A Hybrid of Theorems of Goldbach and Piatetski-Shapiro***

Xianmeng MENG^{*} Mingqiang WANG^{**}

Abstract It is proved that for almost all sufficiently large even integers n, the prime variable equation $n = p_1 + p_2$, $p_1 \in P_{\gamma}$ is solvable, with $13/15 < \gamma \leq 1$, where $P_{\gamma} = \{p \mid p = [m^{\frac{1}{\gamma}}], \text{ for integer } m \text{ and prime } p\}$ is the set of the Piatetski-Shapiro primes.

Keywords Circle method, Sieve method, Goldbach problem 2000 MR Subject Classification 11P32, 11P55

1 Introduction

The binary Goldbach problem seems out of reach at present. However we can get that almost all sufficiently large even integers n can be written as a sum of two primes,

$$n = p_1 + p_2. (1.1)$$

Recently Li [1] obtained that for almost all sufficiently large even integers n, equation (1.1) has solutions with one or two prime variables restricted to the Piatetski-Shapiro primes.

The set of the Piatetski-Shapiro primes of type γ is a well-known thin set of prime numbers, which can be written as

 $P_{\gamma} = \{p \mid p = [m^{\frac{1}{\gamma}}], \text{ for integer } m \text{ and prime } p\}.$

The counting function $\pi_{\gamma}(x)$ of P_{γ} was studied by a number of authors. Piatetski-Shapiro [2] first proved that for $11/12 < \gamma \leq 1$,

$$\pi_{\gamma}(x) = \sum_{\substack{p \le x \\ p = [n^{\frac{1}{\gamma}}]}} 1 = (1 + o(1)) \frac{x^{\gamma}}{\log x}.$$

The best results are given by [3] and [4], where it is proved that $\pi_{\gamma}(x)$ has an asymptotic formula for $2426/2817 < \gamma \leq 1$, and $\pi_{\gamma}(x)$ has positive lower bound estimate for $205/243 < \gamma \leq 1$.

The purpose of this paper is to establish the following result with one prime variable restricted to the Piatetski-Shapiro primes.

E-mail: mengxm@beelink.com

**School of Computer Science and Technology, Shandong University, Jinan 250100, China; Department of Mathematics, Qufu Normal University, Qufu 273165, Shandong, China. E-mail: mingqiangwang@sina.com

Manuscript received June 3, 2004. Revised September 24, 2005.

^{*}School of Computer Science and Technology, Shandong University, Jinan 250100, China; Department of Statistics and Mathematics, Shandong Finance Institute, Jinan 250014, China.

^{***}Project supported by the Foundation of Shandong Provincial Education Department in China (No.03F06) and the Grant for Doctoral Fellows in Shandong Finance Institute.

Theorem 1.1 If γ is fixed with $13/15 < \gamma \leq 1$, then for almost all sufficiently large even integers n, the equation

$$\begin{cases} n = p_1 + p_2, \\ p_1 \in P_\gamma \end{cases}$$
(1.2)

 $is \ solvable.$

Li [1] proved that equation (1.2) is solvable for $8/9 < \gamma \leq 1$. To get the better result, we shall apply the sieve method combined with the circle method. This method was invented by Jia [5], and was used later in many articles (see [6, 1], for example).

Notations Throughout this paper, both n and N are sufficiently large even integers, satisfying $N < n \leq 2N$. ε is a sufficiently small positive constant. c, c_1 and c_2 are constants, which may have different values at different places. $m \sim M$ means $c_1M < m \leq c_2M$. $N(d) = [-d^{\gamma}] - [-(d+1)^{\gamma}]$.

As usual, $\varphi(q)$, $\mu(q)$ and $\Lambda(n)$ stand for the functions of Euler, Mobius and von Mangoldt respectively.

2 Some Preliminary Lemmas

In the following, we assume that

$$H = N^{1 - \gamma + \Delta + 8\varepsilon}.$$

By the discussion in [7], the asymptotic formula that for $0 \leq \Delta \leq 1 - \gamma$,

$$\sum_{N/10$$

depends on the fact that for $J \leq H$ and $0 \leq u \leq 1$,

$$\min\left(1,\frac{N^{1-\gamma}}{J}\right)\sum_{h\sim J}\Big|\sum_{n\sim N}\Lambda(n)e(\alpha n+h(n+u)^{\gamma})\Big|\ll N^{1-\Delta-6\varepsilon}$$

Lemma 2.1 Assume that $N^{1-\gamma+2\Delta+30\varepsilon} \ll M \ll N^{5\gamma-4-6\Delta-120\varepsilon}$ and that a(m), b(k) = O(1). Then for $J \leq H$ and $0 \leq u \leq 1$, we have

$$\min\left(1,\frac{N^{1-\gamma}}{J}\right)\sum_{h\sim J}\left|\sum_{m\sim M}\sum_{km\sim N}a(m)b(k)e(\alpha km+h(km+u)^{\gamma})\right|\ll N^{1-\Delta-10\varepsilon}.$$

This is Proposition 2 of [7].

