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1 Introduction

In 1926, R. Nevanlinna [1] showed that, for two distinct nonconstant meromorphic functions
f and g on the complex plane C, they can not have the same inverse images for five distinct
values.

Over the last few decades, there have been several generalizations of Nevanlinna’s result to
the case of meromorphic mappings of Cn into the complex projective space PN (C).

Recently, motivated by the accomplishment of the second main theorem of value distribution
theory for moving targets, the uniqueness problem of meromorphic mappings of Cn into PN (C)
started to be discussed.

Firstly, we must introduce some notions.
For z = (z1, . . . , zn) ∈ Cn we set ‖z‖ = (|z1|2 + · · ·+ |zn|2)1/2. For r > 0, define

B(r) = {z ∈ Cn | ‖z‖ < r},
S(r) = {z ∈ Cn | ‖z‖ = r},
dc = (4π

√−1)−1(∂ − ∂̄),

v = (ddc‖z‖2)n−1,

σ = dc log ‖z‖2 ∧ (ddc log ‖z‖2)n−1.

Let f : Cn → PN (C) be a meromorphic mapping. We can choose holomorphic functions
f0, · · · , fN on Cn such that If := {z ∈ Cn | f0(z) = · · · = fN (z) = 0} is of dimension at most
n − 2, and f = (f0(z) : · · · : fN (z)) is called a reduced representation of f . The characteristic
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function of f is defined by

T (r, f) =
∫

S(r)

log ‖f‖σ −
∫

S(1)

log ‖f‖σ, r > 1.

Note that T (r, f) is independent of the choice of the reduced representation of f .
A moving hyperplane assigns, to every z ∈ Cn, a hyperplane given by

H(z) =
{

(x0 : · · · : xN ) ∈ PN (C)
∣∣∣

N∑

i=0

bi(z)xi = 0
}

,

where bi, 0 ≤ i ≤ N , are entire functions whose common zeros set is of dimension at most n−2.
A moving hyperplane H gives a meromorphic mapping a = (b0 : · · · : bN ) : Cn → PN (C). We
define TH(r) = T (r, a). We say that a is “small” with respect to the meromorphic mapping f

if T (r, a) = o(T (r, f)) as r → +∞.
We say that moving hyperplanes {H1, · · · ,Hq} (or {a1, · · · , aq}, where aj = (aj0 : · · · : ajN ))

are in general position if {H1(z), · · · ,Hq(z)} are in general position for some (and hence for
almost all) z ∈ Cn.

Let M be the field of all meromorphic functions on Cn. Denote by R({aj}q
j=1) ⊂ M the

smallest subfield which contains C and all ajk/ajl with ajl 6≡ 0, where 1 ≤ j ≤ q, 0 ≤ k, l ≤ N.

Let f : Cn → PN (C) be a meromorphic mapping, and {aj}q
j=1 be “small” (with respect to

f) meromorphic mappings of Cn into PN (C) in general position such that

dim{z ∈ Cn | (f, ai)(z) = (f, aj)(z) = 0} ≤ n− 2, 1 ≤ i < j ≤ q.

Assume that f is linearly nondegenerate over R({aj}q
j=1).

Consider the set F(f, {aj}q
j=1, d) of all nondegenerate over R({aj}q

j=1) meromorphic map-
pings g : Cn → PN (C) satisfying the conditions:

(a) min(ν(f,aj), d) = min(ν(g,aj), d), 1 ≤ j ≤ q,

(b) f(z) = g(z) on
q⋃

j=1

{z | (f, aj)(z) = 0}.
In [2], Chen and Ru proved the following:

Theorem A If q ≥ 2N2 + 4N , then ]F(f, {aj}q
j=1, 2) ≤ 2.

And Thai [3] showed that

Theorem B If q = 2N2 + 4N and N ≥ 2, then ]F(f, {aj}q
j=1, 1) = 1.

And under the assumption that these meromorphic mappings are nonconstant, Chen and
Li [4] proved that

Theorem C If q = 4N2 + 2N and N ≥ 2, then ]F(f, {aj}q
j=1, 1) = 1.

In this paper, we will prove some generalized uniqueness theorems with truncated multi-
plicities for moving targets under the inclusion relations between the zeros sets of meromorphic
mappings. This is the first time to discuss the uniqueness problem of meromorphic mappings
for moving targets under this assumption.

