nr(v1) = v1 + pty,

nr(v2) = vo + v1t] — vty mod (p),

nr(vs) = vs + vgt’l’2 +vith — tinp(vy) + vV mod (p, 7)’1’2)7 (2.3)
Alty) =t @141,
Alty) =t @1+ 1Rty +t1 @17 —v1b1 g
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where
pv1V = + ’uftff - vfzt’f — (vg + 1t —olty)P,
phio=(t1®1+10t) -t ®l+1et).
Thus we have
d(’l)g) :nR(’U;) _Ug =0 mOd (p7vlav2);
and in the Ext groups we have
U§/U2 € EXt%*P*BP(BP*v N21)a 7;/ = 51/(1];/1}2) € Eth*P*BP(BP*7BP*V(1))7
v§/vive € Bxtyp pp(BP, NT), 7L = 0105(vs/v1ve) € Exthp, 5p(BP., BP.M),
v3 /puivg € Ext%}*BP(BP*, N3), s = 610203 (v5 /pvivg) € Ext%’*P*BP(BP*, BP,),
where
8! Extyp pp(BP., N3) — Exthyn 5 p(BP., BP.V (1)),
8, Extiyh pp(BP., N§) — Extpphp(BP, N7,
* % s *+1,% S—
8« Extyp pp(BPy, N§) — Extypnp(BP, NG
are the connecting homomorphisms induced by (2.2).

Theorem 2.1 For the Thom map ® : Ext}p pp(BP.K, BP.) — Ext%"(H.K, Z/p) we

have

O(yy) = il (=hs) € Ext 32 (Z/p, H.V (1)),
D(v4) = i, (2ha,1h1 2) € BExt3(Z/p, HM),
P(y2) = 2bagh12 € EX’E?L{:(Z/Z% Z[p),
where ho 1hi o represents the generator ki € Exti"*(Z/p7 Z/p) (cf. [3]), and i, i, are the maps
induced by i" : S — V(1) and i’ : S — M respectively.
Proof From (2.3) we see that
d(vs) = 112(t11]2 — b7 y) mod (p,v1),

d(vi) = 21121)3(1?11’2 — vg_ltl) + v%(tlf — v§_1t1)2 mod (p, v1).
Thus we have

2 —
v =6 (v3/v2) = (& — b 't),
2 _ 2 —
5 (v3 Jv1ve) = us () — v8 ™M) +va (] — 05 H1)?) fva,
2 _ 2 —
33(v5 /pvrva) = (us(] =05~ 1) + va(t] — 087 11)%) /pus.

By the Thom map, we see that ®(v;) = flpz which represents i’ (—hg) € Exty(Z/p, H.V (1)).
The first follows.
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Similarly from (2.3), we see that mod (p, v, vve, v103),
p’ _ p-1 p® _ p—1, \2y P o 4P P o 429
dQ2us(t] —vy t1) +va(t] —wvy t1)%) =20t @] + oty @7 .
Thus, we have

2 2
vh = 8185 (v2 fv1vg) = 205 @ 1 + 12 @ 137 + vl 4 vyvey + vz,
508 (02 (4P o 4P 4P o 4207 2 2
203(v3/porve) = 2t ® 1] + 8 @ (7 + v + vivy + v32)/p,
and the Thom map sends 4 to 2tJ ® thz +i® t~12p2, which represents i, (h2 151 2). The second
follows.
From d(v}) = d(v1v2) = d(v3) = 0 mod (p?, v1,v2) we see that
2 2
d2tE @t + 17 @ 177 4+ 02z + vivgy + v32)
— 2 — - 2
= —2p(bo0 ® ] —th@bi1+bio @4 +00) +p(iF +vg) mod (),

where
7 2
phoo=(t2 @1+t @ +1@t)P —thol -t ot —1®1,
— 2 2
phii=t@l+10t) -2 @1-101# (2.4)
Phip=(t@1+10H)P —thel-1at).
Thus

_ 2 _
Y2 = (515253(’0%/}701@2) = —2b2’0 (Y tzf + 2#27 (29 bl,l —+ .

