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Abstract For the Boltzmann equation with an external force in the form of the gradient
of a potential function in space variable, the stability of its stationary solutions as local
Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on
this stability analysis and some techniques on analyzing the convergence rates to station-
ary solutions for the compressible Navier-Stokes equations, in this paper, we study the
convergence rate to the above stationary solutions for the Boltzmann equation which is a
fundamental equation in statistical physics for non-equilibrium rarefied gas. By combin-
ing the dissipation from the viscosity and heat conductivity on the fluid components and
the dissipation on the non-fluid component through the celebrated H-theorem, a conver-
gence rate of the same order as the one for the compressible Navier-Stokes is obtained by
constructing some energy functionals.
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1 Introduction

Consider the Boltzmann equation with an external force in the form of the gradient of a
potential function of space variables

ft + ξ · ∇xf −∇xΦ(x) · ∇ξf = Q(f, f), |Φ(x)| → 0, as |x| → +∞, (1.1)

with initial data

f(0, x, ξ) = f0(x, ξ). (1.2)

Here f(t, x, ξ) is the distribution function of the particles at time t ≥ 0 located at x =
(x1, x2, x3) ∈ R3 with velocity ξ = (ξ1, ξ2, ξ3) ∈ R3, and Φ(x) denotes the potential of the
external force. The short-range interaction between particles is given by the standard Boltz-
mann collision operator Q(f, g) for the hard-sphere model

Q(f, g)(ξ) ≡ 1
2

∫

R3

∫

S2
+

(f(ξ′)g(ξ′∗) + f(ξ′∗)g(ξ′)− f(ξ)g(ξ∗)− f(ξ∗)g(ξ))|(ξ − ξ∗) · Ω| dξ∗dΩ.
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Here S2
+ = {Ω ∈ S2 : (ξ − ξ∗) · Ω ≥ 0}, and ξ′ = ξ − [(ξ − ξ∗) · Ω]Ω, ξ′∗ = ξ∗ + [(ξ − ξ∗) · Ω]Ω,

are the relations between velocities ξ′, ξ′∗ after and the velocities ξ, ξ∗ before an elastic collision
coming from the conservation of momentum and energy.

Since the potential of force depends only on the space variables, the local Maxwellian given
by

M ≡ M(x, ξ) =
ρ1

(2πRθ̄)
3
2

exp
(
− Φ(x) + |ξ|2

2

Rθ̄

)
= M[ρ̄(x),0,θ̄](x, ξ),

ρ̄(x) = ρ1 exp
(
− Φ(x)

Rθ̄

)
,

is the stationary solution to (1.1) in the form of local Maxwellian. Here R > 0 is the gas
constant and ρ1 > 0, θ̄ > 0 are any given constants.

Based on the decomposition of the solution and the equation around the local Maxwellian
(cf. [13]), and the techniques used for the Navier-Stokes equations for the equilibrium gas, the
nonlinear stability of the above stationary solutions was proved in [24] by using the celebrated
H-theorem for the Boltzmann equation and the energy method. In this paper, we will study the
convergence rate in time of the solution to the stationary solution for small initial perturbation.
This is a continuation of the stability analysis and can be viewed as a generalization of the
corresponding convergence rate results for the fluid dynamics, such as Navier-Stokes equations
to the non-equilibrium gas. In the following discussion, we will use the notations from [5, 24]
for consistence. For convenience, we state the stability result from [24] as follows.

Theorem 1.1 Assume that f0(x, ξ) ≥ 0 and N ≥ 4. There exist a global Maxwellian
M−(ξ) and two sufficiently small constants ε > 0 and λ0 > 0 such that if

λ ≡ ‖Φ(x)‖L2(R3) +
∑

1≤|α|≤N+1

‖∂αΦ(x)‖L3(R3) < λ0,

E(f0) =
∑

|α|+|β|≤N

∥∥∥∂α∂β(f0(x, ξ)−M(x, ξ))√
M−(ξ)

∥∥∥
L2

x,ξ(R3×R3)
≤ ε,

(1.3)

then there exists a unique global classical solution f(t, x, ξ) ∈ HN
x,ξ(R

+) to the Cauchy problem
(1.1)-(1.2) which satisfies f(t, x, ξ) ≥ 0, and

∑

|γ|≤N

∫

R3
|∂γ(ρ− ρ̄(x), u, θ − θ̄)(t, x)|2dx

+
∑

|γ|+|β|≤N

∫

R3

∫

R3

|∂γ∂βG(t, x, ξ)|2
M−(ξ)

dξdx +
∑

1≤|γ|≤N

∫ t

0

∫

R3
|∂γ(ρ− ρ̄(x), u, θ)|2dxdτ

+
∑

|γ|+|β|≤N

∫ t

0

∫

R3

∫

R3

νM(ξ)|∂γ∂βG|2
M−(ξ)

dξdxdτ ≤ δ for some δ > 0. (1.4)

Consequently

lim
t→∞

sup
x∈R3

∑

|γ|+|β|≤N−3

∫

R3

|∂γ∂β(f(t, x, ξ)−M(x, ξ))|2
M−(ξ)

dξ = 0. (1.5)

Here and in the sequel, for the derivatives on t, x and ξ, we use the following notations

α = (α1, α2, α3), β = (β1, β2, β3), γ = (γ0, α)
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for ∂α = ∂α1
x1

∂α2
x2

∂α3
x3

, ∂β = ∂β1
ξ1

∂β2
ξ2

∂β3
ξ3

, ∂γ = ∂γ0
t ∂α, respectively.

As shown in (1.5), the solution to the Boltzmann equation converges to the local Maxwellian
time asymptotically. Indeed, as shown in the following main theorem in this paper, a conver-
gence rate of the order of (1 + t)−

1
4 in sup-norm can be obtained. Notice that this convergence

rate is not optimal, but it is the same as the one in [5] for the corresponding problem on the
compressible Navier-Stokes equation. The improvement of this convergence rate is not in the
scope of this paper and will be pursued in the future study.

Theorem 1.2 Under the assumptions of Theorem 1.1, if we further assume that the index
of the Sobolev space N ≥ 5 for the initial condition, then

sup
x∈R3

∑

|γ|+|β|≤N−3

∫

R3

|∂γ∂β(f(t, x, ξ)−M(x, ξ))|2
M−(ξ)

dξ ≤ O(1)(1 + t)−
1
2 . (1.6)

Remark 1.1 As one can see later in the proof of Theorem 1.2, for γ0 > 0, the decay rate
in (1.6) can be improved to (1 + t)−1.

