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Abstract It is proved that for almost all sufficiently large even integers n, the prime
variable equation n = p1 + p2, p1 ∈ Pγ is solvable, with 13/15 < γ ≤ 1, where Pγ = {p |
p = [m

1
γ ], for integer m and prime p} is the set of the Piatetski-Shapiro primes.
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1 Introduction

The binary Goldbach problem seems out of reach at present. However we can get that
almost all sufficiently large even integers n can be written as a sum of two primes,

n = p1 + p2. (1.1)

Recently Li [1] obtained that for almost all sufficiently large even integers n, equation (1.1) has
solutions with one or two prime variables restricted to the Piatetski-Shapiro primes.

The set of the Piatetski-Shapiro primes of type γ is a well-known thin set of prime numbers,
which can be written as

Pγ = {p | p = [m
1
γ ], for integer m and prime p}.

The counting function πγ(x) of Pγ was studied by a number of authors. Piatetski-Shapiro [2]
first proved that for 11/12 < γ ≤ 1,

πγ(x) =
∑

p≤x

p=[n
1
γ ]

1 = (1 + o(1))
xγ

log x
.

The best results are given by [3] and [4], where it is proved that πγ(x) has an asymptotic formula
for 2426/2817 < γ ≤ 1, and πγ(x) has positive lower bound estimate for 205/243 < γ ≤ 1.

The purpose of this paper is to establish the following result with one prime variable re-
stricted to the Piatetski-Shapiro primes.
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Theorem 1.1 If γ is fixed with 13/15 < γ ≤ 1, then for almost all sufficiently large even
integers n, the equation

{
n = p1 + p2,

p1 ∈ Pγ

(1.2)

is solvable.

Li [1] proved that equation (1.2) is solvable for 8/9 < γ ≤ 1. To get the better result, we
shall apply the sieve method combined with the circle method. This method was invented by
Jia [5], and was used later in many articles (see [6, 1], for example).

Notations Throughout this paper, both n and N are sufficiently large even integers,
satisfying N < n ≤ 2N . ε is a sufficiently small positive constant. c, c1 and c2 are constants,
which may have different values at different places. m ∼ M means c1M < m ≤ c2M . N(d) =
[−dγ ]− [−(d + 1)γ ].

As usual, ϕ(q), µ(q) and Λ(n) stand for the functions of Euler, Mobius and von Mangoldt
respectively.

2 Some Preliminary Lemmas

In the following, we assume that

H = N1−γ+∆+8ε.

By the discussion in [7], the asymptotic formula that for 0 ≤ ∆ ≤ 1− γ,
∑

N/10<p≤N

N(p)e(αp) = γ
∑

N/10<p≤N

pγ−1e(αp) + O(Nγ−∆−5ε),

depends on the fact that for J ≤ H and 0 ≤ u ≤ 1,

min
(
1,

N1−γ

J

) ∑

h∼J

∣∣∣
∑

n∼N

Λ(n)e(αn + h(n + u)γ)
∣∣∣ ¿ N1−∆−6ε.

Lemma 2.1 Assume that N1−γ+2∆+30ε ¿ M ¿ N5γ−4−6∆−120ε and that a(m), b(k) =
O(1). Then for J ≤ H and 0 ≤ u ≤ 1, we have

min
(
1,

N1−γ

J

) ∑

h∼J

∣∣∣
∑

m∼M

∑

km∼N

a(m)b(k)e(αkm + h(km + u)γ)
∣∣∣ ¿ N1−∆−10ε.

This is Proposition 2 of [7].

Lemma 2.2 Assume that M ¿ N4γ−3−5∆−50ε, a(m) = O(1) and

6(1− γ) +
19
3

∆ < 1.

Then for J ≤ H and 0 ≤ u ≤ 1, we have

min
(
1,

N1−γ

J

) ∑

h∼J

∣∣∣
∑

m∼M

a(m)
∑

km∼N

e(αkm + h(km + u)γ)
∣∣∣ ¿ N1−∆−10ε.
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This is Proposition 3 of [7].