_ 2 o
and the Thom map sends it to —2bs 9 ® tf + 2#’27 ®b1,1 + - - which represents 2b; ghy 2 in the
MSS. The third follows.

Corollary 2.1 For p > 7, the homotopy class 7o is represented by 4o € Exti’*(Z/p, Z/p)
in the classical ASS and 7o is represented by 2bs ghy o in the MSS.

3 The Ef’t’M—Term of the MSS with Specialized s and ¢
Consider the MSS E""M = Ext%"(Z/p, Z/p), whose Ej-term is

EYY =Elhi; |i>0,j>0/@P[b;|i>0,j>0]® Pla; | i> 0]

*

The generators of E;""* are denoted by monomials

g=(@1-ap) - (yr-y) (21 2m), (3.1)

where z; is of the elements a;, y; is of the elements h; ; and z; is of b; ;. In this section, we will
compute some E‘f’t’* with specialized s and t, from which we will prove the Theorem A in the

next section.
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To compute E"* with specialized s and ¢, denote t by # 4+ b where ¢ = 2(p — 1)(co +
ap+ -+ cp™) with 0< ¢ <pand 0 < ¢, <p. Thus b =t mod2(p — 1). If a monomial
Ty Xy Y1y - 210 Zm of the form (3.1) is a generator of Ef’t’*, then b+ 1+ 2m = s.

Notice from (2.1), the inner degrees of x;, y; and z; could be uniquely expressed as

deg(z;) = 2(p — 1)(zs0 + zigp + -+ 2imp") + 1,
deg(yi) = 2(p — D(¥i0 + yiap + - + yinpd"),
deg(zi) =2(p — 1)(0+ zi1p + -+ - + 2inp"),
where the number sequence (x1,0, 21,1, ,®1,,) is the form of (1,---1,0,---,0), the sequences

(Yi,00¥i1, -+ »Yin) and (0,21, ,2ip) are the form of (0,---,0,1,---,1,0,---,0). Thus a

generator of the form (3.1) determines a matrix

1,0 ' Tpo Y10 " Y0 0 s 0
11 0 Tpal Y11 o Y1 2110 Zmyl
. . (3.2)
Tin - Tom Yin - Yn Z1n " Zm,n
And from the property of the p-adic number, we have
> Tio D Yio = ¢+ kip = co,
1<i<b 1<i<l
Z ri1  + Z Yi1 + Z Zi1 =¢C + kop — k1 = 1,
1<i<b 1<i<l 1<i<m
. . . : (3.3)
Z Tin—1 + Z Yin—1 + Z Zin—1= Cp—1+ knp - kn—l = Cn—1,
1<i<b 1<i<l 1<i<m
Z Tin + Z Yin + Z Zin =Cp — kn = Cp-
1<i<b 1<4i<l 1<i<m

From the commutativity of £{"*, the monomial of the form (3.1) is arranged in the following
way:

(a)
(b) We put h; ; on the left side of hy,  if 7 < k;
(c) If i >k, we put h, ; on the left side of hy ;;

If ¢ > j, we put a; on the left side of a;;

(d) Apply the same rules (b) and (c) to b; ;.
Thus the entries of matrix (3.2) are 0 or 1, and satisfy
D@y >aey > e > apj, Tig > Tig >+ > &y fori < b, j <n;
2)if y; ; # 0 and y; j_1 = 0 then for all £ < j, y;, = 0;

3) if y; ; # 0 and y; j41 = 0 then for all k > 7, y; x = 0;

)
)
) (3.4)
4) Y10 > Y20 >+ > Y10

)

)

5) if Yi0 = Yir1,00 Yol = Yit1,1, * - Yig = Vil then y i1 > yigr1 j41;

(
(
(
(
(
(

6) Apply the same rules (2)—(5) to z; ;.
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It is easy to see that a matrix solution of (3.3) satisfying (3.4) determines a unique generator

) c F1b+l+2m,t+b,*

of the form g = (z1 -+ ap) - (Y1 w) - (21 2m , where

FSH = Plhyj |i>0,§>0]® Plb;; | i> 0,5 >0]® Pla; | i > 0].