The Theorem 1.2 can be viewed as an improvement of the Theorem 1.1 where the conver-
gence rate to the stationary solutions is given explicitly. As pointed out in [1], to find out the
convergence rate is the one way to understand the relevant time scale for the equilibrium process,
which in turn is important in modelling and judging the feasibility of numerical simulations.

For the convergence rate study, Desvillettes and Villani in [6] studied the time-decay rate
to a global Maxwellian of large data solutions to Boltzmann type equations without force in a
bounded domain. Even though the assumptions they imposed in general are a priori and difficult
to be verified at present time, their impressive analysis does lead to an almost exponential decay
rate for the Boltzmann equation with soft potentials and the Landau equation. On the other
hand, based on the energy method developed in [9] for the Boltzmann equation without force
with space periodic data, a proof of an almost exponential decay rate for solutions near a
global Maxwellian to the Vlasov-Maxwell-Boltzmann system, the relativistic Landau-Maxwell
system, the Boltzmann equation with soft potentials and the Landau equation is given in [20].
In the above analysis, the interpolation between the Sobolev norms with or without any weight
functions plays an important role. And this is why only algebraic decay is obtained by assuming
that the initial data has extra regularity. Notice also that in the above analysis, the Poincaré
inequality plays an essential role and hence the techniques developed there can not be applied
directly to the study of the corresponding problem for the Boltzmann equation with external
force in the whole space.

For the Cauchy problem without external force, it is well known that both the compressible
Navier-Stokes equations and the Boltzmann equation have the same convergence rate to the
corresponding constant stationary solutions, namely, (1 + t)−

3
2 ( 1

q− 1
2 ), 1 ≤ q ≤ 2, which is

achieved by initial data that are sufficiently close to the stationary solutions both in some
L2 Sobolev space and the space Lq (see [3, 4, 10, 11, 17, 18, 22]). On the other hand, for the
Cauchy problem with external force, the convergence rate to the corresponding space-dependent
stationary solutions for the compressible Navier-Stokes equations was first given in [5], which is
of order (1 + t)−

1
4 for initial data sufficiently close to the relevant stationary solutions in some

Soblev space. This convergence rate was improved in [19] to (1 + t)−
1−κ

2 for any small positive
number κ, under the additional assumption that initial data are also close to the stationary
solutions in the space L

6
5 . Finally, in [2], the same rate as for the force-free case, namely,

(1 + t)−
3
2 ( 1

q− 1
2 ), is announced for the Boltzmann equation with external force. Notice that the
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decay in [19] corresponds to the one in [2] with q = 6
5 so that 3

2 ( 1
q − 1

2 ) = 1
2 . The method of

proof in [2] relies largely on the spectral analysis of the linearized Boltzmann operator.
Our method is quite different. Based on the techniques used in [5] for the convergence

rate and the stability analysis in [24] through the energy method, we succeed in obtaining the
convergence rate for the Boltzmann equation with external force. The analysis is a combination
of the equation (2.4) for the non-fluid part G(t, x, ξ) through the microscopic H-theorem (2.7)
with the corresponding time-decay estimates on the fluid part (ρ(t, x)− ρ̄(x), u(t, x), θ(t, x)− θ̄)
to obtain the time-decay estimates on f(t, x, ξ)−M(x, ξ).

The rest of this paper is arranged as follows. Some preliminaries for the proof of Theorem
1.2 will be given in Section 2, while the proof of the main result Theorem 1.2 will be given in
Section 3 for the case when N = 5. The case when N > 5 can be proved similarly.

2 Preliminaries

For the use in the proof of Theorem 1.2, we list some basic Sobolev inequalities and some
estimates from [5] and [24] in this section. Interested readers please refer to these two references
for the proof. First is a lemma from [5] which is a Gronwall type inequality leading to the
convergence rate.

Lemma 2.1 Let f(t) ∈ C1([t0,∞)) such that f(t) ≥ 0, A =
∫∞

t0
f(t)dt < +∞ and

f ′(t) ≤ a(t)f(t) for all t ≥ t0. Here a(t) ≥ 0, B =
∫∞

t0
a(t)dt < +∞. Then

f(t) ≤ (t0f(t0) + 1)eA+B − 1
t

, ∀ t ≥ t0.

As in [5], the following Sobolev type inequalities will also be used.

Lemma 2.2 For f(x) ∈ H1(R3), we have

‖f(x)‖L6(R3) ≤ C0‖∇xf(x)‖, (2.1)

where C0 is a positive constant independent of f . Consequently, for f(x) ∈ H2(R3), g(x) ∈
H1(R3), h(x) ∈ L2(R3) and any ε > 0, we have

‖f(x)‖L∞(R3) ≤ C0‖∇xf(x)‖1, (2.2)

where C0 is again a positive constant independent of f , so that
∫

R3
f(x) · g(x) · h(x)dx ≤ ε‖∇xf(x)‖2 + Cε‖g(x)‖21‖h(x)‖2,

∫

R3
f(x) · g(x) · h(x)dx ≤ ε‖g(x)‖2 + Cε‖∇xf(x)‖21‖h(x)‖2.

(2.3)

Here and in the sequel, ‖ · ‖ and ‖ · ‖s denote the standard L2(R3) and Hs(R3) norm
respectively. In the following, we will list some basic energy estimates on the solution to the
Cauchy problem (1.1)-(1.2) from [24] for the small perturbation of the stationary Maxwellian
solution. As in [13], we first decompose the solution f(t, x, ξ) of (1.1) as the sum of the fluid
part M(t, x, ξ) and the non-fluid part G(t, x, ξ) so that G(t, x, ξ) solves

Gt + P1(ξ · ∇xG + ξ · ∇xM)−∇xΦ · ∇ξG = LMG + Q(G,G), (2.4)
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while the macroscopic variables (ρ(t, x), u(t, x), θ(t, x)) solve the following fluid-type system

ρt + divxm = 0,

mit +
3∑

j=1

(uimj)xj + pxi − p̄xi + (ρ− ρ̄)Φxi

=
3∑

j=1

[
µ(θ)

(
uixj

+ ujxi
− 2

3
δijdivxu

)]
xj

−
∫

R3
ψi(ξ · ∇xΘ)dξ, i = 1, 2, 3,

[
ρ
(1

2
|u|2 + E

)]
t
+

3∑

j=1

(
uj

(
ρ
(1

2
|u|2 + E

)
+ p

))
xj

+ m · ∇xΦ

=
3∑

i,j=1

{
µ(θ)ui

(
uixj

+ ujxi
− 2

3
δijdivxu

)}
xj

+
3∑

j=1

(κ(θ)θxj
)xj

−
∫

R3
ψ4(ξ · ∇xΘ)dξ.