Lemma 2.2 Assume that $M \ll N^{4\gamma-3-5\Delta-50\varepsilon}$, a(m) = O(1) and

$$6(1-\gamma) + \frac{19}{3}\Delta < 1.$$

Then for $J \leq H$ and $0 \leq u \leq 1$, we have

$$\min\left(1,\frac{N^{1-\gamma}}{J}\right)\sum_{h\sim J}\left|\sum_{m\sim M}a(m)\sum_{km\sim N}e(\alpha km+h(km+u)^{\gamma})\right|\ll N^{1-\Delta-10\varepsilon}.$$

This is Proposition 3 of [7].

Lemma 2.3 Assume that $|\alpha - a/q| < 1/q^2$, (a,q) = 1. Then we have

$$\sum_{p \sim x} e(\alpha p) \ll \left(\frac{x}{\sqrt{q}} + \sqrt{xq} + x^{\frac{4}{5}}\right) \log^5 x.$$

Refer to Section 25 in [8].

Lemma 2.4 Assume that $|\alpha - a/q| < 1/q^2$, $(a,q) = 1, x \ge 2$ and F_1, F_2 be increasing sequences of positive integers. Then for any positive numbers U and U' satisfying $1 \le U \le x$ and $U < U' \le 2U$, we have

$$\sum_{\substack{U \le u < U' \\ u \in F_1}} \sum_{\substack{1 \le uv \le x \\ v \in F_2}} e(\alpha uv) \ll x \Big(\frac{1}{q} + \frac{q}{x} \log q + \frac{1}{U} \log q + \frac{U}{x}\Big)^{\frac{1}{2}}.$$

This is Lemma 5.7 of [9].

Lemma 2.5 Assume that $|\alpha - a/q| < 1/q^2$, (a,q) = 1. Then we have

$$\sum_{\substack{x < p_1 p_2 \le 2x \\ x^{\frac{1}{3}} < p_1 \le x^{\frac{1}{2}}}} e(\alpha p_1 p_2) \ll x \log^{\frac{3}{2}} x \left(\frac{1}{q} + \frac{q}{x} + \frac{1}{x^{\frac{1}{3}}}\right)^{\frac{1}{2}}.$$

This follows from Lemma 2.4.

We define w(u) as the continuous solution of the equations

$$w(u) = \frac{1}{u},$$
 $1 \le u \le 2,$
 $(uw(u))' = w(u-1), \quad u > 2.$

w(u) is called Buchstab's function. It plays an important role in finding asymptotic formulas in the sieve method. In particular,

$$w(u) = \begin{cases} \frac{1 + \log(u - 1)}{u}, & 2 \le u \le 3, \\ \frac{1 + \log(u - 1)}{u} + \frac{1}{u} \int_{2}^{u - 1} \frac{\log(t - 1)}{t} dt, & 3 \le u \le 4. \end{cases}$$
(2.1)

Lemma 2.6 We get that

- (i) for $u \ge 2.47$, $w(u) \ge 0.5607$;
- (ii) for $u \ge 3$, $w(u) \le 0.5644$;
- (iii) for $u \ge 1.7631$, $w(u) \le 0.5672$;
- (iv) for $u \ge 1$, $w(u) \ge 0.5$.

This is Lemma 8 of [6].

Lemma 2.7 Assume that $\mathcal{E} = \{n : x < n \leq 2x\}$, and that $z \leq x$. Let $P(z) = \prod_{p < z} p$. Then for sufficiently large x and z, we have

$$S(\mathcal{E}, z) = \sum_{\substack{x < n \le 2x \\ (n, P(z)) = 1}} 1 = \left(w \left(\frac{\log x}{\log z} \right) + O(\varepsilon) \right) \frac{x}{\log z}.$$

This is Lemma 9 of [6].

3 Some Formulas in Sieve Method

In this section, we prove some lemmas which will be used next section.