The Ei-term of the MSS is F"" ™" /{13 ,}.

Remark 3.1 The matrix solution of (3.3) does not always induce a generator of EY b

(1) If two columns in the y; ; part are the same, it deduces h? ; In the monomial.
(2) If all the entries of a column are 0 in the y; ; or z; ; parts, it deduces none. But it

deduces ag while in the x; ; part.

Proposition 3.1 Let p > 5 be an odd prime and t = 2(p — 1)(2p + 2p* + p") with n > 4.
Then the Ej-terms of the MSS E?iT’FHl’M are zero except for r = 1, which are the Z/p

modules generated by

bg,thn with M = 6p + 1;
ba,0h2,1b1 n—1 with M = 4p + 3;
bz,0h1,2h1,1h1n with M = 3p + 3;

{h271h172h171b1,n—1 h2,1h1,2h1,nbl,0} with M = p+5

ha1h11h1 5011

Proof Suppose we have a generator of the form (3.1) g = (x1---ap) - (y1---wy1) - (21 2m)
in B~ TEM CThen from b+ 14 2m =6 —r and b= —r + 1 mod 2(p — 1) we would have
that b=2(p—1) —r+ 1> p for r > 1. Thus Ef_m(p_l)(2p+2p2+pn)_r+1’M =0 forr > 1.

Forr =1, weseethat b =0 from 6—r =5, t—r+1=2(p—1)(2p+2p?+p") andb=t—r+1
mod 2(p — 1). Suppose we have a generator of the form (3.1) g = (y1---w1) - (21 2m) In
Ef’Q(p_l)(2p+2p+pn)’*. Then we see from [ + 2m = 5 that (0,1, m) could be (0, 1,2), (0,3,1) or
(0,5,0).

For (0,1, m) = (0,1, 2), the corresponding equation (3.3) becomes

Y1,0 =0+ kip = Co,
Y1tz tze1 =2+kep—ki  =ci,
Y2 +212 +22 =2+kp—ky =ca,
Y13 +213 +ze3 =0+ ksp— ks

C3,

Yin—-1 + Z1,n—1 + 22,n—1= 0+ knp - kn—l = Cp—1,

Yin +Zl,n +ZZ,n =1- kn = Cnp.

To solve it, we firstly determine that the carrying numbers £y, k2, - - - , ky, are 0 from all of y; ;

and z; ; being 0 or 1. Then applying the rule (3.4), list the matrix entries row by row so that

the sum of rows are ¢cg =0, ¢1 =2,¢c0=2,¢c3=0, .-+, ¢,_1 = 0 and ¢, = 1 respectively.
Indeed, from ¢y = ¢c3 = -+ = ¢,—1 = 0 we could determine that all the entries in the 15

and the 4'" ~ (n — 1) rows are 0. Then from ¢, = 1 we see that the last row is one of (0/0 1),
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(0]1 0) or (1|0 0), here we use (x| *) to distinguish the y; ; part from z; ; part. Yet we see that
the last row could not be (0|1 0). If so, then from 2y, = 1,21,,—1 = 0 and rule (3.4) (2), we see
that 211 = 0. Now 21,0 = 22,0 =0, 21,1 = 0, applying rule (3.4) (5) we see that 0 = 211 > 21 9,

this contradicts yi1,1 + 21,1 + 21,2 = 2. From the analysis above, we get two matrix solutions

0j]0 O 0 0(0 O 0
111 0 2 0(1 1 2
111 0 2 0/1 1 2
070 O 0 010 O 0
0/0 O 0 0/0 O 0
010 1 1 110 0 1

which induce respectively the generators
h271b2’0b1’n,1 and thb%’O.

