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Abstract The classical equations of a nonlinearly elastic plane membrane made of Saint
Venant-Kirchhoff material have been justified by Fox, Raoult and Simo (1993) and Pantz
(2000). We show that, under compression, the associated minimization problem admits
no solution. The proof is based on a result of non-existence of minimizers of non-convex
functionals due to Dacorogna and Marcellini (1995). We generalize the application of their
result from plane elasticity to three-dimensional plane membranes.

Keywords Nonlinear elasticity, Minimization, Quasiconvexity, Quasiconvex envelope,
Rank-1-convexity

2000 MR Subject Classification 49J45, 73C50, 74K15

0 Introduction

Let R3×2 be the space of real 3 × 2 matrices endowed with the usual Euclidean norm
|F | = (tr(FT F ))1/2. The classical two-dimensional stored energy function for a nonlinearly
elastic plane membrane is the following:

∀ ξ ∈ R3×2, W (ξ) =
Eν

2(1− ν2)
(tr(ξtξ − I))2 +

E

2(1 + ν)
tr(ξtξ − I)2, (0.1)

where ξ stands for the two dimensional deformation gradient, E > 0 is the Young modulus and
0 ≤ ν < 1

2 is Poisson’s ratio. The above function expresses the exact difference between the
metric tensor of the unknown surface and that of the reference configuration. We are interested
in the associated minimization problem. Let ω ⊂ R2 be a bounded open set. Let ϕ : ω −→ R3

denote the deformation. Finally, let f ∈ L12(ω;R3) and ξ0 ∈ R3×2. Then the considered
minimization problem is

(P) inf
{

I(ϕ) =
∫

ω

W (∇ϕ) dx : ϕ ∈ ϕ0 + W 1,4
0 (ω;R3)

}
,

where ϕ0 = ξ0x, x ∈ ω.

The classical two-dimensional equations of a nonlinearly elastic membrane plate, as found
in the mechanical literature (see [17], for instance), have been justified by Fox, Raoult and
Simo [15] by means of the method of formal asymptotic expansions, introduced by Ciarlet
and Destuynder [7, 8] (see also [6] for an extensive presentation of the different nonlinear
plate theories) applied to the three-dimensional equations of the nonlinear elasticity for a Saint
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Venant-Kirchhoff material. A remarkable property of this nonlinear plate theory is the material
frame indifference of its stored energy function (0.1) which it inherited from the original model.

Unfortunately, the associated energy functional J(ϕ) =
∫

ω
W (∇ϕ)dx is not weakly lower

semicontinuous on W 1,∞(ω;R3) which is a necessary condition for the lower semicontinuity
with respect to the topology of W 1,4(ω;R3). Actually, Morrey [25, 26] has shown the equiv-
alence between weakly lower semicontinuity and quasiconvexity, under some ad hoc growth
and coercivity conditions, for a whole class of finite functionals depending on a gradient. See
also [24, 1] for refined versions of this result. In the case of problem (P), Coutand [10] gave
a counterexample to the weak lower semi-continuity of its functional when the membrane is
subjected to plane forces. In fact, the above stored energy function (0.1) is neither polyconvex
nor quasiconvex since it is not rank-one-convex, as it is shown in [16] (see also [29, 5] for the
case of the Saint Venant-Kirchhoff stored energy function), which is a necesary condition for
weak-? lower semicontinuity by Tartar [30].

Le Dret and Raoult [20, 23] have computed the quasiconvex envelope of the three-dimen-
sional Saint Venant-Kirchhoff stored energy function. It turns out that the latter function is
not quasiconvex and consequently not weakly lower semicontinuous in light of Morrey’s result
as well.

For the reasons stated above, it is natural to consider the relaxed minimization problem
(see for example [13]), in which the stored energy function is substituted by its quasiconvex
envelope. It is well known that the infimum of the associated relaxed problem

(QP) inf
{

Ī(ϕ) =
∫

ω

QW (∇ϕ) dx : ϕ ∈ ϕ0 + W 1,4
0 (ω;R3)

}

coincides with that of the original problem (P) and that any minimizing sequence of problem (P)
contains a subsequence which weakly converges in W 1,4(ω;R3) towards a minimizer of problem
(QP) (see [13] for a complete survey of the subject).