Lemma 3.1 Assume that $M, K \ll N^{\frac{1}{3}}$, and that a(m), b(k) = O(1). Let

$$I(n) = \sum_{\substack{n=n_1+n_2\\n/10 < n_1, n_2 \le n}} \frac{\gamma n_1^{\gamma-1}}{\log n_2}$$

Then for $N < n \leq 2N$, except for $O(N \log^{-2} N)$ values, we have

$$\sum_{\substack{m \sim M, k \sim K\\(m,n)=(k,n)=1}} a(m)b(k) \bigg(\sum_{\substack{n=mkl+p_2\\n/10 < mkl, p_2 \le n}} N(mkl) - \frac{1}{\varphi(mk)}I(n)\bigg) = O\bigg(\frac{N^{\gamma}}{\log^{20}N}\bigg).$$

Proof Let

$$S(\alpha) = \sum_{n/10$$

We have

$$\begin{split} \sum_{1} &= \sum_{\substack{m \sim M, k \sim K \\ (m,n) = (k,n) = 1}} a(m)b(k) \sum_{\substack{n = mkl + p_2 \\ n/10 < mkl, p_2 \leq n}} N(mkl) \\ &= \int_{0}^{1} \sum_{\substack{n/10 < mkl \leq n \\ (m,n) = (k,n) = 1 \\ m \sim M, k \sim K}} a(m)b(k)N(mkl)e(\alpha mkl)S(\alpha)e(-\alpha n)d\alpha. \end{split}$$

Define

$$\begin{split} g(\alpha) &= \sum_{\substack{n/10 < mkl \leq n \\ (m,n) = (k,n) = 1 \\ m \sim M, k \sim K}} a(m)b(k)N(mkl)e(\alpha mkl), \\ f(\alpha) &= \gamma \sum_{\substack{n/10 < mkl \leq n \\ (m,n) = (k,n) = 1 \\ m \sim M, k \sim K}} a(m)b(k)(mkl)^{\gamma-1}e(\alpha mkl). \end{split}$$

By the discussion in [7], the asymptotic formula

$$g(\alpha) = f(\alpha) + O(N^{\gamma - 5\varepsilon}) \tag{3.1}$$

depends on the fact that for $J \leq H_1 = N^{1-\gamma+8\varepsilon}$ and $0 \leq u \leq 1$,

$$\min\left(1,\frac{N^{1-\gamma}}{J}\right)\sum_{h\sim J}\left|\sum_{m\sim M}\sum_{k\sim K}\sum_{mkl\sim N}a(m)b(k)e(\alpha mkl+h(mkl+u)^{\gamma})\right|\ll N^{1-6\varepsilon}.$$
 (3.2)

If either M or K is larger than $N^{\frac{2}{15}}$, then by Lemma 2.1 with $\Delta = 0$, (3.2) holds. If $M, K \leq N^{\frac{2}{15}}$, then $MK \ll N^{\frac{4}{15}} \ll N^{4\gamma-3-50\varepsilon}$. By Lemma 2.2 with $\Delta = 0$, (3.2) also holds. Hence (3.1) holds.

By (3.1) we have

$$g(\alpha)S(\alpha) - f(\alpha)S(\alpha) \ll N^{\gamma-5\varepsilon} \cdot |S(\alpha)|$$

Thus

$$\sum_{1} = \int_{0}^{1} g(\alpha)S(\alpha)e(-n\alpha)d\alpha = \int_{0}^{1} f(\alpha)S(\alpha)e(-n\alpha)d\alpha + \psi.$$
(3.3)

By Bessel's inequality, we have

$$\sum_{N < n \le 2N} |\psi|^2 \ll \int_0^1 |g(\alpha)S(\alpha) - f(\alpha)S(\alpha)|^2 d\alpha \ll N^{2\gamma - 10\varepsilon} \int_0^1 |S(\alpha)|^2 d\alpha \ll N^{2\gamma + 1 - 10\varepsilon}.$$

By the above, for $N < n \leq 2N$, except for $O(N^{1-\varepsilon})$ values, we have

$$\psi \ll N^{\gamma - \varepsilon}.\tag{3.4}$$

In the following we investigate

$$\sum_{2} = \int_{0}^{1} f(\alpha) S(\alpha) e(-n\alpha) d\alpha.$$

Let $Q = N \log^{-80} N$. By Dirichlet's lemma, we divide [-1/Q, 1 - 1/Q] into the major arcs E_1 and minor arcs E_2 as follows:

$$E_1 = \{ \alpha : \alpha = a/q + \beta, \ q \le \log^{80} N, \ 0 \le a \le q, \ (a,q) = 1, \ |\beta| \le 1/(qQ) \},$$
$$E_2 = [-1/Q, 1 - 1/Q] \setminus E_1.$$

Then

$$\sum_{2} = \left(\int_{E_1} + \int_{E_2}\right) f(\alpha) S(\alpha) e(-n\alpha) d\alpha.$$
(3.5)

For $\alpha \in E_2$, by Lemma 2.3, we have $S(\alpha) \ll N \log^{-35} N$. Hence by Bessel's inequality, we have

$$\sum_{N < n \le 2N} \left| \int_{E_2} f(\alpha) S(\alpha) e(-n\alpha) d\alpha \right|^2 \ll \int_{E_2} |f(\alpha) S(\alpha)|^2 d\alpha \ll |S(\alpha)|^2 \int_{E_2} |f(\alpha)|^2 d\alpha \\ \ll N^2 \log^{-70} N \cdot \int_0^1 |f(\alpha)|^2 d\alpha \ll N^{2\gamma+1} \log^{-60} N.$$
(3.6)