Let f(z) be a meromorphic mapping and {aj}q
j=1 be “small” (with respect to f) meromor-

phic mappings in general position. We use E(aj , f) to denote the zero set of (f(z), aj(z)), in
which each zero is counted only once.
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Let S be a subvariety in Cn with dim S ≤ n−2. Denote by T [N +1, q] the set of all injective
maps from {1, · · · , N + 1} to {1, · · · , q}. For every

z ∈ Cn
∖( ⋃

β∈T [N+1,q]

{z | aβ(1)(z) ∧ · · · ∧ aβ(N+1)(z) = 0}
⋃

S
)
,

we define
ρf (z) = ]{j | z ∈ E(aj , f)}.

Since aj (j = 1, · · · , q) are located in general position, ρf (z) ≤ N . For every positive number
r, define

ρf (r) = sup{ρf (z) | ‖z‖ ≥ r},
where the sup is taken over all

z ∈ Cn
∖( ⋃

β∈T [N+1,q]

{z | aβ(1)(z) ∧ · · · ∧ aβ(N+1)(z) = 0}
⋃

S
)

with ‖z‖ ≥ r.

Then ρf (r) is a decreasing function. Let

df,S = lim
r→+∞

ρf (r).

Then
1 ≤ df,S ≤ N.

There exists a number r0 > 1 such that

ρf (r) = df,S ≤ N, as r ≥ r0.

Let
df = inf{df,S | dimS ≤ n− 2},

where the inf is taken over all subvarieties S ⊂ Cn with dimS ≤ n− 2.
If, for each i 6= j,

dimE(ai, f) ∩ E(aj , f) ≤ n− 2,

then df = 1.

Our main results are stated as follows:

Theorem 1.1 Let f(z) and g(z) be two meromorphic mappings, and let {aj}q
j=1 be “small”

(with respect to f) meromorphic mappings of Cn into PN (C) in general position such that
(f, aj) 6≡ 0 and (g, aj) 6≡ 0 (1 ≤ j ≤ q). Assume that

E(aj , f) ⊆ E(aj , g), 1 ≤ j ≤ q.

And f = g on
q⋃

j=1

{z | (f, aj)(z) = 0}. If q = 2dfN(2N + 1) + 1, and

lim inf
r→+∞

2df N(2N+1)+1∑

j=1

N1
(f,aj)

(r)
/ 2df N(2N+1)+1∑

j=1

N1
(g,aj)

(r) >
dfN(2N + 1)

dfN(2N + 1) + 1
,



396 Z. H. Chen and Q. M. Yan

then
f(z) ≡ g(z).

Furthermore, if, for each i 6= j,

dimE(ai, f) ∩ E(aj , f) ≤ n− 2, q = 4N2 + 2N + 1

and

lim inf
r→+∞

4N2+2N+1∑

j=1

N1
(f,aj)

(r)
/ 4N2+2N+1∑

j=1

N1
(g,aj)

(r) >
N(2N + 1)

N(2N + 1) + 1
,

then
f(z) ≡ g(z).

Theorem 1.2 Let f(z) and g(z) be two meromorphic mappings, and let {aj}q
j=1 be “small”

(with respect to f) meromorphic mappings of Cn into PN (C) in general position such that
(f, aj) 6≡ 0 and (g, aj) 6≡ 0 (1 ≤ j ≤ q). And f , g are linearly nondegenerate over R({aj}q

j=1).
Assume that

E(aj , f) ⊆ E(aj , g), 1 ≤ j ≤ q.

And f = g on
q⋃

j=1

{z | (f, aj)(z) = 0}. If q = 2dfN(N + 2) + 1, and

lim inf
r→+∞

2df N(N+2)+1∑

j=1

N1
(f,aj)

(r)
/ 2df N(N+2)+1∑

j=1

N1
(g,aj)

(r) >
dfN(N + 2)

dfN(N + 2) + 1
,

then
f(z) ≡ g(z).