The motivation for the computation of the quasiconvex envelope carried out by Le Dret and
Raoult [23] was their justification of another nonlinear plane membrane model by means of Γ-
convergence theory (see [19, 22]). Their approach gives a convergence result, as the thickness of
the plate tends to zero, of a diagonal infimizing sequence of deformations of the original three-
dimensional energy towards a minimizer of the two-dimensional membrane energy. The latter
is proved to be equal to the quasiconvex envelope of the functional obtained by minimizing the
Saint Venant-Kirchhoff Stored energy function with respect to the third column vector. Besides
giving the first rigorous result in the derivation of nonlinear membrane theories, the existence
of a minimizer to the energy they obtain is established through the convergence. An important
feature of their membrane model is that it cannot sustain any compression. That is, it can be
compressed with nil stored energy which is not, intuitively, that surprising since a membrane
energy only measures the changes in the surface metric.

Coutand [9–12] has managed to show some existence results of minimizers for the classical
model albeit in particular instances. He proves the existence of a solution to the equations by
means of the inverse function theorem before showing it actually is a local or global minimizer
depending on the case. In one of the considered cases, he proves that the found solution (critical
point) does not minimize the energy in any reasonable space (see [10]). In fact, it turns out
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to be the only case where the membrane is under slight compression on its boundary whereas
all the other results deal with membranes extended or clamped at their boundary. In a similar
vein, Dacorogna and Marcellini [14] give necessary and sufficient conditions to the existence
of minimizers to the two-dimensional Saint Venant-Kirchhoff stored energy functional. These
conditions draw a direct link between the existence of minimizers and the prescribed condition
on the boundary whether it is a compression or an extension in absence of body loads. Their
application is based on a general non-existence theorem that they establish for non-convex
functionals with a linear application as the prescribed deformation on the boundary and on the
computation of the quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function
performed by Le Dret and Raoult [20, 23]. For issues dealing with the uniqueness of the solution,
we send the reader to Knops and Stuart [18].

These existence results were the incentive behind this chapter. Whereas Coutand [9–12]
uses an implicit method which does not bring out the link between the convexity properties of
the functional and the prescribed conditions on the boundary, Dacorogna and Marcellini apply
a direct method but to a less satisfying instance because of an algebraic restriction namely the
lack of convenient expressions for the singular values of the deformation gradient. Here, we use
the non-existence result obtained by Dacorogna and Marcellini to prove the non-existence of
minimizers to the classical nonlinear plane membrane energy model under compression condi-
tions on the boundary.

In the next section, we recall the notion of quasiconvexity and give the quasiconvex envelope
of the nonlinear plate membrane stored energy function. We also recall the non-existence theory
established by Dacorogna and Marcellini which yields the announced result. In Section 2, we
give and prove an algebraic lemma, that allows the application of this theory. We terminate
the chapter with a compilation of remarks on nonlinear membrane plates in the last section.
Namely we derive an upper bound for the minimum of the elastic membrane energy with dead
body loads and remark that membranes do not resist compression.

1 Preliminaries

We recall that a Borel measurable and locally integrable function G : Rn×RN ×Rn×N → R
is said to be quasiconvex if

G(x, u, A) ≤ 1
meas D

∫

D

G(x, u, A +∇ϕ) dx

for every bounded domain D ⊂ Rn, for every A ∈ Rn×N and for every ϕ ∈ W 1,∞
0 (D;RN ).

The notion of quasiconvexity was first introduced by Morrey [25]. Since, several authors have
worked on the relationship between quasiconvexity and lower semicontinuity. Here, we give the
result as stated in [4] and we send the reader, for instance, to Morrey [26], Dacorogna [13],
Acerbi and Fusco [1] and Marcellini [14] for proofs of this result and other variations on the
data.

Theorem 1.1 Let 1 ≤ p ≤ ∞, let Ω ⊂ Rn be a bounded open set and G : Ω×RN×Rn×N →
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R be a Cathéodory integrand satisfying the following estimate

0 ≤ G(x, u, A) ≤ a(x, |u|)(1 + |A|p) if p < ∞,

0 ≤ G(x, u, A) ≤ α(x, |u|, |A|) if p = ∞,

where a(x, s) and α(x, s, t) are summable in x and increasing in s and t. Then the following
conditions are equivalent:

(1) for a.e. x ∈ Ω and every u ∈ RN , the function G(x, u, · ) is quasiconvex;
(2) the functional F : u ∈ RN → ∫

Ω
G(x, u,∇u) dx is sequentially weakly lower semicontin-

uous on W 1,p
0 (Ω;RN ) (sequentially weakly-∗ lower semicontinuous on W 1,∞

0 (Ω;RN ) if p = ∞).