Lemma 2.3 Assume that |α− a/q| < 1/q2, (a, q) = 1. Then we have
∑
p∼x

e(αp) ¿
( x√

q
+
√

xq + x
4
5

)
log5 x.

Refer to Section 25 in [8].

Lemma 2.4 Assume that |α − a/q| < 1/q2, (a, q) = 1, x ≥ 2 and F1, F2 be increasing
sequences of positive integers. Then for any positive numbers U and U ′ satisfying 1 ≤ U ≤ x

and U < U ′ ≤ 2U , we have
∑

U≤u<U′
u∈F1

∑

1≤uv≤x

v∈F2

e(αuv) ¿ x
(1

q
+

q

x
log q +

1
U

log q +
U

x

) 1
2
.

This is Lemma 5.7 of [9].

Lemma 2.5 Assume that |α− a/q| < 1/q2, (a, q) = 1. Then we have

∑

x<p1p2≤2x

x
1
3 <p1≤x

1
2

e(αp1p2) ¿ x log
3
2 x

(
1
q

+
q

x
+

1
x

1
3

) 1
2

.

This follows from Lemma 2.4.
We define w(u) as the continuous solution of the equations

w(u) =
1
u

, 1 ≤ u ≤ 2,

(uw(u))′ = w(u− 1), u > 2.

w(u) is called Buchstab’s function. It plays an important role in finding asymptotic formulas
in the sieve method. In particular,

w(u) =





1 + log(u− 1)
u

, 2 ≤ u ≤ 3,

1 + log(u− 1)
u

+
1
u

∫ u−1

2

log(t− 1)
t

dt, 3 ≤ u ≤ 4.

(2.1)

Lemma 2.6 We get that
( i ) for u ≥ 2.47, w(u) ≥ 0.5607;
( ii ) for u ≥ 3, w(u) ≤ 0.5644;
(iii) for u ≥ 1.7631, w(u) ≤ 0.5672;
(iv) for u ≥ 1, w(u) ≥ 0.5.

This is Lemma 8 of [6].

Lemma 2.7 Assume that E = {n : x < n ≤ 2x}, and that z ≤ x. Let P (z) =
∏

p<z
p. Then

for sufficiently large x and z, we have

S(E , z) =
∑

x<n≤2x
(n,P (z))=1

1 =
(
w

( log x

log z

)
+ O(ε)

) x

log z
.
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This is Lemma 9 of [6].

3 Some Formulas in Sieve Method

In this section, we prove some lemmas which will be used next section.

Lemma 3.1 Assume that M, K ¿ N
1
3 , and that a(m), b(k) = O(1). Let

I(n) =
∑

n=n1+n2
n/10<n1,n2≤n

γnγ−1
1

log n2
.

Then for N < n ≤ 2N , except for O(N log−2 N) values, we have

∑

m∼M,k∼K
(m,n)=(k,n)=1

a(m)b(k)
( ∑

n=mkl+p2
n/10<mkl,p2≤n

N(mkl)− 1
ϕ(mk)

I(n)
)

= O
( Nγ

log20 N

)
.

Proof Let
S(α) =

∑

n/10<p≤n

e(αp).

We have
∑
1

=
∑

m∼M,k∼K
(m,n)=(k,n)=1

a(m)b(k)
∑

n=mkl+p2
n/10<mkl,p2≤n

N(mkl)

=
∫ 1

0

∑

n/10<mkl≤n
(m,n)=(k,n)=1

m∼M,k∼K

a(m)b(k)N(mkl)e(αmkl)S(α)e(−αn)dα.

Define

g(α) =
∑

n/10<mkl≤n
(m,n)=(k,n)=1

m∼M,k∼K

a(m)b(k)N(mkl)e(αmkl),

f(α) = γ
∑

n/10<mkl≤n
(m,n)=(k,n)=1

m∼M,k∼K

a(m)b(k)(mkl)γ−1e(αmkl).