Furthermore, if, for each i 6= j,

dimE(ai, f) ∩ E(aj , f) ≤ n− 2, q = 2N2 + 4N + 1

and

lim inf
r→+∞

2N2+4N+1∑

j=1

N1
(f,aj)

(r)
/ 2N2+4N+1∑

j=1

N1
(g,aj)

(r) >
N(N + 2)

N(N + 2) + 1
,

then
f(z) ≡ g(z).

2 Preliminaries and Some Lemmas

We first introduce some preliminaries in Nevanlinna theory.
Let F (z) be a nonzero entire function on Cn. For a ∈ Cn, set

F (z) =
∞∑

m=0

Pm(z − a),
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where the term Pm(z) is either identically zero or a homogeneous polynomial of degree m.
The number νF (a) := min {m | Pm 6= 0} is said to be the zero-multiplicity of F at a and
|νF | = {z ∈ Cn | νF (z) 6= 0} is the support of νF .

We now define counting function. For a moving hyperplane H (or a), we define

νM
(f,a)(z) = min{M, ν(f,a)(z)}

for positive integer M or M = ∞. And

n(t) =





∫

|ν(f,a)|
T

B(t)

ν(f,a)(z)v, if n ≥ 2,

∑

|z|≤t

ν(f,a)(z), if n = 1.

Similarly, we define nM (t). Define

N(f,a)(r) =
∫ r

1

n(t)
t2n−1

dt, 1 < r < +∞.

Similarly, we define NM
(f,a)(r).

We define the proximity function of a by

mf,a(r) =
∫

S(r)

log
‖f‖‖a‖
|(f, a)| σ −

∫

S(1)

log
‖f‖‖a‖
|(f, a)| σ, r > 1.

Now we state the first and second main theorems of meromorphic mapping, that will be
used in the proof of our theorems.

The first main theorem:

T (r, f) = mf,a(r) + N(f,a)(r) + T (r, a).

Some second main theorems are stated as follows:

Theorem D (See [5]) Let f : Cn → PN (C) be a meromorphic mapping. Let {aj}q
j=1 be

meromorphic mappings of Cn into PN (C) in general position such that f is linearly nondegen-
erate over R({aj}q

j=1). Then

‖ q

N + 2
T (r, f) ≤

q∑

j=1

NN
(f,aj)

(r) + o(T (r, f)) + O
(

max
1≤j≤q

T (r, aj)
)
,

where “‖” means the estimate holds for all large r outside a set of finite Lebesgue measure.

Theorem E (See [6]) Let f : Cn → PN (C) be a meromorphic mapping. Let {aj}q
j=1 (q ≥

2N + 1) be meromorphic mappings of Cn into PN (C) in general position. Then

‖ q

2N + 1
T (r, f) ≤

q∑

j=1

NN
(f,aj)

(r) + o(T (r, f)) + O
(

max
1≤j≤q

T (r, aj)
)
.

Lemma 2.1 Under the assumptions in Theorems 1.1 and 1.2, we obtain that {aj}q
j=1 are

“small” with respect to g.
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Proof If f , g are linearly nondegenerate over R({aj}q
j=1), then, by Theorem D, we have

‖ q

N + 2
T (r, f) ≤

q∑

j=1

NN
(f,aj)

(r) + o(T (r, f)) ≤
q∑

j=1

N1
(f,aj)

(r) + o(T (r, f))

≤ N

q∑

j=1

N1
(g,aj)

(r) + o(T (r, f)) ≤ qNT (r, g) + o(T (r, f)).

If f , g are nonconstant, by Theorem E, we have

‖ q

2N + 1
T (r, f) ≤

q∑

j=1

NN
(f,aj)

(r) + o(T (r, f)) ≤ N

q∑

j=1

N1
(g,aj)

(r) + o(T (r, f))

≤ qNT (r, g) + o(T (r, f)).

Since {aj}q
j=1 are “small” with respect to f , it is easy to see that {aj}q

j=1 are also “small”
with respect to g.

3 Proof of Main Results

Proof of Theorem 1.1 For f, g, we set T (r) = T (r, f) + T (r, g). Assume f(z) 6≡ g(z).
Denote by Nµf∧g

(r) the counting function associated with the divisor µf∧g.

Let z ∈
q⋃

j=1

E(aj , f). We verify that f ∧ g vanishes at z. In fact, we can write

f(ζ) = α1 +
n∑

i=1

(ζi − zi)hi
1(ζ), g(ζ) = α2 +

n∑

i=1

(ζi − zi)hi
2(ζ),

where αi is a constant vector, and hi
1,hi

2 are holomorphic vector-valued functions defined
around z.