Here we have used the fact that for $d_r(n) = \sum_{n=n_1n_2\cdots n_r} 1$, and positive integer k, $\sum_{n \le x} d_r^k(n) \ll x(\log x)^{r^k-1}$. By (3.5), for $N < n \le 2N$, except for $O(N \log^{-20} N)$ values, we have

$$\int_{E_2} f(\alpha) S(\alpha) e(-n\alpha) d\alpha \ll N^{\gamma} \log^{-20} N.$$

If $\alpha \in E_1$, let R = MK, and $j(r) = \gamma \sum_{\substack{mk=r \\ m \sim M, k \sim K}} a(m)b(k)$. By (25) in [6], we have

$$f(\alpha) = \sum_{\substack{r \sim R \\ (r,n)=1, q \mid r}} j(r) \sum_{n/10 < s \le n} s^{\gamma - 1} e(\beta s) + O(N^{\gamma - \varepsilon}).$$

X. M. Meng and M. Q. Wang

By Lemma 6.4 in [9], we have

$$S(\alpha) = \frac{\mu(q)}{\varphi(q)} \sum_{n/10 < s \le n} \frac{e(\beta s)}{\log s} + O(N \exp(-c_2 \sqrt{\log N})).$$
(3.7)

Hence

$$\begin{split} \sum_{3} &= \int_{E_{1}} f(\alpha) S(\alpha) e(-n\alpha) d\alpha \\ &= \sum_{q \leq \log^{80} N} \sum_{\substack{a=1\\(a,q)=1}}^{q} e\left(-\frac{an}{q}\right) \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} f\left(\frac{a}{q}+\beta\right) S\left(\frac{a}{q}+\beta\right) e(-\beta n) d\beta \\ &= \sum_{q \leq \log^{80} N} \frac{\mu(q) C(q,-n)}{\varphi(q)} \sum_{\substack{r \sim R\\(r,q)=1,q \mid r}} \frac{j(r)}{r} \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} \left(\sum_{n/10 < s \leq n} s^{\gamma-1} e(\beta s)\right) \\ &\cdot \left(\sum_{n/10 < s \leq n} \frac{e(\beta s)}{\log s}\right) e(-\beta n) d\beta + O\left(\frac{N^{\gamma}}{\log^{20} N}\right), \end{split}$$
(3.8)

in which

$$C(q,m) = \sum_{\substack{a=1\\(a,q)=1}}^{q} e\left(\frac{am}{q}\right).$$

Since

$$\int_{-\frac{1}{qQ}}^{\frac{1}{2}} \Big(\sum_{n/10 < s \le n} s^{\gamma-1} e(\beta s)\Big) \Big(\sum_{n/10 < s \le n} \frac{e(\beta s)}{\log s}\Big) e(-\beta n) d\beta \ll \int_{-\frac{1}{qQ}}^{\frac{1}{2}} n^{\gamma} \frac{d\beta}{\beta^2} \ll \frac{qN^{\gamma}}{\log^{80} N}, \quad (3.9)$$

we obtain

$$\sum_{3} = \frac{1}{\gamma} I(n) \sum_{q \le \log^{80} N} \frac{\mu(q) C(q, -n)}{\varphi(q)} \sum_{\substack{r \sim R \\ (r,n) = 1, q \mid r}} \frac{j(r)}{r} + O(N^{\gamma} \log^{-20} N).$$

Let

$$\Omega = \sum_{q \le \log^{80} N} \frac{\mu(q)C(q, -n)}{\varphi(q)} \sum_{\substack{r \sim R \\ (r,n) = 1, q \mid r}} \frac{j(r)}{r}.$$

By the discussion above and (4.11) in [1], we have

$$\Omega = \gamma \sum_{\substack{m \sim M, k \sim K \\ (m,n) = (k,n) = 1}} \frac{a(m)b(k)}{\varphi(mk)} + O\left(\frac{1}{\log^{50} N}\right).$$

Hence

$$\sum_{3} = I(n) \sum_{\substack{m \sim M, k \sim K \\ (m,n) = (k,n) = 1}} \frac{a(m)b(k)}{\varphi(mk)} + O\Big(\frac{N^{\gamma}}{\log^{20} N}\Big).$$
(3.10)

From (3.4), (3.7) and (3.10), the lemma follows.