Remark 1.1 Ball and Murat [2] introduced the notion of W 1,p-quasiconvexity in an attempt
to weaken the notion of quasiconvexity of Morrey (which corresponds in their terminology to
the W 1,∞-quasiconvexity) and thus draw a direct link between the W 1,p-quasiconvexity of
a stored energy function and the sequential weak lower semicontinuity with respect to the
topology of W 1,p. In particular, they show that in certain cases W 1,p-quasiconvexity and
W 1,∞-quasiconvexity are equivalent. However, the above theorem clearly shows that for finite
functionals quasiconvexity lies behind sequential weak lower semicontinuity in Sobolev spaces.

Next we give the definitions of the convex and quasiconvex envelopes respectively of a
function G : Rn×N → RN ,

G∗∗ = sup{Z : Rn×N → RN ; Z convex, Z ≤ g},

QG = sup{Z : Rn×N → RN ; Z quasiconvex, Z ≤ g}.

Furthermore if G is locally bounded and Borel measurable then a characterization of the qua-
siconvex envelope, due to Dacorogna [13], is given by

QG(ξ) = inf
ϕ∈W 1,∞

0 (D;RN )
Iξ(ϕ), (1.1)

where

Iξ(ϕ) =
1

meas D

∫

ω

G(ξ +∇ϕ) dx−
∫

ω

f · ϕdx, (1.2)

for every ξ ∈ Rn×N , and D ⊂ Rn a bounded domain. In particular, the infinum in identity
(1.1) is independent of the choice of D.

All of the above notions as well as their properties are fully exposed in [13] (see also [4]).
So we refer to these books for details, proofs and references. In the next section, we will
explain how we intend to use the above theory. The quasiconvex envelope of the stored energy
function (0.1) is easily deduced from the expression of the quasiconvex envelope of the Saint-
Venant Kirchhoff stored energy function carried out by Le Dret and Raoult [20, 23], or can
be computed in the same fashion as they have also done. We give its expression in the next
proposition, but first we recall the membrane stored energy function (0.1) expressed through
the singular values s1 and s2 (ordered such that s1 ≤ s2), also known as the principal stretches,
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of the matrix ξ (i.e. the eigenvalues of (ξtξ)
1
2 )

W (ξ) =
Eν

2(1− ν2)
(s2

1 + s2
2 − 2)2 +

E

2(1 + ν)
((s2

1 − 1)2 + (s2
1 − 1)2). (1.3)

Proposition 1.1 The quasiconvex envelope of the nonlinear plane membrane is

QW (ξ) = W ∗∗(ξ) =





0, if ξ ∈ D1,

E

2
(s2

2 − 1)2, if ξ ∈ D2,

W (ξ), if ξ /∈ D1 ∪D2,

∀ ξ ∈ R3×2, (1.4)

where

0 ≤ s1(ξ) ≤ s2(ξ),

D1 = {ξ ∈ R32 : s2 ≤ 1 and s2
1 + νs2

2 < 1 + ν},
D2 = {ξ ∈ R32 : s2 > 1 and s2

1 + νs2
2 < 1 + ν}.

(1.5)

Remark 1.2 Inspecting the Saint Venant-Kirchhoff stored energy function expressed in
terms of the singular values 0 ≤ s1 ≤ s2 ≤ s3 of the deformation gradient F ,

W (F ) =
Eν

8(1 + ν)(1− 2ν)
(tr(F tF − I))2 +

E

8(1 + ν)
tr(F tF − I)2, (1.6)

it is clear that, from a mathematical viewpoint, it is not very different from the energy (1.3)
we are concerned with. In [22], Le Dret and Raoult prove a similar result by fixing one of the
singular values at a time and considering the convex envelope with respect to the other thereby
concluding by symmetry arguments. However, Dacorogna and Marcellini do not consider the
right quasiconvex envelope of the two-dimensional stored energy function for an elastic body
made of Saint Venant-Kirchhoff material in their paper [14]. Indeed, they seem to have recovered
the result by merely taking the greatest singular value equal to zero in the three-dimensional
case. Whereas, the right guess would have been to make the smallest one vanish.