By the discussion in [7], the asymptotic formula

g(α) = f(α) + O(Nγ−5ε) (3.1)

depends on the fact that for J ≤ H1 = N1−γ+8ε and 0 ≤ u ≤ 1,

min
(
1,

N1−γ

J

) ∑

h∼J

∣∣∣
∑

m∼M

∑

k∼K

∑

mkl∼N

a(m)b(k)e(αmkl + h(mkl + u)γ)
∣∣∣ ¿ N1−6ε. (3.2)

If either M or K is larger than N
2
15 , then by Lemma 2.1 with ∆ = 0, (3.2) holds. If

M, K ≤ N
2
15 , then MK ¿ N

4
15 ¿ N4γ−3−50ε. By Lemma 2.2 with ∆ = 0, (3.2) also holds.

Hence (3.1) holds.
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By (3.1) we have
g(α)S(α)− f(α)S(α) ¿ Nγ−5ε · |S(α)|.

Thus

∑
1

=
∫ 1

0

g(α)S(α)e(−nα)dα =
∫ 1

0

f(α)S(α)e(−nα)dα + ψ. (3.3)

By Bessel’s inequality, we have

∑

N<n≤2N

|ψ|2 ¿
∫ 1

0

|g(α)S(α)− f(α)S(α)|2dα ¿ N2γ−10ε

∫ 1

0

|S(α)|2dα ¿ N2γ+1−10ε.

By the above, for N < n ≤ 2N , except for O(N1−ε) values, we have

ψ ¿ Nγ−ε. (3.4)

In the following we investigate

∑
2

=
∫ 1

0

f(α)S(α)e(−nα)dα.

Let Q = N log−80 N . By Dirichlet’s lemma, we divide [−1/Q, 1− 1/Q] into the major arcs
E1 and minor arcs E2 as follows:

E1 = {α : α = a/q + β, q ≤ log80 N, 0 ≤ a ≤ q, (a, q) = 1, |β| ≤ 1/(qQ)},
E2 = [−1/Q, 1− 1/Q]\E1.

Then
∑
2

=
( ∫

E1

+
∫

E2

)
f(α)S(α)e(−nα)dα. (3.5)

For α ∈ E2, by Lemma 2.3, we have S(α) ¿ N log−35 N . Hence by Bessel’s inequality, we have

∑

N<n≤2N

∣∣∣
∫

E2

f(α)S(α)e(−nα)dα
∣∣∣
2

¿
∫

E2

|f(α)S(α)|2dα ¿ |S(α)|2
∫

E2

|f(α)|2dα

¿N2 log−70 N ·
∫ 1

0

|f(α)|2dα ¿ N2γ+1 log−60 N. (3.6)

Here we have used the fact that for dr(n) =
∑

n=n1n2···nr

1, and positive integer k,
∑

n≤x

dk
r (n) ¿

x(log x)rk−1. By (3.5), for N < n ≤ 2N , except for O(N log−20 N) values, we have
∫

E2

f(α)S(α)e(−nα)dα ¿ Nγ log−20 N.

If α ∈ E1, let R = MK, and j(r) = γ
∑

mk=r
m∼M,k∼K

a(m)b(k). By (25) in [6], we have

f(α) =
∑

r∼R
(r,n)=1,q|r

j(r)
∑

n/10<s≤n

sγ−1e(βs) + O(Nγ−ε).
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By Lemma 6.4 in [9], we have

S(α) =
µ(q)
ϕ(q)

∑

n/10<s≤n

e(βs)
log s

+ O(N exp(−c2

√
log N )). (3.7)

Hence
∑
3

=
∫

E1

f(α)S(α)e(−nα)dα

=
∑

q≤log80 N

q∑
a=1

(a,q)=1

e
(
− an

q

) ∫ 1
qQ

− 1
qQ

f
(a

q
+ β

)
S

(a

q
+ β

)
e(−βn)dβ

=
∑

q≤log80 N

µ(q)C(q,−n)
ϕ(q)