Similarly solving the corresponding equation (3.3) for (0,7, m) = (0, 3,1), we get the gener-
ators
highi1hinbao, hoihi1hinbiy, hoihiohinbio, hoihi2hi1b1n—1

in Eft* Solving the corresponding equation (3.3) for (0,1, m) = (0,5, 0), we get the generator
h3 13 yhy, € FY'0F. But it is sent to 0 in EY0.

Compute the May filtrations of the generators given above, we get the proposition.

Proposition 3.2 Let 3 < s < p—1 be a positive integer, t; = 2(p—1)((s — 2) + sp + sp® +
p") + s — 3 with n > 4. Then the Ey-term of the MSS ES~" T35 ~"T1% 4s zero except for r = 1.

2 n
Els+2’2(p71)((872)+5p+5p P4 M e the Z [p-modules generated by

a3 3h3 0ha,1h1 nba o with M = Ts + 3p — 12,
a§73h3’0h2’1h1’2h171h17n with M = T7s — 10.

Proof Forr=1,t,—r+1=2(p—1)((s—2)+sp+ sp*> +p") + s — 3, suppose we have
a generator g = (xy---xp) - (y1---y1) - (21 zm) of the form (3.1) in EST®%* Then from
b+l+2m=s+2<p+1and b=t; mod2(p— 1), we see that b = s — 3 and then (b,I,m) is
one of (s —3,5,0), (s —3,3,1) and (s —3,1,2).

For (b,1,m) = (s — 3,5,0), the corresponding equation (3.3) becomes

T190 4+ T30 ‘Y0 +oootyso =s—2+4+kip  =co,
11+t xs—31 tyin +eotysy =s+thkp—k =cy,
Ti2 Ao+ Teo3z2 ‘Y12 A+t yse =s+ksp—ky =cs,
T13 +o+Ts—33 +yi3z +

+yss =0+kap—ks =cs, (3.5)

Tip—1+ F+Ts3pn1+Yin-1+  FYn-1=0+kp—kn_1=1cn_1,

s

T1,n +"'+1'573,n +y1,n ++y5,n =1 _kn = Cp-
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To solve the equation (3.5), noticing that each row has s + 2 entries, we firstly determine
that ky = ke = --- =k, =0 for s < p— 2. In the case s = p — 2, notice that each row has p
entries which may cause carry on the fourth row. Thus the carrying numbers k1, ko, - - - k,, have
another possibility k1 = ks =k3 =0, ks =--- =k, = 1.

For k1 = ks = -+ = k,, = 0, similarly to the proof of Proposition 3.1, we see that all the
entries in the 4" ~ (n — 1) rows are 0, and then the last row is (0 --- 0 |0 00 0 1) or
(0---0]00010).

(1) The last rowis (0 --- 0000 10). In this case the equation (3.5) has a solution, but
it deduces none by Remark 3.1(2).

(2) The last rowis (0 --- 00000 1). In this case the equation (3.5) has 6 solutions, and

they deduce the following generators in F 2"

s—4 2 2 s—3 3 s—4 3

a3~ "aghs gh3 1hin, a3 "hi,ohs 1hin, a3~ "arhsohy b,
s—3 s—3 2 s—4 2

Qg h3,0h2,1h1,1h1,2h1,n, Qg h20h21h1,2h1,n, Q3 azh3,0h271h1,2h1,n'

- ; 2.t
But only the generator ai ®hg oha1h11h1 2h1 ., is sent to a nonzero generator of Ej %%,

In the case ky = kg = k3 =0, ky = --- = k, = 1, notice that the fourth equation is
13+ +Tp53+y13+--+ys3=0+p=p.