We now present the non-existence theorem we shall use to achieve our goal. This result
is due to Dacorogna and Marcellini [14]. First of all, we need to introduce a notion of strict
convexity that is central to the proof.

Definition 1.1 A convex function H : Rn×N −→ R is said to be strictly convex at ξ0 =
(ξα

0 )1≤α≤N ∈ Rn×N in at least N directions if there exists λ = (λα)1≤α≤N ∈ Rn×N such that

λα 6= 0 and 〈λα; ξα − ξα
0 〉Rn = 0, ∀α = 1, 2, · · · , N,

whenever ξ = (ξα)1≤α≤N satisfies the condition

H(ξ) + H(ξ0)
2

= H
(ξ + ξ0

2

)
. (1.7)
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Theorem 1.2 Let g : Rn×N −→ R be a lower semicontinuous function and let ξ0 ∈ Rn×N

be such that
( i ) G∗∗(ξ0) = QG(ξ0) < g(ξ0),
(ii) G∗∗ is strictly convex in at least N directions.

Then (P) has no solution.

Remark 1.3 As pointed out by the authors, the weakness of this theorem is that it is
expressed in terms of G∗∗ and not of QG. Fortunately, as already observed above, in our case
the two envelopes coincide and the same goes for the three-dimensional Saint Venant-Kirchhoff
stored energy function (see [20, 23]).

2 Main Result

As already mentioned in the Introduction, the purpose of this paper is to draw a link between
weak lower semicontinuity of the minimization functional and the boundary condition in the
case without exterior energy.

Theorem 2.1 Problem (P) has solutions if and only if

s2
1(ξ0) + νs2

2(ξ0) ≥ 1 + ν.

Remark 2.1 The above result is still valid if we replace Wm in problem (P) by the following
stored energy function

W0(ξ) = W (ξ) +
1
4

[ ν

1− ν
tr(ξtξ − I)− 2

]2

+
, ∀ ξ ∈ R3×2,

which was obtained by Pantz in [27, 28] for a membrane plate made of Saint Venant-Kirchhoff
material without imposing the orientation-preserving condition on the set of admissible three-
dimensional deformations. Note that this function can also be obtained by minimizing the
functional W along the third column vector as in [22].

In practice, the above result means that a plane membrane behaves badly under compression.
This behaviour was already observed by Le Dret and Raoult [19, 22] in their asymptotic anal-
ysis. As a matter of fact, their two-dimensional limit model is a relaxed problem. In another
context, Coutand [10] showed that the solution he found to the local boundary-value problem
of the membrane under slight compression via the implicit function theorem is not even a local
minimizer. This property is further investigated in the next section.

We can now announce the algebraic lemma that allows us to generalize the result obtained
by Dacorogna and Marcellini, who applied their Theorem 1.2 to the two-dimensional Saint
Venant-Kirchhoff material, to the nonlinear plane membrane made of Saint Venant-Kirchhoff
material. We shall give the proof later after proving Theorem 2.1.

Lemma 2.1 Let ζ0 ∈ R3×2 such that s1(ζ0) < s2(ζ0). Then there exists λ = (λα)1≤α≤N ∈
R3×2 such that

λα 6= 0 and 〈λα, ζα − ζα
0 〉R3 = 0, ∀α = 1, 2,

whenever ζ ∈ E =
{
ζ ∈ R3×2 : s2(ξ)+s2(ξ0)

2 = s2

(
ξ+ξ0

2

)}
.
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Remark 2.2 Note that the statement above does not say that function s2 is strictly convex
in at least two directions at ζ0 since function s2 is not even convex.