(2.5)

Here
LMg = L[ρ,u,θ]g ≡ Q(M + g,M + g)−Q(g, g)

is the linearized collision operator and Θ = L−1
M (Gt + P1(ξ · ∇xG)−∇xΦ · ∇ξG−Q(G,G)).

It is well known that the null space of the operator LM, denoted by N , is spanned by the
five collision invariants {M,Mξ,M|ξ|2}. The next lemma from [7] contains an inequality for
the L2(R3) estimate on the nonlinear collision operator Q(f, f).

Lemma 2.3 There exists a positive constant C > 0 such that
∫

R3

νM(ξ)−1Q(f, g)2

M̃
dξ ≤ C

{∫

R3

νM(ξ)f2

M̃
dξ ·

∫

R3

g2

M̃
dξ +

∫

R3

f2

M̃
dξ ·

∫

R3

νM(ξ)g2

M̃
dξ

}
, (2.6)

where M̃ is any Maxwellian such that the above integrals are well defined, and νM(ξ) ∼ 1 + |ξ|
as |ξ| → +∞ for hard sphere model.

Based on Lemma 2.3, the following lemma and corollary from [14] follow from the Cauchy
inequality.

Lemma 2.4 If θ
2 < θ̃ < θ, then there exist two positive constants σ̄ = σ̄(u, θ; ũ, θ̃) and

η0 = η0(u, θ; ũ, θ̃) such that if |u− ũ|+ |θ − θ̃| < η0, then for h(ξ) ∈ N⊥,

−
∫

R3

hLMh

M̃
dξ ≥ σ̄

∫

R3

νM(ξ)h2

M̃
dξ. (2.7)

Here M ≡ M[ρ,u,θ](t, x, ξ) and M̃(t, x, ξ) = M̃[ρ̃,ũ,θ̃](t, x, ξ).

Corollary 2.1 Under the assumptions in Lemma 2.4, we have for h(ξ) ∈ N⊥,
∫

R3

νM(ξ)
M

|L−1
M h|2dξ ≤ σ−2

∫

R3

νM(ξ)−1h2(ξ)
M

dξ,

∫

R3

νM(ξ)

M̃
|L−1

M h|2dξ ≤ σ̄−2

∫

R3

νM(ξ)−1h2(ξ)

M̃
dξ.

(2.8)

Throughout this paper, we choose positive constants ρ− and θ− such that

θ̄

2
< θ− < θ̄, |ρ− − ρ̄|+ |θ− − θ̄| < η0. (2.9)
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It is easy to see that if M(t, x, ξ) is a small perturbation of M(x, ξ), the Lemmas 2.3–2.4 and
Corollary 2.1 hold for such chosen ρ− and θ− when M̃ ≡ M− = M[ρ−,0,θ−]. And we will also
use the following notations:

φ(t) =
∑

1≤|γ|≤5

‖∂γ(ρ(t, x)− ρ̄(x), u(t, x), θ(t, x))‖2,

ψ(t) =
∑

|γ|+|β|≤5

∫

R3

∫

R3

νM(ξ)|∂γ∂βG|2
M−

dξdx.

(2.10)

Finally, before concluding this section, we give an estimate on Θ(t, x, ξ) appearing in the
right hand side of (2.5) in the following lemma.

Lemma 2.5 Let k > 0 be any fixed integer. We have for |γ| ≤ 2 that

∫

R3

∫

R3
|ξ|k|∂γΘt|2dξdx ≤ O(1)

∫

R3

∫

R3

νM(ξ)(|∂γGtt|2 + |∇x∂γGt|2)
M

dξdx

+ O(1)(λ0 + δ)
∑

|γ′|+|β′|≤3

∫

R3

∫

R3

νM(ξ)|∂γ′∂β′Gt|2
M

dξdx

+ O(1)ψ(t)
∑

|γ′|≤3

‖∂γ′(ρ, u, θ)t‖2. (2.11)

Notice that (2.11) can be proved by using Corollary 2.1, Lemmas 2.2–2.4 as in [24] so that
we omit the details for brevity.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 for the case when N = 5. The case when N > 5
can be discussed similarly. The proof is based on the energy estimates obtained in [24] and the
analytic techniques used in [5] for the estimation on convergence rate. The proof is arranged
as follows. Since the potential force depends only on space variable, any differentiation with
respect to time on the equation goes to the solution f . Then by using Lemma 2.1, we will
first obtain the decay estimates on ∂γ∂β∂tf(t, x, ξ) for |γ|+ |β| ≤ 3 which contains at least one
order differentiation with respect to time. From the decay estimate involving differentiation
with respect to time to those involving only space variables, we then use the equations (2.4)
and (2.5) for the time evolution of the non-fluid and fluid components in the solution to yield
the time decay estimates on ∂α

x (f(t, x, ξ)−M(x, ξ)) for 1 ≤ |α| ≤ 4. Finally, the conclusion of
Theorem 1.2 follows from these time decay estimates and the Sobolev inequality (2.2).

As the first step, we now deduce the decay estimates on ∂γ∂β∂tf(t, x, ξ) for |γ| + |β| ≤ 3.
For this, we first consider the estimates on the fluid part ∂γ∂t(ρ, u, θ)(t, x) for |γ| ≤ 2 which
are summarized in the following lemma.

Lemma 3.1 Let

Hγ
0 (t) =

∫

R3

[ θ̄

3ρ̄
|∂γρt|2 +

ρ

2
|∂γut|2 +

ρ

2θ̄
|∂γθt|2

]
(t, x)dx.
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We have for |γ| ≤ 2 that

d

dt
Hγ

0 (t) + C0

∫

R3
[|∇x∂γut|2 + |∇x∂γθt|2]dx

≤ O(1)(φ(t) + ψ(t))
∑

|γ′|≤3

‖∂γ′(ρ, u, θ)t‖2 + O(1)(λ0 + δ)
∑

|γ′|≤2

‖∇x∂γ′(ρ, u, θ)t‖2

+ O(1)
∫

R3

∫

R3

νM(ξ)
M

[
(|∂γGtt|2+ |∇x∂γGt|2)+ (λ0+ δ)

∑

|γ′|+|β′|≤3

|∂γ′∂β′Gt|2
]
dξdx. (3.1)

Here C0 > 0 is a constant.