Lemma 3.2 Assume that $M, K \ll N^{\frac{1}{3}}$, and that a(m), b(k) = O(1). Let

$$J(n) = \sum_{\substack{n^{\frac{1}{3}} < p_1 \le n^{\frac{1}{2}}}} \frac{1}{p_1} \sum_{\substack{n=n_1+n_2\\n/10 < n_1, n_2 \le n}} \frac{\gamma n_2^{\gamma-1}}{\log \frac{n_2}{p_1}}.$$

Then for $N < n \leq 2N$, except for $O(N \log^{-2} N)$ values, we have

$$\sum_{\substack{m \sim M, k \sim K\\(m,n)=(k,n)=1}} a(m)b(k) \Big(\sum_{[]} N(p_1p_2) - \frac{1}{\varphi(mk)} J(n)\Big) = O\Big(\frac{N^{\gamma}}{\log^{20} N}\Big),$$

where $\sum_{[\]}$ denotes that the sum is taken over

$$n = mkl + p_1p_2, \quad n/10 < mkl, \quad p_1p_2 \le n, \quad n^{\frac{1}{3}} < p_1 \le n^{\frac{1}{2}}, \quad p_1 < p_2$$

Proof This can be proved in almost the same way as Lemma 3.1. We only give the outline of the proof. Let

$$D(\alpha) = \sum_{\substack{n/10 < p_1 p_2 \le n \\ n^{\frac{1}{3}} < p_1 \le n^{\frac{1}{2}}, p_1 < p_2}} N(p_1 p_2) e(\alpha p_1 p_2), \quad S_1(\alpha) = \gamma \sum_{\substack{n/10 < p_1 p_2 \le n \\ n^{\frac{1}{3}} < p_1 \le n^{\frac{1}{2}}, p_1 < p_2}} (p_1 p_2)^{\gamma - 1} e(\alpha p_1 p_2).$$

By Lemma 4 of [6], we have $D(\alpha) = S_1(\alpha) + O(N^{\gamma-5\varepsilon})$.

Let E_1, E_2 be defined as in Lemma 3.1. For $\alpha \in E_2$, by Lemma 2.5, we have $S_1(\alpha) \ll N^{\gamma} \log^{-35} N$.

For $\alpha \in E_1$, similarly to $g(\alpha)$ in Lemma 18 of [6], we have

$$S_1(\alpha) = \gamma \frac{\mu(q)}{\varphi(q)} \sum_{\substack{n^{\frac{1}{3}} < p_1 \le n^{\frac{1}{2}}}} \frac{1}{p_1} \sum_{\substack{n/10 < s \le n}} \frac{s^{\gamma - 1}e(\beta s)}{\log \frac{s}{p_1}} + O(N^{\gamma} \exp(-c_2\sqrt{\log N})).$$

Then we can prove the lemma in the same way used in Lemma 3.1.

Lemma 3.3 Assume that $N^{\frac{2}{3}} \ll M \ll N^{\frac{13}{15}}$, $0 \le a(m) = O(1)$, and that a(m) = 0, if m has a prime factor $< N^{\varepsilon}$. Then for $N < n \le 2N$, except for $O(N \log^{-2} N)$ values, we have

$$\sum_{4} = \sum_{\substack{n=mp_1+p_2\\n/10 < mp_1, p_2 \le n\\m \sim M}} a(m)N(mp_1)$$

= $(1+O(\varepsilon))Z(\gamma)C(n)\frac{n^{\gamma}}{n\log n}\sum_{m \sim M} a(m)\sum_{n/m$

in which

$$Z(\gamma) = \gamma \int_{\frac{1}{10}}^{\frac{9}{10}} u^{\gamma-1} du, \quad C(n) = \frac{n}{\varphi(n)} \prod_{p \nmid n} \left(1 - \frac{1}{(p-1)^2} \right).$$

Proof In a way similar to the proof of Lemma 3.1, we have

$$\sum_{4} = \int_{0}^{1} \sum_{\substack{n/10 < mp_1 \le n \\ m \sim M}} a(m) N(mp_1) e(\alpha mp_1) S(\alpha) e(-\alpha n) d\alpha,$$

where $S(\alpha)$ is defined in the proof of Lemma 3.1. Then for $N < n \leq 2N$, except for $O(N \log^{-2} N)$ values, we have

$$\sum_{4} = \int_{E_1} h(\alpha) S(\alpha) e(-n\alpha) d\alpha + O\left(\frac{N^{\gamma}}{\log^{20} N}\right),$$

where E_1 is defined in the proof of Lemma 3.1 and

$$h(\alpha) = \gamma \sum_{\substack{n/10 < mp_1 \le n \\ m \sim M}} a(m)(mp_1)^{\gamma - 1} e(\alpha mp_1).$$

By [6, p.22], we have

$$h(\alpha) = \gamma \frac{\mu(q)}{\varphi(q)} \sum_{m \sim M} \frac{a(m)}{m} \sum_{n/10 < s \le n} \frac{s^{\gamma - 1}e(\beta s)}{\log \frac{s}{p_1}} + O(N \exp(-c\sqrt{\log N})).$$