Proof of Theorem 2.1 Here we follow Dacorogna and Marcellini [14]. First we assume
that s2

1(ξ0) + νs2
2(ξ0) ≥ 1 + ν. By definition of quasiconvexity we write

|ω|QW (ξ0) ≤
∫

ω

QW (ξ0 +∇ϕ(x)) dx

for all ϕ ∈ W 1,∞(ω;R3) and by a result in Ball and Murat [2], the above still holds for all
ϕ ∈ W 1,4(ω;R3) by the lower semicontinuity of W . Since by defintion QW ≤ W on R3×2 and
by assumption QW (ξ0) = W (ξ0) (see Proposition 1.1), we infer

|ω|W (ξ0) ≤
∫

ω

W (ξ0 +∇ϕ(x)) dx

for all ϕ ∈ W 1,4(ω;R3) which means that the function defined by ϕ0(x) = ξ0x on ω̄ is a solution
of problem (P).

Next, we assume that s2
1(ξ0) + νs2

2(ξ0) < 1 + ν. Then ξ0 is either in D1 or in D2 (see (1.4)
and (1.5)). We study these two cases separately.

Step 1 Assume that ξ0 ∈ D2. The non-existence of solutions in this case will follow from
Theorem 1.2. Therefore, we have to prove that W ∗∗ is strictly convex at ξ0 in at least two
directions. Consider ξ0 ∈ D2 (this is possible since D2 is open) satisfying condition (1.7), i.e.,

W ∗∗(ξ) + W ∗∗(ξ0)
2

= W ∗∗
(ξ + ξ0

2

)
. (2.1)

Consider now the function h : R→ R defined by

h(x) =
E

2
(x2 − 1)2.

h is strictly convex as long as x > 1. And we can write

W ∗∗(ξ) = h(s2(ξ)). (2.2)

Since s2(ξ) > 1, we deduce from (2.1), (2.2) and the strict convexity of h that

s2(ξ) + s2(ξ0)
2

= s2

(ξ + ξ0

2

)
.

In other words, we have shown that

ξ ∈ E =
{

ζ ∈ R32 :
s2(ξ) + s2(ξ0)

2
= s2

(ξ + ξ0

2

)}
.

Now ξ0 ∈ D2 entails that s1(ξ0) ≤ 1 < s2(ξ0). Hence, we can apply Lemma 2.1 to infer that
W ∗∗ is strictly convex at ξ0 in at least two directions. Then we conclude by Theorem 1.2 that
(P) has no solution if ξ0 ∈ D2.

Step 2 Assume that ξ0 ∈ D1. According to Proposition 1.1, we have

QW (ξ0) = W ∗∗(ξ0) = 0.
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Assume now that (P) has a solution ϕ ∈ ϕ0 + W 1,∞
0 (ω;R3). Then, recalling that the infima of

problems (P) and (QP) coincide (see Preliminaries), we necessarily have

W (∇ϕ) = 0 a.e. in ω.

From (1.3), we deduce that

s1(∇ϕ) = s2(∇ϕ) = 1 and det∇ϕt∇ϕ = 1,

almost everywhere in ω. On the one hand, this implies that
∫

ω

det∇ϕt∇ϕdx = meas ω,

and on the other hand, the boundary data and the fact that ϕ ∈ W 1,∞(ω;R3) yield
∫

ω

det∇ϕt∇ϕdx =
1
2

∫

∂ω

{(Cof∇ϕ0
t∇ϕ0)n(x)} · {(∇ϕ0

t∇ϕ0)x} da. (2.3)

For a proof of (2.3), we refer to Ciarlet [5, Theorem 2.7-1]. Next, observing that

(Cof∇ϕ0
t∇ϕ0) = det∇ϕ0

t∇ϕ0(∇ϕ0
t∇ϕ0)−1,

identity (2.3) entails

meas ω =
1
2

det∇ϕ0
t∇ϕ0

∫

∂ω

{(∇ϕ0
t∇ϕ0)−1n(x)} · {(∇ϕ0

t∇ϕ0x)}da.

Then, by the symmetry of ∇ϕ0
t∇ϕ0, we have

meas ω =
1
2

det∇ϕ0
t∇ϕ0

∫

∂ω

n(x) · x da. (2.4)

Besides, Stokes formula applied to the identity vector field gives
∫

∂ω

n(x) · x da =
∫

ω

divx dx = 2 meas ω,

and injecting the above in (2.4) we get

det∇ϕ0
t∇ϕ0 = det ξt

0ξ0 = s1(ξ0)s2(ξ0) = 1.