Thus the fourth row must be (1 --- 1| 111 1 1), from which we see that the beginning four

rows are
1 1110 0 0 O p—4
1 11 1 1 0 O p—2
1 111 1.1 0 0 p—2
1 11 1 1 1 1 p.
Then since the sum of the fifth row is 0 +p — 1, we get 4 solutions, which deduce the following

tp_2,*
generators of F}"""~>":

_5 2 -5 2
ab™hnohs_q 1hn-33h13,  a"hnohn-11h31h; 55,

-5 2 2 -6 2 2
al) Oh470hn—1,1hn—3,37 al) a4hn,0hn—1,1hn—3,3~

But they are all sent to zero in Ef’t”’z’*.

For (b,1,m) = (s — 3,3, 1), the corresponding equation (3.3) becomes

Zio +tyio0 +TY20 +Yso =s—2+kp =co,
1<i<s—3
Ti1 +yi1 tyen tysq1 +zmg =s+kp—k =c,
1<i<s—3
Tio +ye ty22 t‘yse +z12 =s+ksp—ky =c3,
1<i<s—3
> xisz 4wz Y23 +yss +z13 =0+kwp—k  =cs,
1<i<s—3

> Zim—1+Yin—1+Y2n—1+Ysn—1+2n-1=0+k,p— kn_1=cpn_1,
1<i<s—3

Z Tin + Yin + Y2,n + Ys.n + AR 1- kn = Cn.
1<i<s—3
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Similarly we determine that k; = ko = --- = k,, = 0. Then all the entries in the 4" ~ (n —1)th
rows are 0, and the last row is (0 --- 0000 | 1) or (0 --- 000 1|0), from which we get

the following two solutions

1 .- 1]1 0 010 s—2 1 111 0 00 s—2
1 --- 171 1 110 s 1 111 1 01 s
1 -~ 171 1 110 s 1 111 1 0|1 s
0O --- 010 0 0|0 0 0 00 0 00 0
0O --- 010 0 00 0 0O --- 010 0 0]0 0
0O --- 010 0 0]1 1 0O --- 010 0 110 1

and they deduce the generators agfghg’ohg’lbl,n,l and a§73h3,0h2,1h1,nb2,0 of Ff+2’ts’* respec-
tively. But the former one is sent to zero in Ej >,

For (b,1,m) = (s — 3,1,2), the corresponding equation (3.3) has no solution.

Forr > 1,ts—r+1=2(p—1)((s—2)+sp+sp?+p")+s—r—2, suppose we have a generator
g= (1) (1) (21 2m) of the form (3.1) in Ef~" %% ~"1* "Qimilarly we see that
b=s—r—2,and (b,{,m) is the one in (s —r —2,1,2), (s —r —2,3,1) and (s —r — 2,5,0).
Considering the corresponding equations (3.3), we see that they all have no solution except for
r=2and (bl,m) = (s—r—2,50) = (s —4,5,0). In this case, the corresponding equation
(3.5) has one solution which induces the generator a§74h§70h§’1h1’n of FEthtamlx

Computing the May filtrations of the generators above we get the proposition.

4 The Proof of Theorem A

From [4, 10] and Corollary 2.1, we see that the homotopy elements 75, 75 for 3 < s < p and
j&n are represented by 2bs oh1 2, s and bohy, — hib,_1 respectively. Thus s(bohyn — h1bn_1)
and 2by ghq 2(bohy, — h1b,—1) are permanent cycles if:

(1) As(bohy, — hibp—1) and 2bg oh1 2(bohy, — h1b,—1) are not zero in the Ext groups. This
could be proved by showing that no May differentials hit ¥ (bohy, —h1bn—1) and 2ba oh1 2(bohy, —
hib,—1) in the MSS.