Proof To estimate ∂γρt, by applying ∂γ∂t to (2.5)1, multiplying it by 2θ̄
3ρ̄∂γρt, and then

integrating the final equation with respect to x over R3, we have

d

dt

∫

R3

θ̄

3ρ̄
|∂γρt|2dx +

∫

R3

[2θ̄

3
∂γρtdivx(∂γut) +

2θ̄

3ρ̄
∂γρt∇xρ̄(x) · ∂γut

]
dx

= −
∑

0<α′≤α

Cα′
α

∫

R3

2θ̄

3ρ̄
∂α′ ρ̄divx(∂α−α′∂γ0ut)∂γρtdx

−
∫

R3

2θ̄

3ρ̄
∂γρt∂

γ [(ρ− ρ̄)divxut + ρtdivxu +∇xρt · u +∇x(ρ− ρ̄) · ut]dx

−
∑

0<α′≤α

Cα′
α

∫

R3

2θ̄

3ρ̄
∂γρt∇x∂α′ ρ̄ · ∂α−α′∂γ0utdx :=

6∑

j=1

Ij . (3.2)

Here and in the sequel, the notation Ij representing the corresponding term in the summation
without any ambiguity.

Ij (j = 1, 2, 3, 4, 5, 6) will be estimated term by term in the following. For I1 and I6, we have
from Lemma 2.2 that

|I1|+|I6| ≤ O(1)|α|
∑

0<α′≤α

‖∂γρt‖[‖∂α′ ρ̄(x)‖L∞‖∇x∂α−α′∂γ0ut‖+‖∇x∂α′ ρ̄‖L3‖∂α−α′∂γ0ut‖L6 ]

≤ O(1)(λ0 + δ)
∑

|γ′|≤2

‖∇x∂γ′(ρ, u)t‖2. (3.3)

For I2, we have from (2.3) that

I2 = −
∫

R3

2θ̄

3ρ̄
∂γρt(ρ− ρ̄)divx(∂γut)dx−

∑

0<γ′≤γ

Cγ′
γ

∫

R3

2θ̄

3ρ̄
∂γρt∂

γ′(ρ− ρ̄)divx(∂γ−γ′ut)dx

≤ O(1)(λ0 + δ)
∑

|γ′|≤2

‖∇x∂γ′ut‖2 + O(1)φ(t)‖∂γρt‖2. (3.4)

In the above estimate, we have used (2.3)2 twice when f = ρ− ρ̄, g = divx(∂γut), h = ∂γρt, and
f = ∂γρt, g = ∂γ′(ρ− ρ̄), h = divx(∂γ−γ′ut) respectively.

Similar estimates hold for I3, I4 and I5 which give

5∑

j=3

|Ij | ≤ O(1)(λ0 + δ)
∑

|γ′|≤2

‖∇x∂γ′ρt‖2 + O(1)φ(t)
∑

|γ′|≤3

‖∂γ′(ρ, u)t‖2. (3.5)
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Substituting (3.3), (3.4), and (3.5) into (3.2) gives

d

dt

∫

R3

θ̄

3ρ̄
|∂γρt|2dx +

∫

R3

[2θ̄

3
∂γρtdivx(∂γut) +

2θ̄

3ρ̄
∂γρt∇xρ̄(x) · ∂γut

]
dx

≤ O(1)(λ0 + δ)
∑

|γ′|≤2

‖∇x∂γ′(ρ, u)t‖2 + O(1)φ(t)
∑

|γ′|≤3

‖∂γ′(ρ, u)t‖2, (3.6)

which completes the estimate on ∂γρt.
Similarly, one can obtain the corresponding estimates on u(t, x) and θ(t, x). That is, there

exists a positive constant d0 > 0 such that

d

dt

∫

R3

ρ

2
|∂γut|2dx + d0

∫

R3
|∇x∂γut|2dx

−
∫

R3

[2θ̄

3
∂γρtdivx(∂γut) +

2ρ̄

3
∂γθtdivx(∂γut) +

2θ̄

3ρ̄
∂γρt∇xρ̄ · ∂γut

]
dx

≤ O(1)(λ0 + δ)
∑

|γ′|≤2

‖∇x∂γ′(ρ, u)t‖2 + O(1)φ(t)
∑

|γ′|≤3

‖∂γ′(ρ, u, θ)t‖2

−
∫

R3

∫

R3
∂γut · ψ(ξ · ∇x∂γΘt)dξdx, (3.7)

d

dt

∫

R3

ρ

2θ̄
|∂γθt|2dx + d0

∫

R3
|∇x∂γθt|2dx +

∫

R3

2ρ̄

3
∂γθtdivx(∂γut)dx

≤ O(1)(λ0 + δ)
∑

|γ′|≤2

‖∇x∂γ′(u, θ)t‖2 + O(1)φ(t)
∑

|γ′|≤3

‖∂γ′(ρ, u, θ)t‖2

−
∫

R3

∫

R3

∂γθt

θ̄
∂γ [(ψ4 − ξ · u)(ξ · ∇xΘt)]dξdx. (3.8)

By (3.6)–(3.8), (3.1) follows from Lemma 2.5 and this completes the proof of the lemma.
Next, we estimate the non-fluid part G(t, x, ξ) through the equation (2.4).

Lemma 3.2 For each |γ|+ |β| ≤ 3, the following estimate holds

d

dt

∫

R3

∫

R3

|∂γ∂βGt|2
M

dξdx +
σ̄

2

∫

R3

∫

R3

νM(ξ)|∂γ∂βGt|2
M

dξdx

≤ O(1)(λ0 + δ)
∑

|γ′|+|β′|≤3

∫

R3

∫

R3

|∂γ′∂β′Gt|2
M−

dξdx + O(1)‖∇x∂γ(u, θ)t‖2

+ O(1)
∫

R3

∫

R3

νM(ξ)
M

[
|∇x∂γGt|2 +

∑

|β′|=|β|−1

|∇x∂γ∂β′Gt|2
]
dξdx

+ O(1)(φ(t) + ψ(t))
∑

|γ′|≤3

‖∂γ′(ρ, u, θ)t‖2. (3.9)

Proof Applying ∂γ∂β∂t to (2.4) and multiplying it by ∂γ∂βGt

M , we have by integrating the
final equation with respect to ξ and x over R3 ×R3 that

1
2

d

dt

∫

R3

∫

R3

|∂γ∂βGt|2
M

dξdx

= −1
2

∫

R3

∫

R3

|∂γ∂βGt|2
M2

Mtdξdx−
∫

R3

∫

R3

∂γ∂βGt

M
∂γ∂β [P1(ξ · ∇xM)]tdξdx
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−
∫

R3

∫

R3

∂γ∂βGt

M
∂γ∂β [P1(ξ · ∇xG)]tdξdx+

∫

R3

∫

R3

∂γ∂βGt

M
∂α[∇xΦ(x) · ∇ξ∂

β∂γ0Gt]dξdx

+
∫

R3

∫

R3

∂γ∂βGt

M
∂γ∂β(LMG)tdξdx+

∫

R3

∫

R3

∂γ∂βGt

M
∂γ∂β(Q(G,G))tdξdx :=

12∑

j=7

Ij . (3.10)