And as 0 ≤ s1(ξ0) ≤ s2(ξ0) ≤ 1, since ξ0 ∈ D1, we necessarily have

s1(ξ0) = s2(ξ0) = 1.

However this contradicts the data since s1(ξ0)2 + νs2(ξ0)2 < 1 + ν, when ξ0 ∈ D1. The proof is
complete.

Proof of Lemma 2.1 We divide the proof in two steps.

Step 1 For all matrices ζ ∈ M32, let us note that v1(ζ) and v2(ζ) are the two positive
eigenvalues of the symmetric matrix ζtζ, sα(ζ) = v

1
2
α (ζ) for α = 1, 2 are its singular values and
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{e1, e2} is an orthonormal basis of eigenvectors of ζt
0ζ0 so that ζt

0ζ0 eα = vα(ζ0)eα. First of all,
we remark that

v2(ζ0) = sup
a2
1+a2

2=1

{a2
1v1(ζ0) + a2

2v2(ζ0)} = sup
a2
1+a2

2=1

〈a1e1 + a2e2, (ζt
0ζ0)(a1e1 + a2e2)〉

= sup
|u|=1

〈u, (ζt
0ζ0)u〉 = sup

|u|=1

|ζ0u|2.

In the same manner as above, we prove that

sup
|u|=1

|ζu| = s2(ζ), ∀ ζ ∈ M3×2. (2.5)

Let us show now that

ζe2 = λζ0e2, where λ ∈ R. (2.6)

Let w ∈ R2 be such that

|w| = 1 and |(ζ + ζ0)w| = sup
|u|=1

|(ζ + ζ0)u|.

Then

s2(ζ + ζ0) = sup
|u|=1

|(ζ + ζ0)u| ≤ |ζw|+ |ζ0w| ≤ sup
|u|=1

|ζu|+ sup
|u|=1

|ζ0u| = s2(ζ) + s2(ζ0).

Since ζ ∈ E, the above necessarily implies that

|ζw|+ |ζ0w| = sup
|u|=1

|ζu|+ sup
|u|=1

|ζ0u|.

Next, as
0 ≥ |ζw| − sup

|u|=1

|ζu| = sup
|u|=1

|ζ0u| − |ζ0w| ≤ 0,

we draw
|ζw| = sup

|u|=1

|ζu| = s2(ζ) and |ζ0w| = sup
|u|=1

|ζ0u| = s2(ζ0).

Recalling that e2 is the unique vector satisfying |e2| = 1 and ζ0e2 = s2(ζ0)e2, we deduce that
w = e2. We can now write that

s2(ζ0 + ζ) = |(ζ + ζ0)e2| ≤ |ζe2|+ |ζ0e2| = s2(ζ) + s2(ζ0).

As ζ ∈ E, we necessarily have

|(ζ + ζ0)e2| = |ζe2|+ |ζ0e2|,

and it follows that

∃λ ∈ R+ such that ζe2 = λζ0e2.

We have so far shown that

E =
{

ζ ∈ M32 : sup
|u|=1

|ζu| = |ζe2| and ∃λ ∈ R+ : ζe2 = λζ0e2

}
.
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Step 2 First of all we remark that ζ0e1 and ζ0e2 are orthogonal since

〈ζ0e1, ζ0e2〉 = 〈e1, ζ
t
0ζ0e2〉 = v2(ζ0)〈e1, e2〉 = 0.

Therefore we can set fα =
ζeα

|ζeα| and let {f1, f2, f3} be an orthonormal basis of R3. Now recall

that |ζe2| = s2(ζ) and ζe2 = λζ0e2, so we can write

ζ0 =




b0 0
0 s2(ζ0)
0 0


 and ζ =




p 0
0 s2(ζ)
q 0


 ,

where

b0 = |ζ0e1|, p = 〈ζe1, f1〉 and q = 〈ζe1, f3〉.

Finally, ζ − ζ0 =

(
p−b0 0

0 s2(ζ)−s2(ζ0)

q 0

)
thereby choosing, for instance, λ =

(
0 1

1 0

0 1

)
completes the

argument.

Remark 2.3 The result presented in this section was announced in [31]; see also [32].

3 Some Remarks on Nonlinear Plane Membranes

For completeness, in this section we compile some general remarks on nonlinear membrane
models.