∑

r∼R
(r,q)=1,q|r

j(r)
r

∫ 1
qQ

− 1
qQ

( ∑

n/10<s≤n

sγ−1e(βs)
)

·
( ∑

n/10<s≤n

e(βs)
log s

)
e(−βn)dβ + O

( Nγ

log20 N

)
, (3.8)

in which

C(q, m) =
q∑

a=1
(a,q)=1

e
(am

q

)
.

Since
∫ 1

2

− 1
qQ

( ∑

n/10<s≤n

sγ−1e(βs)
)( ∑

n/10<s≤n

e(βs)
log s

)
e(−βn)dβ ¿

∫ 1
2

− 1
qQ

nγ dβ

β2
¿ qNγ

log80 N
, (3.9)

we obtain

∑
3

=
1
γ

I(n)
∑

q≤log80 N

µ(q)C(q,−n)
ϕ(q)

∑

r∼R
(r,n)=1,q|r

j(r)
r

+ O(Nγ log−20 N).

Let

Ω =
∑

q≤log80 N

µ(q)C(q,−n)
ϕ(q)

∑

r∼R
(r,n)=1,q|r

j(r)
r

.

By the discussion above and (4.11) in [1], we have

Ω = γ
∑

m∼M,k∼K
(m,n)=(k,n)=1

a(m)b(k)
ϕ(mk)

+ O
( 1

log50 N

)
.

Hence

∑
3

= I(n)
∑

m∼M,k∼K
(m,n)=(k,n)=1

a(m)b(k)
ϕ(mk)

+ O
( Nγ

log20 N

)
. (3.10)

From (3.4), (3.7) and (3.10), the lemma follows.
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Lemma 3.2 Assume that M, K ¿ N
1
3 , and that a(m), b(k) = O(1). Let

J(n) =
∑

n
1
3 <p1≤n

1
2

1
p1

∑
n=n1+n2

n/10<n1,n2≤n

γnγ−1
2

log n2
p1

.

Then for N < n ≤ 2N , except for O(N log−2 N) values, we have
∑

m∼M,k∼K
(m,n)=(k,n)=1

a(m)b(k)
( ∑

[ ]

N(p1p2)− 1
ϕ(mk)

J(n)
)

= O
( Nγ

log20 N

)
,

where
∑
[ ]

denotes that the sum is taken over

n = mkl + p1p2, n/10 < mkl, p1p2 ≤ n, n
1
3 < p1 ≤ n

1
2 , p1 < p2.

Proof This can be proved in almost the same way as Lemma 3.1. We only give the outline
of the proof. Let

D(α) =
∑

n/10<p1p2≤n

n
1
3 <p1≤n

1
2 ,p1<p2

N(p1p2)e(αp1p2), S1(α) = γ
∑

n/10<p1p2≤n

n
1
3 <p1≤n

1
2 ,p1<p2

(p1p2)γ−1e(αp1p2).

By Lemma 4 of [6], we have D(α) = S1(α) + O(Nγ−5ε).
Let E1, E2 be defined as in Lemma 3.1. For α ∈ E2, by Lemma 2.5, we have S1(α) ¿

Nγ log−35 N .
For α ∈ E1, similarly to g(α) in Lemma 18 of [6], we have

S1(α) = γ
µ(q)
ϕ(q)

∑

n
1
3 <p1≤n

1
2

1
p1

∑

n/10<s≤n

sγ−1e(βs)
log s

p1

+ O(Nγ exp(−c2

√
log N )).

Then we can prove the lemma in the same way used in Lemma 3.1.