It is straightforward to have

|I7| ≤ O(1)(λ0 + δ)
∫

R3

∫

R3

|∂γ∂βGt|2
M−

dξdx, (3.11)

|I8| ≤ µ

∫

R3

∫

R3

|∂γ∂βGt|2
M

dξdx + O(1)‖∇x∂γ(u, θ)t‖2 + O(1)φ(t)
∑

|γ′|≤3

‖∂γ′(ρ, uθ)t‖2

+ O(1)(λ0 + δ)
∑

|γ′|≤2

‖∇x∂γ′(u, θ)t‖2. (3.12)

From now on, µ > 0 denotes a sufficiently small positive constant.
For I9, since

∂γ∂β [P1(ξ · ∇xG)]t = ξ · ∇x∂γ∂βGt +
∑

|β′|=|β|−1

Cβ′

β ∂β−β′(ξ) · ∇x∂γ∂β′Gt

−
4∑

j=0

∂γ{〈ξ · ∇xGt, χj〉∂βχj}

−
4∑

j=0

∂γ
{〈

ξ · ∇xG,
(χj

M

)
t
M

〉
∂βχj + 〈ξ · ∇xG, χj〉∂γχjt

}
,

we have

|I9| ≤ µ

∫

R3

∫

R3

νM(ξ)|∂γ∂βGt|2
M

dξdx + O(1)
∑

|β′|=|β|−1

∫

R3

∫

R3

νM(ξ)|∇x∂γ∂β′Gt|2
M

dξdx

+ O(1)(λ0 + δ)
∑

|γ′|+|β′|≤3

∫

R3

∫

R3

|∂γ′∂β′Gt|2
M−

dξdx

+ O(1)(ψ(t) + φ(t))
∑

|γ′|≤3

‖∂γ′(ρ, u, θ)t‖2 + O(1)
∫

R3

∫

R3

|∇x∂γGt|2
M

dξdx. (3.13)

And I10 satisfies

I10 =
∫

R3

∫

R3

∂γ∂βGt

M

[
∇xΦ(x) · ∇ξ∂

γ∂βGt +
∑

0<α′≤α

Cα′
α ∇x∂α′Φ(x) · ∇ξ∂

α−α′∂β∂γ0Gt

]
dξdx

≤ O(1)(λ0 + δ)
∑

|γ′|+|β′|≤3

∫

R3

∫

R3

|∂γ′∂β′Gt|2
M−

dξdx. (3.14)

Finally, by Lemma 2.4, I11 and I12 are estimated as

I11 =
∫

R3

∫

R3

∂γ∂βGt

M
∂γ∂β(LMGt + 2Q(Mt,G))dξdx

≤ −σ̄

∫

R3

∫

R3

νM(ξ)|∂γ∂βGt|2
M

dξdx + O(1)(λ0 + δ)
∑

|γ′|+|β′|≤3

∫

R3

∫

R3

|∂γ′∂β′Gt|2
M−

dξdx

+ O(1)(ψ(t) + φ(t))
∑

|γ′|≤3

‖∂γ′(ρ, u, θ)t‖2, (3.15)
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I12 ≤ µ

∫

R3

∫

R3

νM(ξ)|∂γ∂βGt|2
M

dξdx + O(1)(λ0 + δ)
∑

|γ′|+|β′|≤3

∫

R3

∫

R3

|∂γ′∂β′Gt|2
M−

dξdx. (3.16)

By combining (3.10)–(3.16) and choosing µ > 0 to be sufficiently small, we have (3.9) and
then complete the proof of the lemma.

The following corollary is a direct consequence of (3.9).

Corollary 3.1 Under the assumptions in Theorem 1.2, one has

d

dt

{ ∑

β>0,|γ|+|β|≤3

∫

R3

∫

R3

|∂γ∂βGt|2
M

dξdx
}

+
σ̄

2

∑

β>0,|γ|+|β|≤3

∫

R3

∫

R3

νM(ξ)|∂γ∂βGt|2
M

dξdx

≤O(1)(λ0 + δ)
∑

|γ|+|β|≤3

∫

R3

∫

R3

|∂γ∂βGt|2
M−

dξdx + O(1)
∑

|γ|≤2

‖∇x∂γ(u, θ)t‖2

+ O(1)
∑

|γ|≤2

∫

R3

∫

R3

νM(ξ)|∇x∂γGt|2
M

dξdx + O(1)(φ(t) + ψ(t))
∑

|γ|≤3

‖∂γ(ρ, u, θ)t‖2, (3.17)

and for j = 0, 1, 2,

d

dt

{ ∑

|γ|=j

∫

R3

∫

R3

|∂γGt|2
M

dξdx
}

+
σ̄

2

∑

|γ|=j

∫

R3

∫

R3

νM(ξ)|∂γGt|2
M

dξdx

≤O(1)(λ0 + δ)
∑

|γ|+|β|≤3

∫

R3

∫

R3

|∂γ∂βGt|2
M−

dξdx + O(1)(φ(t) + ψ(t))
∑

|γ|≤3

‖∂γ(ρ, u, θ)t‖2

+ O(1)
∑

|γ|=j

(
‖∇x∂γ(u, θ)t‖2 +

∫

R3

∫

R3

νM(ξ)|∇x∂γGt|2
M

dξdx
)
. (3.18)

Remark 3.1 Similar argument shows that if M is replaced by M−, then the estimates
(3.17) and (3.18) still hold.

By suitably choosing positive constants λ1
j > 0, λ0

j > 0 (j = 0, 1, 2) with λ0
j > 0 being

sufficiently large, λ1
0 = 1 and λ1

j (j ≥ 1) being suitably large, and denoting

H1(t) =
2∑

j=0

λ1
j

(
λ0

j

∑

|γ|=j

Hγ
0 (t) +

∑

|γ|=j

∫

R3

∫

R3

|∂γGt|2
M

dξdx
)
, (3.19)

we have from (3.1) and (3.18) that there exists a positive constant C1 > 0 such that

d

dt
H1(t) + C1

∑

|γ|≤2

∫

R3

[
|∇x∂γ(u, θ)t|2 +

∫

R3

νM(ξ)|∂γGt|2
M

dξ
]
dx

≤ O(1)(λ0+ δ)
∑

|γ|+|β|≤3

∫

R3

∫

R3

|∂γ∂βGt|2
M−

dξdx + O(1)(φ(t) + ψ(t))
∑

|γ|≤3

‖∂γ(ρ, u, θ)t‖2

+ O(1)(λ0+δ)
∑

|γ|≤2

‖∇x∂γρt‖2+ O(1)
∑

|γ|=2

∫

R3

∫

R3

νM(ξ)
M

(|∇x∂γGt|2+ |∂γGtt|2)dξdx. (3.20)