By the above and (3.8), we have

$$\begin{split} \sum_{4} &= \sum_{q \leq \log^{80} N} \sum_{\substack{a=1\\(a,q)=1}}^{q} e\left(-\frac{an}{q}\right) \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} h\left(\frac{a}{q}+\beta\right) S\left(\frac{a}{q}+\beta\right) e(-\beta n) d\beta + O\left(\frac{N^{\gamma}}{\log^{10} N}\right) \\ &= \gamma \sum_{q \leq \log^{80} N} \frac{\mu^2(q) C(q,-n)}{\varphi^2(q)} \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} \sum_{m \sim M} \frac{a(m)}{m} \left(\sum_{n/10 < s \leq n} \frac{s^{\gamma-1} e(\beta s)}{\log \frac{s}{m}}\right) \\ &\cdot \left(\sum_{n/10 < s \leq n} \frac{e(\beta s)}{\log s}\right) e(-\beta n) d\beta + O\left(\frac{N^{\gamma}}{\log^{10} N}\right) \\ &= \sum_{q \leq \log^{80} N} \frac{\mu^2(q) C(q,-n)}{\varphi^2(q)} K(n) + O\left(\frac{N^{\gamma}}{\log^{10} N}\right), \end{split}$$
(3.11)

where

$$K(n) = \gamma \sum_{m \sim M} \frac{a(m)}{m} \sum_{\substack{n=n_1+n_2\\n/10< n_1, n_2 \le n}} \frac{n_1^{\gamma-1}}{\log \frac{n_1}{m} \log n_2}$$

= $(1 + O(\varepsilon))Z(\gamma) \frac{n^{\gamma}}{\log n} \sum_{m \sim M} \frac{a(m)}{m \log \frac{n}{m}}$
= $(1 + O(\varepsilon))Z(\gamma) \frac{n^{\gamma-1}}{\log n} \sum_{m \sim M} a(m) \sum_{n/m (3.12)$

Moreover, by Lemma 11.6 in [9], we have

$$\sum_{q \le \log^{80} N} \frac{\mu^2(q)C(q,-n)}{\varphi^2(q)} = \sum_{q=1}^{\infty} \frac{\mu^2(q)C(q,-n)}{\varphi^2(q)} + O(\log^{-30} N) = C(n) + O(\log^{-30} N).$$

The lemma follows from the above, (3.11) and (3.12).

Lemma 3.4 Assume that $N^{\frac{2}{3}} \ll M \ll N^{\frac{13}{15}}$, $0 \le a(m) = O(1)$, and that a(m) = 0, if m has a prime factor $< N^{\varepsilon}$. Let

$$\sum_{\substack{5\\ m < M}} = \sum_{\substack{n = mp + d \\ n/10 < mp, d \le n \\ m \sim M}} a(m) N(d),$$

where $d = p_1 p_2$ $(n^{\frac{1}{3}} . Then for <math>N < n \le 2N$, except for $O(N \log^{-2} N)$ values, we have

$$\sum_{5} = (1 + O(\varepsilon))Z(\gamma)C(n) \int_{\frac{1}{3}}^{\frac{1}{2}} \frac{dt}{t(1-t)} \cdot \frac{n^{\gamma}}{n\log n} \sum_{m \sim M} a(m) \sum_{n/m$$

Proof In almost the same way as in Lemma 3.3, and referring to Lemma 3.2, we obtain the lemma.

4 Sieve Method—Proof of Theorem 1.1

Let T(n) denote the number of the solutions of the equation (1.2). Assume that

$$\begin{split} &A = \{a: a = n - p, \ N(a) = 1, \ n/10$$

and that

$$P(z) = \prod_{p < z, p \nmid n} p, \quad S(A, z) = \sum_{\substack{a \in A \\ (a, P(z)) = 1}} 1, \quad S(B, w) = \sum_{\substack{b \in B \\ (b, P(w)) = 1}} 1.$$

Note once again that $p \in P_{\gamma}$ is equivalent to N(p) = 1. Applying Buchstab's identity, we get

$$T(n) \ge S(A, n^{\frac{1}{2}}) = S(A, n^{\frac{2}{15}}) - \sum_{n^{\frac{2}{15}} (4.1)$$

Next

$$S_{3} = \sum_{n^{\frac{1}{3}} = #{d: d = n - p4, N(d) = 1, n/10 < p4 ≤ n, d = p1p2 (n $\frac{1}{3}$ $\frac{1}{2}$, p₁ < p₂)}
= #{p₄ : p₄ = n - d, N(d) = 1, 0 < d ≤ 9n/10, d = p₁p₂ (n ^{$\frac{1}{3}$} $\frac{1}{2}$, p₁ < p₂)}
= S(B, n ^{$\frac{1}{2}$}).$$