Lemma 3.3 Assume that N
2
3 ¿ M ¿ N

13
15 , 0 ≤ a(m) = O(1), and that a(m) = 0, if m

has a prime factor < Nε. Then for N < n ≤ 2N , except for O(N log−2 N) values, we have
∑
4

=
∑

n=mp1+p2
n/10<mp1,p2≤n

m∼M

a(m)N(mp1)

= (1 + O(ε))Z(γ)C(n)
nγ

n log n

∑

m∼M

a(m)
∑

n/m<p≤2n/m

1 + O
( Nγ

log10 N

)
,

in which

Z(γ) = γ

∫ 9
10

1
10

uγ−1du, C(n) =
n

ϕ(n)

∏

p-n

(
1− 1

(p− 1)2
)
.

Proof In a way similar to the proof of Lemma 3.1, we have

∑
4

=
∫ 1

0

∑

n/10<mp1≤n
m∼M

a(m)N(mp1)e(αmp1)S(α)e(−αn)dα,
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where S(α) is defined in the proof of Lemma 3.1. Then for N < n ≤ 2N , except for
O(N log−2 N) values, we have

∑
4

=
∫

E1

h(α)S(α)e(−nα)dα + O
( Nγ

log20 N

)
,

where E1 is defined in the proof of Lemma 3.1 and

h(α) = γ
∑

n/10<mp1≤n
m∼M

a(m)(mp1)γ−1e(αmp1).

By [6, p.22], we have

h(α) = γ
µ(q)
ϕ(q)

∑

m∼M

a(m)
m

∑

n/10<s≤n

sγ−1e(βs)
log s

p1

+ O(N exp(−c
√

log N )).

By the above and (3.8), we have

∑
4

=
∑

q≤log80 N

q∑
a=1

(a,q)=1

e
(
− an

q

) ∫ 1
qQ

− 1
qQ

h
(a

q
+ β

)
S

(a

q
+ β

)
e(−βn)dβ + O

( Nγ

log10 N

)

= γ
∑

q≤log80 N

µ2(q)C(q,−n)
ϕ2(q)

∫ 1
qQ

− 1
qQ

∑

m∼M

a(m)
m

( ∑

n/10<s≤n

sγ−1e(βs)
log s

m

)

·
( ∑

n/10<s≤n

e(βs)
log s

)
e(−βn)dβ + O

( Nγ

log10 N

)

=
∑

q≤log80 N

µ2(q)C(q,−n)
ϕ2(q)

K(n) + O
( Nγ

log10 N

)
, (3.11)

where

K(n) = γ
∑

m∼M

a(m)
m

∑
n=n1+n2

n/10<n1,n2≤n

nγ−1
1

log n1
m log n2

= (1 + O(ε))Z(γ)
nγ

log n

∑

m∼M

a(m)
m log n

m

= (1 + O(ε))Z(γ)
nγ−1

log n

∑

m∼M

a(m)
∑

n/m<p≤2n/m

1. (3.12)

Moreover, by Lemma 11.6 in [9], we have

∑

q≤log80 N

µ2(q)C(q,−n)
ϕ2(q)

=
∞∑

q=1

µ2(q)C(q,−n)
ϕ2(q)

+ O(log−30 N) = C(n) + O(log−30 N).

The lemma follows from the above, (3.11) and (3.12).

Lemma 3.4 Assume that N
2
3 ¿ M ¿ N

13
15 , 0 ≤ a(m) = O(1), and that a(m) = 0, if m

has a prime factor < Nε. Let
∑
5

=
∑

n=mp+d
n/10<mp,d≤n

m∼M

a(m)N(d),
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where d = p1p2 (n
1
3 < p ≤ n

1
2 , p1 < p2). Then for N < n ≤ 2N , except for O(N log−2 N)

values, we have

∑
5

= (1 + O(ε))Z(γ)C(n)
∫ 1

2

1
3

dt

t(1− t)
· nγ

n log n

∑

m∼M

a(m)
∑

n/m<p≤2n/m

1 + O
( Nγ

log10 N

)
.

Proof In almost the same way as in Lemma 3.3, and referring to Lemma 3.2, we obtain
the lemma.