Since f = g on
q⋃

j=1

E(aj , f), we have α1 ∧ α2 = 0. Hence

f ∧ g =
n∑

i=1

(α1 ∧ hi
2 − α2 ∧ hi

1)(ζi − zi) +
n∑

i,j=1

hi
1 ∧ hj

2(ζi − zi)(ζj − zj).

So z is a zero of f ∧ g.
By the definition of df , when ‖z‖ is large enough, it is easy to see that

q∑

j=1

N1
(f,aj)

(r) ≤ dfNµf∧g
(r) +

∑

β

Nµaβ(1)∧···∧aβ(N+1)
(r),

where the sum is over all injective maps β : {1, · · · , N + 1} → {1, · · · , q}.
By the First Main Theorem of exterior product (cf. [7, p.327] and [8]),

Nµf∧g
(r) ≤ T (r, f) + T (r, g) + O(1),

Nµaβ(1)∧···∧aβ(N+1)
(r) ≤

q∑

j=1

T (r, aj) + O(1).
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Hence,
q∑

j=1

N1
(f,aj)

(r) ≤ dfT (r, f) + dfT (r, g) + o(T (r)).

By Theorem E, we have

‖ q

N(2N + 1)
T (r, f) ≤

q∑

j=1

N1
(f,aj)

(r) + o(T (r, f)),

‖ q

N(2N + 1)
T (r, g) ≤

q∑

j=1

N1
(g,aj)

(r) + o(T (r, g)).

Hence

‖
q∑

j=1

N1
(f,aj)

(r) ≤ dfN(2N + 1)
q

q∑

j=1

N1
(f,aj)

(r) +
dfN(2N + 1)

q

q∑

j=1

N1
(g,aj)

(r) + o(T (r)).

We have

‖q − dfN(2N + 1)
q

q∑

j=1

N1
(f,aj)

(r) ≤ dfN(2N + 1)
q

q∑

j=1

N1
(g,aj)

(r) + o(T (r)).

It follows that

lim inf
r→+∞

q∑

j=1

N1
(f,aj)

(r)
/ q∑

j=1

N1
(g,aj)

(r) ≤ dfN(2N + 1)
q − dfN(2N + 1)

.

For q = 2dfN(2N + 1) + 1, we get

lim inf
r→+∞

2df N(2N+1)+1∑

j=1

N1
(f,aj)

(r)
/ 2df N(2N+1)+1∑

j=1

N1
(g,aj)

(r) ≤ dfN(2N + 1)
dfN(2N + 1) + 1

,

which contradicts our assumption, and hence f(z) ≡ g(z).
If, for each i 6= j,

dimE(ai, f) ∩ E(aj , f) ≤ n− 2,

then df = 1.

Proof of Theorem 1.2 Under the argument in the proof of Theorem 1.1, we get

q∑

j=1

N1
(f,aj)

(r) ≤ dfT (r, f) + dfT (r, g) + o(T (r)).

Using Theorem D, we have

‖
q∑

j=1

N1
(f,aj)

(r) ≤ dfN(N + 2)
q

q∑

j=1

N1
(f,aj)

(r) +
dfN(N + 2)

q

q∑

j=1

N1
(g,aj)

(r) + o(T (r)).

This means that

‖q − dfN(N + 2)
q

q∑

j=1

N1
(f,aj)

(r) ≤ dfN(N + 2)
q

q∑

j=1

N1
(g,aj)

(r) + o(T (r)).
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It follows that

lim inf
r→+∞

q∑

j=1

N1
(f,aj)

(r)
/ q∑

j=1

N1
(g,aj)

(r) ≤ dfN(N + 2)
q − dfN(N + 2)

.

For q = 2dfN(N + 2) + 1, we get

lim inf
r→+∞

2df N(N+2)+1∑

j=1

N1
(f,aj)

(r)
/ 2df N(N+2)+1∑

j=1

N1
(g,aj)

(r) ≤ dfN(N + 2)
dfN(N + 2) + 1

,

which contradicts our assumption, and hence f(z) ≡ g(z).
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