Using Buchstab's identity again, we get

$$S_3 = S(B, n^{\frac{1}{2}}) = S(B, n^{\frac{2}{15}}) - \sum_{\substack{n^{\frac{2}{15}}$$

Lemma 4.1 For $N < n \le 2N$, except for $O(N \log^{-2} N)$ values, we have

$$S_1 = S(A, n^{\frac{2}{15}}) \ge 4.203525Z(\gamma)C(n)\frac{n^{\gamma}}{\log^2 n}.$$

Proof Take

$$X = I(n) = \sum_{\substack{n=n_1+n_2\\n/10 < n_1, n_2 \le n}} \frac{\gamma n_1^{\gamma - 1}}{\log n_2},$$

X. M. Meng and M. Q. Wang

 $\omega(d) = \frac{d}{\varphi(d)}, \text{ if } (d,n) = 1; \ \omega(d) = 0, \text{ if } (d,n) > 1 \text{ and } r_d = \#A_d - \frac{X}{\varphi(d)}.$ By Theorem 7.11 and (7.40) in [9], we have

$$W(z) = \prod_{p < z} \left(1 - \frac{w(p)}{p} \right) = C(n) \frac{e^{-\gamma_0}}{\log z} \left(1 + O\left(\frac{1}{\log z}\right) \right),$$

where γ_0 is the Euler's constant.

Let $z = n^{\frac{2}{15}}, D = n^{\frac{2}{3}}$. By Iwaniec's bilinear sieve method (see [10, Theorem 1]), we obtain

$$S_1 \ge \frac{C(n)X}{\log z} \left(f\left(\frac{\log D}{\log z}\right) - O(\varepsilon) \right) - \sum_{\substack{m < n^{\frac{1}{3}}, k < n^{\frac{1}{3}} \\ (m,n) = (k,n) = 1}} a(m)b(k)r(mk),$$

where f(u) is a standard function in sieve method. In particular,

$$f(u) = \begin{cases} \frac{2}{u} \log(u-1), & 2 \le u \le 4, \\ \frac{2}{u} \Big(\log(u-1) + \int_{3}^{u-1} \frac{dt}{t} \int_{2}^{t-1} \frac{\log(s-1)}{s} ds \Big), & 4 \le u \le 6. \end{cases}$$

By Lemma 3.1, for $N < n \le 2N$, except for $O(N \log^{-2} N)$ values, we have

$$\sum_{\substack{m < n^{\frac{1}{3}}, k < n^{\frac{1}{3}} \\ (m,n) = (k,n) = 1}} a(m)b(k)r(mk) = O\Big(\frac{N^{\gamma}}{\log^{10}N}\Big).$$

On the other hand,

$$X = \frac{(1+O(\varepsilon))\gamma}{\log n} \sum_{\substack{n=n_1+n_2\\n/10 < n_1, n_2 \le n}} n_1^{\gamma-1} = (1+O(\varepsilon))Z(\gamma)\frac{n^\gamma}{\log n}$$

Combining the above we get the lemma.

Lemma 4.2 For $N < n \le 2N$, except for $O(N \log^{-2} N)$ values, we have

$$S_2 = \sum_{\substack{n^{\frac{2}{15}}$$

Proof By Lemmas 2.6, 2.7 and 3.3, it follows that

$$S_{2} = \sum_{\substack{n=rp+p_{1} \\ n/10 < rp, p_{1} \le n \\ n^{\frac{2}{15}} < p \le n^{\frac{1}{3}}, (r, P(p)) = 1 \\ = (1+O(\varepsilon))Z(\gamma)C(n)\frac{n^{\gamma}}{\log n} \sum_{\substack{n^{\frac{2}{15}} < p \le n^{\frac{1}{3}} \\ n^{\frac{2}{15}} < p \le n^{\frac{1}{3}} \\ (r, P(p)) = 1 \\ \end{array}} \sum_{\substack{n < p \le n \\ (r, P(p)) = 1}} 1 + O\left(\frac{N^{\gamma}}{\log^{8} N}\right)$$

$$\begin{split} &= Z(\gamma)C(n)\frac{n^{\gamma}}{\log n}\sum_{\substack{n^{\frac{2}{15}}$$

Lemma 4.3 For $N < n \le 2N$, except for $O(N \log^{-2} N)$ values, we have

$$T_1 = S(B, n^{\frac{2}{15}}) < 2.92389 Z(\gamma) C(n) \frac{n^{\gamma}}{\log^2 n}.$$