4 Sieve Method—Proof of Theorem 1.1

Let T (n) denote the number of the solutions of the equation (1.2). Assume that

A = {a : a = n− p, N(a) = 1, n/10 < p ≤ n},
B = {b : b = n− d, N(d) = 1, 0 < d ≤ 9n/10, d = p1p2 (n

1
3 < p ≤ n

1
2 , p1 < p2)},

and that
P (z) =

∏

p<z,p-n
p, S(A, z) =

∑

a∈A
(a,P (z))=1

1, S(B,w) =
∑

b∈B
(b,P (w))=1

1.

Note once again that p ∈ Pγ is equivalent to N(p) = 1. Applying Buchstab’s identity, we get

T (n) ≥ S(A,n
1
2 ) = S(A,n

2
15 )−

∑

n
2
15 <p≤n

1
3

S(Ap, p)−
∑

n
1
3 <p≤n

1
2

S(Ap, p) = S1 − S2 − S3. (4.1)

Next

S3 =
∑

n
1
3 <p≤n

1
2

S(Ap, p)

= #{d : d = n− p4, N(d) = 1, n/10 < p4 ≤ n, d = p1p2 (n
1
3 < p ≤ n

1
2 , p1 < p2)}

= #{p4 : p4 = n− d, N(d) = 1, 0 < d ≤ 9n/10, d = p1p2 (n
1
3 < p ≤ n

1
2 , p1 < p2)}

= S(B,n
1
2 ).

Using Buchstab’s identity again, we get

S3 = S(B,n
1
2 ) = S(B,n

2
15 )−

∑

n
2
15 <p≤n

1
3

S(Bp, p)−
∑

n
1
3 <p≤n

1
2

S(Bp, p) = T1 − T2 − T3.

Lemma 4.1 For N < n ≤ 2N , except for O(N log−2 N) values, we have

S1 = S(A,n
2
15 ) ≥ 4.203525Z(γ)C(n)

nγ

log2 n
.

Proof Take

X = I(n) =
∑

n=n1+n2
n/10<n1,n2≤n

γnγ−1
1

log n2
,
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ω(d) =
d

ϕ(d)
, if (d, n) = 1; ω(d) = 0, if (d, n) > 1 and rd = #Ad − X

ϕ(d)
.

By Theorem 7.11 and (7.40) in [9], we have

W (z) =
∏
p<z

(
1− w(p)

p

)
= C(n)

e−γ0

log z

(
1 + O

( 1
log z

))
,

where γ0 is the Euler’s constant.
Let z = n

2
15 , D = n

2
3 . By Iwaniec’s bilinear sieve method (see [10, Theorem 1]), we obtain

S1 ≥ C(n)X
log z

(
f
( log D

log z

)
−O(ε)

)
−

∑

m<n
1
3 ,k<n

1
3

(m,n)=(k,n)=1

a(m)b(k)r(mk),

where f(u) is a standard function in sieve method. In particular,

f(u) =





2
u

log(u− 1), 2 ≤ u ≤ 4,

2
u

(
log(u− 1) +

∫ u−1

3

dt

t

∫ t−1

2

log(s− 1)
s

ds
)
, 4 ≤ u ≤ 6.

By Lemma 3.1, for N < n ≤ 2N , except for O(N log−2 N) values, we have

∑

m<n
1
3 ,k<n

1
3

(m,n)=(k,n)=1

a(m)b(k)r(mk) = O
( Nγ

log10 N

)
.

On the other hand,

X =
(1 + O(ε))γ

log n

∑
n=n1+n2

n/10<n1,n2≤n

nγ−1
1 = (1 + O(ε))Z(γ)

nγ

log n
.

Combining the above we get the lemma.

Lemma 4.2 For N < n ≤ 2N , except for O(N log−2 N) values, we have

S2 =
∑

n
2
15 <p≤n

1
3

S(Ap, p) < 2.5426Z(γ)C(n)
nγ

log2 n
.