Besides (3.17) and (3.20), we still need the estimate on ∇x∂γρt and the estimate on the third
order derivatives of Gt with respect to t and x. For ∇x∂γρt, we can apply the conservation
laws and the estimate is given in the following lemma.
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Lemma 3.3 For each |γ| ≤ 2, we have

∫

R3

2θ

3ρ
|∇x∂γρt|2dx ≤ O(1)

∫

R3

∫

R3

νM(ξ)|∇x∂γGt|2
M

dξdx +
d

dt

∫

R3
∂γρtdivx(∂γut)dx

+ O(1)
∑

|γ′|≤2

‖∇x∂γ′(u, θ)t‖2 + O(1)φ(t)
∑

|γ′|≤3

‖∂γ′(ρ, u, θ)t‖2

+ O(1)(λ0 + δ)
∑

|γ′|<|γ|
‖∇x∂γ′ρt‖2. (3.21)

Proof Notice that the conservation laws give

2θ

3
∇x(ρ− ρ̄) = −ρut − ρ(u · ∇x)u− 2

3
(ρ− ρ̄)∇xθ −∇xρ̄(θ − θ̄)

− ρ̄∇xθ − (ρ− ρ̄)∇xΦ(x)−
∫

R3
ψ(ξ · ∇xG)dξ.

By applying ∂γ∂t to the above equation, and then multiplying it by ∇x∂γρt

ρ before integrating
the resulting equation with respect to x over R3, a similar argument for obtaining (3.1) leads
to (3.21). Hence, we omit the details of the calculation for brevity.

To obtain the estimates on the third order derivatives on Gt with respect to t and x, we
need to use the original system (1.1) to avoid the appearance of the fourth order derivatives of
Gt. Note that ∂tf(t, x, ξ) solves

ftt + ξ · ∇xft −∇xΦ(x) · ∇ξft = LMGt + 2Q(Mt,G) + [Q(G,G)]t.

By using the the orthogonal property on the derivatives on the fluid components and the non-
fluid components, that is,

∫

R3

P0(∂γMt)∂γ(LMG)
M

dξ = 0, (3.22)

we have the following lemma on ∂γft. Since the proof is straightforward, we also omit it for
brevity.

Lemma 3.4 For |γ| = 3, there exists a positive constant d1 > 0 such that

d

dt

∫

R3

∫

R3

|∂γft|2
M

dξdx + d1

∫

R3

∫

R3

νM(ξ)|∂γGt|2
M

dξdx

≤ O(1)(λ0+ δ)
∑

|γ′|+|β′|≤3

∫

R3

∫

R3

|∂γ′∂β′Gt|2
M−

dξdx + O(1)(λ0+ δ)
∑

0<|γ′|≤3

‖∂γ′(ρ, u, θ)t‖2. (3.23)

Now, let λ2 > 0 be a suitably large constant and define

H2(t) = λ2

∑

|γ|=3

∫

R3

∫

R3

|∂γft|2
M

dξdx + H1(t)−O(1)(λ0 + δ)
∑

|γ|≤2

∫

R3
∂γρtdivx(∂γut)dx

+
∑

β>0,|γ|+|β|≤3

∫

R3

∫

R3

|∂γ∂βGt|2
M

dξdx. (3.24)
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By summarizing (3.17), (3.20), (3.21), and (3.23), we have that there exists a positive
constant C2 > 0 such that

d

dt
H2(t) + C2

( ∑

0<|γ|≤3

‖∂γ(ρ, u, θ)t‖2 +
∑

|γ|+|β|≤3

∫

R3

∫

R3

νM(ξ)|∂γ∂βGt|2
M

dξdx
)

≤ O(1)(λ0+δ)
∑

|γ|+|β|≤3

∫

R3

∫

R3

|∂γ∂βGt|2
M−

dξdx+ O(1)(φ(t)+ ψ(t))
∑

|γ|≤3

‖∂γ(ρ, u, θ)t‖2. (3.25)

It is clear from (3.25) that to close the energy estimates we need to have the energy estimates
with respect to the weight M−. As usual in the previous works, the difference between the
estimates with respect to M and M− is that the orthogonal property (3.22) holds only with
respect to M. Without this orthogonal property, there is a corresponding error term in the
form of

∑
1≤|γ|≤3

‖∂γ(ρ, u, θ)t‖2.

Therefore, similar calculation shows that if we set

H2(t) = λ̄2

∑

|γ|=3

∫

R3

∫

R3

|∂γft|2
M−

dξdx + H1(t)−O(1)(λ0 + δ)
∑

|γ|≤2

∫

R3
∂γρtdivx(∂γut)dx

+
∑

β>0,|γ|+|β|≤3

∫

R3

∫

R3

|∂γ∂βGt|2
M−

dξdx (3.26)

with

H1(t) =
2∑

j=0

λ̄1
j

(
λ̄0

j

∑

|γ|=j

Hγ
0 (t) +

∑

|γ|=j

∫

R3

∫

R3

|∂γGt|2
M−

dξdx
)
, (3.27)

then there exists a positive constant C2 > 0 such that

d

dt
H2(t) + C2

∑

|γ|+|β|≤3

∫

R3

∫

R3

νM(ξ)|∂γ∂βGt|2
M−

dξdx

≤ O(1)(φ(t) + ψ(t))
∑

|γ|≤3

‖∂γ(ρ, u, θ)t‖2 + O(1)
∑

0<|γ|≤3

‖∂γ(ρ, u, θ)t‖2. (3.28)

Here λ̄i
j (i = 0, 1, j = 0, 1, 2) and λ̄2 are some suitably chosen positive constants.

Combining (3.25) with (3.28), if we choose λ3 > 0 sufficiently large and set

H3(t) = λ2H2(t) + H2(t), (3.29)

then there exists a positive constant C3 > 0 such that

d

dt
H3(t) + C3

( ∑

0<|γ|≤3

‖∂γ(ρ, u, θ)t‖2 +
∑

|γ|+|β|≤3

∫

R3

∫

R3

|∂γ∂βGt|2
M−

dξdx
)

≤ O(1)(φ(t) + ψ(t))
∑

|γ|≤3

‖∂γ(ρ, u, θ)t‖2. (3.30)

Since

H3(t) ∼
∑

|γ|≤3

‖∂γ(ρ, u, θ)t‖2 +
∑

|γ|+|β|≤3

∫

R3

∫

R3

|∂γ∂βGt|2
M−

dξdx,
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we have the following theorem on the decay estimate by using Lemma 2.1.