3.1 An upper bound for the minimization problem with
non-vanishing external forces

In [2], Ball and Murat obtain a non-existence result similar to Theorem 1.2 albeit in the
particular instance of a strictly positive work of external forces. Their method does not apply
to the case of vanishing external loads, nor does the latter theorem apply in their instance.
Moreover, neither method applies to the case of ad hoc body forces. Nevertheless, the method
of Ball and Murat still gives an upper bound for the infimum of the total energy in the general
case. More precisely, if we define Mξ0 = ξ0x + W 1,4

0 (ω;R3), we have

Proposition 3.1 Let f ∈ L2(ω;R3) and suppose ∂ω = 0. Then

inf
ϕ̄∈Mξ0

J(ϕ̄) ≤ inf
ϕ̄∈Mξ0

I(ϕ̄)−
∫

ω

f · ξ0x dx,

where

J(ϕ̄) = I(ϕ̄)−
∫

ω

f · ϕ̄ dx.

Proof Let ε > 0 and ϕ = ξ0x + ψ ∈ Mξ0 satisfy the following inequality

I(ϕ) ≤ inf
ϕ̄∈Mξ0

I(ϕ̄) + ε.
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By the Vitali covering theorem, given n ∈ N there exists a finite or countable disjoint sequence
(ap + εpω)p∈An

⊂ ω where ap ∈ R2 and 0 < εp ≤ 1
n such that meas

(
ω
∖ ⋃

p∈An

(ap + εpω)
)

= 0.

Since ∂ω = 0, we also have that
∑

p∈An

ε2
p = 1. Now define

ϕn(x) =





ξ0x + εpψ
(x− ap

εp

)
, if x ∈ ap + εpω,

ξ0x, otherwise.

Then ϕn ∈ Mξ0 verifies

J(ϕn) =
∑

p∈An

∫

ap+εpω

W
(
ξ0 +∇ψ

(x− ap

εp

))
dx−

∫

ω

f · ϕn dx.

Next we perform in each of the integrals above the corresponding change of variable y = x−ap

εp

to bring up

J(ϕn) =
∑

p∈An

ε2
p

∫

ω

W (ξ0 +∇ψ(y))dy −
∫

ω

f · ξ0x dx−
∑

p∈An

ε3
p

∫

ap+εpω

f · ψ(y) dy,

= I(ϕ)−
∫

ω

f · ξ0x dx−
∑

p∈An

ε3
p

∫

ap+εpω

f(ap + εpy) · ψ(y) dy.

Now recalling the properties of (εp)p∈An , the following holds

∣∣∣
∑

p∈An

ε3
p

∫

ap+εpω

f(ap + εpy) · ψ(y) dy
∣∣∣ ≤ 1

n

∑

p∈An

ε2
p|f |L2(ω;R3)|ψ|L2(ω;R3)

Hence, by Lebesgue’s dominated convergence theorem we deduce that

inf
ϕ̄∈Mξ0

J(ϕ̄) ≤ J(ϕn) ≤ I(ϕ)−
∫

ω

f · ξ0x dx ≤ inf
ϕ̄∈Mξ0

I(ϕ̄)−
∫

ω

f · ξ0x dx + ε

for all ε > 0, which yields the aforementioned bound.

3.2 Membranes do not resist compression on the boundary

This fact was observed by Le Dret and Raoult [22] who show that the stored energy func-
tion of the membrane model they obtain by Γ-convergence arguments from finite nonlinear
elasticity vanishes for deformations whose singular values are less than one, which correspond
to compressive states. Here we show that any sensible membrane stored energy function verifies
the latter property. First, let us recall that for all matrix ξ ∈ R32, 0 ≤ s1(ξ) ≤ s2(ξ) are its
singular values, that is, the eigenvalues of the matrix (ξtξ)

1
2 . We also recall that a function

F : Rn×N −→ R is rank-one-convex if

F (λA + (1− λ)B) ≤ λF (A) + (1− λ)F (B)

for all λ ∈ [0, 1] and all A,B ∈ Rn×m such that rank(A−B) ≤ 1.
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Proposition 3.2 Let W : R3×2 −→ R+ ∪ {∞} be a rank-one-convex isotropic and frame-
indifferent function, i.e.,

W (ξ) = W (ρξ), ∀ ξ ∈ R3×2, ∀ ρ ∈ SO(3).