Proof By Lemmas 2.6, 2.7 and 3.3, it follows that

S2 =
∑

n=rp+p1

n/10<rp,p1≤n

n
2
15 <p≤n

1
3 ,(r,P (p))=1

N(rp)

= (1 + O(ε))Z(γ)C(n)
nγ

log n

∑

n
2
15 <p≤n

1
3

∑

n/p<r≤2n/p
(r,P (p))=1

1 + O
( Nγ

log8 N

)



A Hybrid of Theorems 351

= Z(γ)C(n)
nγ

log n

∑

n
2
15 <p≤n

1
3

1
p log p

w
( log n

p

log p

)
+ O

(
ε

Nγ

log2 N

)

= Z(γ)C(n)
nγ

log2 n

∫ 1
3

2
15

1
u2

w
(1− u

u

)
du + O

(
ε

Nγ

log2 N

)

= Z(γ)C(n)
nγ

log2 n

∫ 13/2

2

w(t)dt + O
(
ε

Nγ

log2 N

)

< 2.5426Z(γ)C(n)
nγ

log2 n
.

Lemma 4.3 For N < n ≤ 2N , except for O(N log−2 N) values, we have

T1 = S(B,n
2
15 ) < 2.92389Z(γ)C(n)

nγ

log2 n
.

Proof Take Y = J(n), where J(n) is defined in Lemma 3.2, and

rd = #Bd − Y

ϕ(d)
.

Take z = n
2
15 , D = n

2
3 . By Iwaniec’s bilinear sieve method, we have

T1 ≤ C(n)Y
log n · log z

(
F

( log D

log z

)
+ O(ε)

)
+

∑

m<n
1
3 ,k<n

1
3

(m,n)=(k,n)=1

a(m)b(k)r(mk), (4.2)

where F (u) is a standard function. In particular

F (u) =





2
u

, 2 ≤ u ≤ 3,

2
u

(
1 +

∫ u−1

2

log(t− 1)
t

dt
)
, 3 ≤ u ≤ 5.

Applying Lemma 3.2, for N < n ≤ 2N , except for O(N log−2 N) values, we have

∑

m<n
1
3 ,k<n

1
3

(m,n)=(k,n)=1

a(m)b(k)r(mk) = O
( Nγ

log10 N

)
. (4.3)

On the other hand,

Y = (1 + O(ε))γ
∑

n=n1+n2
n/10<n1,n2≤n

nγ−1
2

∑

n
1
3 <p≤n

1
2

1
p log n2

p

= (1 + O(ε))Z(γ)
nγ

log n

∫ 1
2

1
3

dt

t(1− t)
= ln 2 · Z(γ)

nγ

log n
.

Hence the lemma follows from the above, (4.2) and (4.3).
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Lemma 4.4 For N < n ≤ 2N , except for O(N log−2 N) values, we have

T2 =
∑

n
2
15 <p≤n

1
3

S(Bp, p) > 1.72914Z(γ)C(n)
nγ

log2 n
.

Proof We have
T2 =

∑

n=rp+d

n/10<rp,d≤n

n
2
15 <p≤n

1
3 ,(r,P (p))=1

N(d),

where d = p1p2 (n
1
3 < p1 ≤ n

1
2 , p1 < p2). By Lemmas 2.6, 2.7, 3.4, and the deduction in

Lemma 4.2, for N < n ≤ 2N , except for O(N log−2 N) values, we have

T2 =
C(n)Y
log n

∫ 13
2

2

w(u)du + O
( εNγ

log2 N

)
> 1.72914Z(γ)C(n)

nγ

log2 n
.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1 By (4.1), Lemmas 4.1– 4.4, for N < n ≤ 2N , except for
O(N log−2 N) values, we have

T (n) > 0.466Z(γ)C(n)
nγ

log2 n
.

Thus Theorem 1.1 follows.
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