Theorem 3.1 Under the assumptions listed in Theorem 1.2, we have

∑

|γ|≤3

‖∂γ(ρ, u, θ)t‖2 +
∑

|γ|+|β|≤3

∫

R3

∫

R3

|∂γ∂βGt|2
M−

dξdx ≤ O(1)(1 + t)−1. (3.31)

In the following, we will use the equations (2.4), (2.5) and the decay estimates (3.31) to
deduce a decay estimate on ∇x∂α(f −M) (1 ≤ |α| ≤ 3). Notice that some of the following
estimates follow from the same arguments as those for the Lemmas 3.1–3.4, and we will omit
the proofs for these estimates for brevity.

As usual, the first estimate on ∇x∂α(ρ− ρ̄, u, θ) can be given as follows.

Lemma 3.5 For |α| ≤ 3, we have

‖∇x∂α(ρ−ρ̄, u, θ)‖2≤O(1)(1 + t)−
1
2 +O(1)(λ0 + δ)

∑

|α′|≤3

‖∇x∂α′(ρ− ρ̄, u, θ)‖2

+ O(1)
∫

R3

∫

R3

(νM(ξ)|∇x∂αG|2
M

+ (λ0+δ)
∑

|α′|+|β′|≤4

|∂α′∂β′G|2
M−

)
dξdx. (3.32)

Proof By using the equation for ∇x(ρ− ρ̄) (after (3.21)), (3.31) gives

‖∇x∂α(ρ− ρ̄)‖2 ≤ O(1)(1 + t)−
1
2 + O(1)(λ0 + δ)

∑

|α′|≤3

‖∇x∂α′(ρ− ρ̄, u, θ)‖2

+ O(1)‖∇x∂αθ‖2 + O(1)
∫

R3

∫

R3

|∇x∂αG|2
M

dξdx. (3.33)

For ∇x∂α(u, θ), the equations for u(t, x) and θ(t, x) are

uit +
3∑

j=1

ujuixj
+

2
3ρ

(ρθ − ρ̄θ̄)xi
+

ρ− ρ̄

ρ
Φxi

= −
∫

R3

ψi(ξ · ∇xΘ)
ρ

dξ +
1
ρ

3∑

j=1

{
µ(θ)

(
uixj + ujxi −

2
3
δijdivxu

)}
xj

, i = 1, 2, 3,

θt +
3∑

j=1

(
ujθxj

+
2
3
θujxj

)

= −
∫

R3

ψ4 − ξ · u
ρ

(ξ · ∇xΘ)dξ +
1
ρ

{ 3∑

j=1

(κ(θ)θxj
)xj

+
1
2
µ(θ)

3∑

i,j=1

(uixj
+ ujxi

)2 − 2
3
µ(θ)(divxu)2

}
.

(3.34)

By applying ∂α to (3.34) and multiplying it by (2
3∂αu, 1

θ̄
∂αθ) before integrating it with respect

to x over R3, similar argument for proving the Lemma 3.1 shows that there exists some positive
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constant C4 > 0 such that

C4‖∇x∂αu‖2 ≤ O(1)(1 + t)−
1
2 + O(1)(λ0 + δ)

∑

|α′|≤3

‖∇x∂α′(ρ− ρ̄, u, θ)‖2

+ O(1)
∫

R3

∫

R3

νM(ξ)−1|∂αΘ|2
M

dξdx−
∫

R3

2ρ̄

3
∇x∂αθ · ∂αudx, (3.35)

C4‖∇x∂αθ‖2 ≤ O(1)(1 + t)−
1
2 + O(1)(λ0 + δ)

∑

|α′|≤3

‖∇x∂α′(ρ− ρ̄, u, θ)‖2

+ O(1)
∫

R3

∫

R3

νM(ξ)−1

M
(|∇x∂αΘ|2 + (λ0 + δ)

∑

α′<α

|∇x∂α′Θ|2)dξdx

−
∫

R3

2ρ̄

3
∂αθ divx(∂αu)dx. (3.36)

By (3.33), (3.35) and (3.36), (3.32) follows immediately from Lemma 2.5 and (3.31). And this
completes the proof of the lemma.

For the non-fluid component G, the argument for proving the Corollary 3.1 gives the fol-
lowing estimates.

Lemma 3.6 Under the assumptions in Theorem 1.2, we have

∑

β>0,|α|+|β|≤4

∫

R3

∫

R3

νM(ξ)|∂α∂βG|2
M

dξdx

≤ O(1)(1+t)−1 + O(1)
∑

|α|≤3

‖∇x∂α(u, θ)‖2 + O(1)(λ0+δ)
∑

|α|≤3

‖∇x∂α(ρ− ρ̄)‖2

+ O(1)(λ0+δ)
∑

|α|+|β|≤4

∫

R3

∫

R3

|∂α∂βG|2
M−

dξdx + O(1)
∑

|α|≤4

∫

R3

∫

R3

νM(ξ)|∂αG|2
M

dξdx, (3.37)

and for j = 0, 1, 2,

∑

|α|=j

∫

R3

∫

R3

νM(ξ)|∂αG|2
M

dξdx

≤ O(1)(1+t)−1+O(1)
∑

|α|=j

‖∇x∂α(u, θ)‖2 + O(1)(λ0+δ)
∑

|α|≤j

‖∇x∂α(ρ− ρ̄, u, θ)‖2

+O(1)(λ0+δ)
∑

|α|+|β|≤4

∫

R3

∫

R3

|∂α∂βG|2
M−

dξdx +O(1)
∑

|α|=j

∫

R3

∫

R3

νM(ξ)|∇x∂αG|2
M

dξdx. (3.38)

Therefore, a suitably combination of (3.32) and (3.38) yields

∑

|α|≤3

(
‖∇x∂α(ρ− ρ̄, u, θ)‖2 +

∫

R3

∫

R3

νM(ξ)|∂α∂βG|2
M

dξdx
)

≤ O(1)(1 + t)−
1
2 + O(1)(λ0 + δ)

∑

|α|+|β|≤4

∫

R3

∫

R3

|∂α∂βG|2
M−

dξdx

+ O(1)
∑

|α|=3

∫

R3

∫

R3

νM(ξ)|∇x∂αG|2
M

dξdx. (3.39)
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The fourth order derivatives of G with respect to x is given in the following lemma.