Suppose furthermore that W (η) = 0 where η = (δi
j)i≤3,j≤2. Then

W (ξ) = 0, ∀ ξ ∈ R3×2 such that s2(ξ) ∈ [0, 1].

Proof We first show that

W (ξ) = 0, ∀ ξ ∈ R3×2 such that s1(ξ)s2(ξ) = 1. (3.1)

Indeed, as pointed out by Le Dret and Raoult [22], any matrix ξ ∈ R3×2 admits the following
polar factorization

ξ = ρη(ξtξ)
1
2 , (3.2)

where ρ ∈ SO(3). Next, let ζ ∈ SO(2) be such that

ξtξ = ζtdiag (s2
α(ξ))ζ.

Then identity (3.2) gives

ξζt = ρη(ζ(ξtξ)ζt)
1
2 = ρη diag (sα(ξ)).

Hence isotropy and frame-indifference of the membrane stored energy function W imply

W (ξ) = W (ξζt) = W (ρη diag (sα(ξ))) = W (η diag (sα(ξ))),

so that if we suppose furthermore that s1(ξ)s2(ξ) = 1 then diag (sα(ξ)) ∈ SO(2). This together
with isotropy brings about

W (ξ) = W (η diag (sα(ξ))) = W (η) = 0

by definition of the function W , and property (3.1) is proved.
Now we set out to prove the announced result. For simplicity, let ξ ∈ R3×2 be such that

s2(ξ) ≤ 1 and ξ = diag (sα(ξ)). Let rα ∈ [0, 1] be such that sα(ξ) = −rα + (1 − rα) and note
ζα
β = ((−1)αe1|(−1)βe2) ∈ R3×2. Accordingly writing ξ in this fashion

ξ = r1[r2ζ
1
1 + (1− r2)ζ1

2 ] + (1− r1)[r2ζ
2
1 + (1− r2)ζ2

2 ]

yields
W (ξ) ≤ r1W (r2ζ

1
1 + (1− r2)ζ1

2 ) + (1− r1)W (r2ζ
2
1 + (1− r2)ζ2

2 ),

using the rank-one-convexity of W . Again the rank-one-convexity of W raises

W (ξ) ≤ r1r2W (ζ1
1 ) + r1(1− r2)W (ζ1

2 ) + (1− r1)r2W (ζ2
1 ) + (1− r1)(1− r2)W (ζ2

2 ).

Lastly, since s1(ζα
β )s2(ζα

β ) = 1, property (3.1) entails that W (ζα
β ) = 0 and the result is fully

justified.
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Remark 3.1 (i) Note that in the particular case of a finite membrane energy W , a corollory
of the above is the result obtained by Le Dret and Raoult [21, 22] who show that quasiconvex
finite energy membranes behave likewise. Indeed, in the finite case quasiconvexity implies rank-
one-convexity and accordingly QRW = QW . Thus, to conclude it suffices to mention that 0
is quasiconvex. This argument is false in the general case since rank-one-convexity does not
imply quasiconvexity; we send the reader to Ball and Murat [2] for a counterexample when the
stored energy function is not continuous. What is more, the issue of weak lower semicontinuity
related to vectorial convexity in the general case is far from being fully understood (see [3] for
a partial answer).

(ii) As was already remarked in [22], the observed phenomenon is a consequence of the
reference configuration being a natural state. In fact, if the reference configuration was an
extended state the membrane would tend to shrink back to a natural position and compressive
deformations would accordingly be expected.

In light of the above observation, we deduce that compressive states do not realize a finite
minimum of the membrane energy if an external load is applied whether the stored energy
function is rank-one-convex or even polyconvex since polyconvexity implies rank-one-convexity.
This phenomenon agrees with Tartar [30] who showed that for such a functional to be W 1,∞

sequentially weakly lower semicontinuous, it has to be rank-one-convex.

Acknowledgment The author would like to thank Cristinel Mardare for helpful discussions
during the completion of this work.
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non linéaire tridimensionnelle, C. R. Acad. Sci. Paris Sér. I Math., 317(2), 1993, 221–226.

[20] Le Dret, H. and Raoult, A., Enveloppe quasi-convexe de la densité d’énergie de Saint Venant-Kirchhoff,
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