Proof Take Y = J(n), where J(n) is defined in Lemma 3.2, and

$$r_d = \#B_d - \frac{Y}{\varphi(d)}.$$

Take $z = n^{\frac{2}{15}}$, $D = n^{\frac{2}{3}}$. By Iwaniec's bilinear sieve method, we have

$$T_{1} \leq \frac{C(n)Y}{\log n \cdot \log z} \left(F\left(\frac{\log D}{\log z}\right) + O(\varepsilon) \right) + \sum_{\substack{m < n^{\frac{1}{3}}, k < n^{\frac{1}{3}}\\(m,n) = (k,n) = 1}} a(m)b(k)r(mk),$$
(4.2)

where F(u) is a standard function. In particular

$$F(u) = \begin{cases} \frac{2}{u}, & 2 \le u \le 3, \\ \frac{2}{u} \left(1 + \int_{2}^{u-1} \frac{\log(t-1)}{t} dt \right), & 3 \le u \le 5. \end{cases}$$

Applying Lemma 3.2, for $N < n \le 2N$, except for $O(N \log^{-2} N)$ values, we have

$$\sum_{\substack{m < n^{\frac{1}{3}}, k < n^{\frac{1}{3}}\\(m,n) = (k,n) = 1}} a(m)b(k)r(mk) = O\left(\frac{N^{\gamma}}{\log^{10} N}\right).$$
(4.3)

On the other hand,

$$Y = (1+O(\varepsilon))\gamma \sum_{\substack{n=n_1+n_2\\n/10
$$= (1+O(\varepsilon))Z(\gamma) \frac{n^{\gamma}}{\log n} \int_{\frac{1}{3}}^{\frac{1}{2}} \frac{dt}{t(1-t)} = \ln 2 \cdot Z(\gamma) \frac{n^{\gamma}}{\log n}.$$$$

Hence the lemma follows from the above, (4.2) and (4.3).

Lemma 4.4 For $N < n \le 2N$, except for $O(N \log^{-2} N)$ values, we have

$$T_2 = \sum_{\substack{n^{\frac{2}{15}} 1.72914Z(\gamma)C(n) \frac{n^{\gamma}}{\log^2 n}.$$

Proof We have

$$T_{2} = \sum_{\substack{n = rp + d \\ n/10 < rp, d \le n \\ n^{\frac{2}{15}} < p \le n^{\frac{1}{3}}, (r, P(p)) = 1}} N(d)$$

where $d = p_1 p_2$ $(n^{\frac{1}{3}} < p_1 \le n^{\frac{1}{2}}, p_1 < p_2)$. By Lemmas 2.6, 2.7, 3.4, and the deduction in Lemma 4.2, for $N < n \le 2N$, except for $O(N \log^{-2} N)$ values, we have

$$T_{2} = \frac{C(n)Y}{\log n} \int_{2}^{\frac{13}{2}} w(u)du + O\left(\frac{\varepsilon N^{\gamma}}{\log^{2} N}\right) > 1.72914Z(\gamma)C(n)\frac{n^{\gamma}}{\log^{2} n}.$$

Now we can prove Theorem 1.1.

Proof of Theorem 1.1 By (4.1), Lemmas 4.1–4.4, for $N < n \leq 2N$, except for $O(N \log^{-2} N)$ values, we have

$$T(n) > 0.466Z(\gamma)C(n)\frac{n^{\gamma}}{\log^2 n}.$$

Thus Theorem 1.1 follows.

Acknowledgement The authors are very indebted to Professors Tao Zhan and Jianya Liu for their constant encouragement and would like to thank the referee for the valuable advice.

References

- [1] Li, H. Z., A hybrid of theorems of Goldbach and Piatetski-Shapiro, Acta Arith., 107, 2003, 307–326.
- [2] Piatetski-Shapiro, I. I., On the distribution of prime numbers in sequences of the form [f(n)], Mat. Sb., **33**, 1953, 559–566.
- [3] Rivat, J. and Sargos, P., Nombres premiers de la forme n^c, (Primes of the form n^c (in French)), Canad. J. Math., 53, 2001, 414–433.
- $[4] \mbox{ Rivat, J. and Wu, J., Prime numbers of the form n^c, Glasg. Math. J., 43, 2001, 237-254.$}$
- [5] Jia, C. H., Three primes theorem in a short interval III, Science in China, Ser. A, 34, 1991, 695–709.
- [6] Jia, C. H., On the Piatetski-Shapiro-Vinogradov theorem, Acta Arith., 73, 1995, 1–28.
- [7] Balog, A. and Fredlander, J. P., A hybrid of theorems of Vinogradov and Piatetski-Shapiro, *Pacific J. Math.*, 156, 1992, 45–62.
- [8] Davenport, H., Multiplicative Number Theory, 2nd edition, Springer, New York, 1980.
- [9] Pan, C. D. and Pan, C. B., Goldbach Conjecture, Science Press, Beijing, China, 1992.
- [10] Iwaniec, H., A new form of the error term in the linear sieve, Acta Arith., 37, 1980, 307–320.