(2) No Adams differentials hit s (bohn, — h1bn—1) and 2ba gh1 2(bohy, — h1b,—1). This could
be proved by showing that

Exti;r+3’{s+87r72(z/p’ Z/p) =0 forr>2,
EXti_nQ(p_1)(2p+2p2+P’n)—T‘+1(Z/p’ Z/p) = 0 fOI' r Z 2.

This was done in Proposition 3.1 and Proposition 3.2 by showing that the corresponding
FE:-terms of the MSS are zero.

Lemma 4.1 In the cobar complex Q*(A) we have the cochain by such that

d(bap) = —b11 @& + & @by,
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where

~ 2
Phao=(£2@1+8 06 +10&6) - el- 8 -1,
phio=(E21+106)P -1 -1,

~ 2 2 2
Phi1=(6®14+10&) —& 91-10&) .

Thus in the MSS we have dap—1(bag) = —b1,1h1,1 + hi,2b10.

Proof In the cobar complex for BP,BP, consider the differential d(c(t5)), where ¢ :
BP,BP — BP,BP is the conjugation of BP,BP. Then from the commutativity of the follow-
ing diagram

BP,BP —2+ BP,BP @pp. BP,BP

lc l(c@c)-T

BP.BP —2+ BP,BP ®pp, BP,BP

and (2.3), we see that
d(c<t12))) =- p6270 - c(t11]2) ® c(tllj) mod (anpvl, Uf)a
~ 2
d(d(c(t3))) = = pd(bzo) — d(c(t]) @ c(t])) =0 mod (p*, pu1, vy).
Thus we have d(by o) = b1 1 @ c(?) — c(t’fz) @ by, mod (p,v1), where
Phoo = (elt2) @ 1+ () @ c(tr) + 1@ e(t2))” — () @1 = o(t] ) @ c(t}) — 1 @ (),
phia = (c(t)®1+1®ct) —c(t?) @1 -1 ),
pbio=(c(t) @1 +1@c(t))? —ct) @1 -1 c(th).
Applying the Thom map, we get the lemma from & -d = —d - ®.

Proposition 4.1 Forn > 4, no May differentials hit 2bs oh1 2(bohn — h1by—1) in the MSS,
and then A2 (bohyn, — h1b,—1) is a permanent cycle in the ASS.

Proof Consider the May differential d,. : E>*M+7 — ES*M we see that Yo (bohy, —h1bn_1)
is represented by 2bs oh1 2(b1,0h1 . —h1,101.n—1) in ES*M with May filtration M = 4p+2. From
Proposition 3.1, we see that only the generators bg,ohl,n and by oh2,1b1 -1 have May filtration

> 4p + 2. From Lemma 4.1, we see that

d2p71(b§’0h1,n> = 2bg,0(=b1,1h1,1 + h1,2b1,0) P,
d1(b2,0h2,1b1,n—1) = baoh1,2h1 161 n—1.

Thus
dzp—l(b;thn — 2ba 0h2,1b1,n—1) = 2b2 oh1 2(b1,0R1,n — R1,1b1.0—1) — 2b20b1,1R1 1P -

The proposition follows.
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Proposition 4.2 Forn >4 and 3 < s < p—1, no May differentials hit a§_3h370h271h172
(bohyn, — h1bn—1) in the MSS, and then A5(bohy, — h1b,—1) is a permanent cycle in the ASS.

Proof It is easy to see that a§_3h3)oh2,1h1,2(bohn — hib,_1) € E5t3%M has May filtra-
tion M = 7s + p — 11. From Proposition 3.2, we see that in ES*>*M*" only the generator

agighg’ohgylhlynbg’o has May filtration
M+r=T7Ts+3p—12>7s+p— 11

Notice that
dy (0373h3,0h2,1h1,n52,0) = —a§73h3,0h1,2h1,1h1,nb2,0 +---#0.

Thus the corresponding E§+2’*’M+T = 0 and no May differentials hit a5 3hs oha1h12(bohn —

hib,—1). The proposition follows.
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