Lemma 3.7 For |α| = 4, we have

∫

R3

∫

R3

νM(ξ)|∂αG|2
M

dξdx ≤ O(1)(1 + t)−
1
2 + O(1)(λ0 + δ)

∑

|α′|≤3

‖∇x∂α′(ρ− ρ̄, u, θ)‖2

+ O(1)(λ0 + δ)
∑

|α′|+|β′|≤4

∫

R3

∫

R3

|∂α′∂β′G|2
M−

dξdx. (3.40)

Indeed, since f −M solves

(f −M)t + ξ · ∇x(f −M)−∇xΦ · ∇ξ(f −M) = LMG + Q(G,G),

(3.40) can be proved similar to (3.23) in Lemma 3.4. The only difference is that we need to use
the following orthogonal properties

∫

R3

P0(∂γM[ρ−ρ̄,u,θ])∂γ(LMG)
M

dξ = 0,

∫

R3

P0(∂γ(ρ̄(M[1,u,θ] −M[1,0,θ̄])))∂γ(LMG)
M

dξ = 0.

(3.41)

Hence, the details are omitted.
Putting (3.37), (3.39), and (3.40) together, we have

∑

|α|≤3

‖∇x∂α(ρ− ρ̄, u, θ)‖2 +
∑

|α|+|β|≤4

∫

R3

∫

R3

νM(ξ)|∂α∂βG|2
M

dξdx

≤ O(1)(1 + t)−
1
2 + O(1)(λ0 + δ)

∑

|α|+|β|≤4

∫

R3

∫

R3

|∂α∂βG|2
M−

dξdx. (3.42)

And the corresponding estimate with respect to the weight M− is (cf. Lemma 3.6)

∑

|α|+|β|≤4

∫

R3

∫

R3

νM(ξ)|∂α∂βG|2
M−

dξdx ≤ O(1)(1+ t)−1+ O(1)
∑

|α|≤3

‖∇x∂α(ρ− ρ̄, u, θ)‖2. (3.43)

When λ0 > 0, δ > 0 are sufficiently small, the combination of (3.42) and (3.43) gives the
following theorem.

Theorem 3.2 Under the assumptions listed in Theorem 1.2, we have

∑

|α|≤3

‖∇x∂α(ρ− ρ̄, u, θ)‖2 +
∑

|α|+|β|≤4

∫

R3

∫

R3

νM(ξ)|∂α∂βG|2
M−

dξdx ≤ O(1)(1 + t)−
1
2 . (3.44)

Finally, the statement in Theorem 1.2 follows directly from (3.44) and the Sobolev inequality
(2.2).

Remark 3.2 Notice that even though the time decay estimates in (3.31) and (3.44) are for
H4(R3), we need to use the boundedness of the solutions in H5(R3) obtained in the existence
theory.



378 S. Ukai, T. Yang and H. J. Zhao

References

[1] Arnold, A., Carrillo, J. A., Desvillettes, L. et al., Entropies and equilibria of many-particle systems: An
essay on recent research, Monatsh. Math., 142, 2004, 35–43.

[2] Asano, K., The commemorative lecture of his retirement from Kyoto University, March 6, 2002.

[3] Danchin, R., Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math.,
141, 2001, 579–614.

[4] Danchin, R., Global existence in critical spaces for flows of compressible viscous and heat-conductive gases,
Arch. Pational Mech. Anal., 160, 2002, 1–39.

[5] Deckelnick, K., Decay estimates for the compressible Navier-Stokes equations in unbounded domains,
Math. Z., 209, 1992, 115–130.

[6] Desvillettes, L. and Villani, C., On the trend to global equilibrium for spatially inhomogeneous kinetic
systems: The Boltzmann equation, Invent. Math., 159(2), 2005, 245–316.

[7] Golse, F., Perthame, B. and Sulem, C., On a boundary layer problem for the nonlinear Boltzmann equation,
Arch. Rational Mech. Anal., 103, 1986, 81–96.

[8] Grad, H., Asymptotic Theory of the Boltzmann Equation II, Rarefied Gas Dynamics, J. A. Laurmann
(ed.), Vol. 1, Academic Press, New York, 1963, 26–59.

[9] Guo, Y., The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53, 2004, 1081–1094.

[10] Hoff, D. and Zumbrum, K., Multi-dimensional diffusion waves for the Navier-Stokes equations of com-
pressible flow, Indian Univ. Math. J., 44, 1995, 604–676.

[11] Hoff, D. and Zumbrum, K., Pointwisw decay estimates for multidimensional Navier-Stokes diffusion waves,
Z. Angew. Math. Phys., 48, 1997, 597–614.

[12] Huang, F.-M., Xin, Z.-P. and Yang, T., Contact discontinuity with general perturbations for gas motions,
preprint.

[13] Liu, T.-P., Yang, T. and Yu, S.-H., Energy method for the Boltzmann equation, Physica D, 188(3-4),
2004, 178–192.

[14] Liu, T.-P., Yang, T., Yu, S.-H. and Zhao, H. J., Nonlinear stability of rarefaction waves for the Boltzmann
equation, Arch. Rational Mech. Anal., in press.

[15] Liu, T.-P. and Yu, S.-H., Boltzmann equation: Micro-macro decompositions and positivity of shock profiles,
Commun. Math. Phys., 246(1), 2004, 133–179.

[16] Liu, T.-P. and Wang, W., The pointwise estimates of diffusion wave for the Nvier-Stokes equations in odd
multi-dimension, Commun. Math., Phys., 196, 1998, 145–173.

[17] Matsumura, A. and Nishida, T., Initial-boundary value problems for the equations of motion of compress-
ible viscous and heat-conductive fluids, Comm. Math. Phys., 89(4), 1983, 445–464.

[18] Ponce, G., Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal.,
9, 1985, 339–418.

[19] Shibata, Y. and Tanaka, K., Rate of Convergence of Non-stationary Flow to the Steady Flow of Compress-
ible Viscous Fluid, preprint, 2004.

[20] Strain, R. M. and Guo, Y., Almost exponential decay near Maxwellian, Communications in Partial Dif-
ferential Equations, 30, in press, 2005.

[21] Ukai, S., Les solutions globales de l’équation de Boltzmann dans l’espace tout entier et dans le demi-espace,
C. R. Acad. Sci. Paris, 282A, 1976, 317–320.

[22] Ukai, S., Solutions of the Boltzmann equation, Pattern and Waves—Qualitative Analysis of Nonlinear
Differential Equations, M. Mimura and T. Nishida (eds.), Studies of Mathematics and Its Applications,
18, Kinokuniya-North-Holland, Tokyo, 1986, 37–96.

[23] Ukai, S., Time-periodic solutions of the Boltzmann equation, Discrete and Continuous Dynamical Systems,
14(3), 2006, 579–596.

[24] Ukai, S., Yang, T. and Zhao, H. J., Global solutions to the Boltzmann equation with external forces,
Analysis and Applications, 3(2), 2005, 157–193.

[25] Zhou, Y., Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy, Chin.
Ann. Math., 25B(1), 2004, 47–56.


