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Abstract This paper deals with the periodic solutions of Schrödinger flow from S3 to
S2. It is shown that the periodic solution is related to the variation of some functional
and there exist S1-invariant critical points to this functional. The proof makes use of the
Principle of Symmetric Criticality of Palais.
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1 Introduction

If (M, g) is a Riemannian manifold and (N, h, J) is a Kähler manifold with a complex
structure J , u : M × [0,+∞) → N is said to satisfy the Schrödinger flow equation if

∂

∂t
u = Jτ(u), (1.1)

where τ(u) is the tension field of u as defined in the theory of harmonic maps. It can be regarded
as the gradient of the energy functional

E(u) =
1
2

∫

M

|∇u|2 dVM =
1
2

∫

M

gαβhjk
∂uj

∂xα

∂uk

∂xβ
dVM .

In local coordinates, the tension field τ(u) can be written as

τ(u)i = 4Mui − gαβΓi
jk(u)

∂uj

∂xα

∂uk

∂xβ
,

where Γi
jk is the Christoffel symbol of the Riemannian connection of N .

The Schrödinger flow can be considered as a generalization of the Schrödinger equation.
The target changes from C to a Kähler manifold. This change causes nonlinearity and makes
the study of Schrödinger flow very difficult. Ding and Wang have proved that the flow has a
local solution provided the initial data is sufficiently smooth (see [1]). See also [2] for a survey
on the subject.

In suitable sense, the Schrödinger flow is the Hamilton flow of the energy functional. From
this point of view, it is natural to study the periodic solutions of the flow. The purpose of this
article is to show the existence of periodic solutions in some special cases.
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Assume M to be some general compact Riemannian manifold and N a Kähler manifold
admitting a holomorphic Killing field V . Then the one parameter transformation group St

generated by V is both holomorphic and isometric. We ask the following question: Is there
an initial map u : M → N such that the Schrödinger flow started from u will be St ◦ u? In
particular, if St is periodic, we get a periodic solution to the Schrödinger flow. It will be shown
in the Reduction Lemma in Section 2 that such an initial map u is the solution of an elliptic
system, and if (N, h) is a Kähler-Einstein metric with positive scalar curvature, u is the critical
point of some functional very similar to the energy functional. Our previous paper (see [3])
deals with the variation problem when M is a surface. We used the blow up analysis of Sacks
and Uhlenbeck and a delicate estimate to show an existence result for any period λ. As in the
study of harmonic maps, when dimM = 3, the direct variation method is not likely to be useful.
In the case of M = S3 and N = S2, we consider a family of S1 action Tk,l on M where k and l

are coprime positive integers. We use the Principle of Symmetric Criticality as formulated by
Palais in [4] to reduce the dimension by 1 and the problem then becomes a variation problem
of a perturbed weighted energy on the space of mappings from the orbit space Q to S2. If
k = l = 1, this Q is just S2 and the weighted energy is (up to a constant) the energy. So the
result in [3] implies

Theorem 1.1 For any λ > 0, the Schrödinger flow from S3 to S2 has infinitely many
inequivalent periodic solutions with period 2π

λ . Moreover, these solutions are T1,1-invariant.

If k 6= l, we use the rotational invariance of Q to further reduce the problem to a one-
dimensional problem. Therefore, we get compactness, however, at the cost of some singularities
in the expression of weighted energy functional. Finally, we use the method of Lagrange mul-
tiplier to show the existence of critical points for some Lagrange multiplier λ. We have

Theorem 1.2 For any coprime positve integer k 6= l, there exists at least one Tk,l-invariant
map f from S3 to S2 such that Schrödinger flow starting from f is periodic.

In Section 2, we recall the Reduction Lemma in [3] to show how the periodic solutions of
the Schrödinger flow are related to an elliptic variation problem. In Section 3, we state the
Principle of Symmetric Criticality and use it to reduce the dimension by 1. In Section 4, we
see that Theorem 1.1 follows from [3]. In the last section, we prove Theorem 1.2.

2 Reduction Lemma

For the purpose of this section, it is enough to assume that M is any Riemannian manifold
and N is a Kähler manifold that admits a holomorphic Killing field V . We recall the Reduction
Lemma in [3].

Lemma 2.1 (Reduction Lemma) If V is not identically zero and St is the one parameter
transformation group generated by V , then for f : M → N , u(t) = St ◦ f is a solution of (1.1)
if and only if

τ(f) = −JV (f). (2.1)

Since V is holomorphic Killing field, St is both holomorphic and isometric. The lemma
follows from the fact that τ(St ◦ f) = dSt[τ(f)] and dSt ◦ J = J ◦ dSt. For the details of the
proof we refer to [3].
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Remark 2.1 If N is a closed Kähler-Einstein manifold with positive scalar curvature, it is
known (see [5]) that JV is the gradient vector field of a first eigenfunction F . In this case, if
we denote ∇F as the gradient vector field of F , equation (2.1) becomes

τ(f) = −∇F (f), (2.2)

which is the Euler-Lagrange equation for the functional

J(f) = E(f)−
∫

M

F (f)dVg.

In the case N = S2 = {(x1, x2, x3) ∈ R3 | x2
1 + x2

2 + x2
3 = 1}, everything is clear. We can

choose F to be λx3 for some λ > 0. Now

∇F (z) = λP (z)e3,

where e3 = (0, 0, 1) and P (z) : R3 → TzS
2 is the orthogonal projection. Since V = −J∇F , it is

not difficult to see the period of St generated by V is 2π
λ . Recall that in the study of harmonic

maps when N = S2 we have
τ(f) = 4gf + |∇f |2g f.

Therefore the equation that we want to solve, i.e. the Euler-Lagrange equation of J(f), is

4gf + |∇f |2g f = −λP (f)e3. (2.3)

3 Reduction to Two-Dimensional Problem

Before we start further reduction, let us recall the Principle of Symmetric Criticality of
Palais (see [4]): Critical symmetric point is symmetric critical point. Precisely, suppose that
X is some smooth manifold (possibly of infinite dimensions), f is some smooth function and a
group G acts on X such that f is invariant under the action. Let Σ be the set of fixed points
of G. The principle claims that if p ∈ Σ is a critical point of f |Σ then it is a critical point of
f on X. The principle is intuitively plausible. However, as pointed out in [4], this is only true
under certain natural conditions. One of the conditions is that G is compact, which is our case.
So the Principle of Symmetric Criticality ensures that the following reductions will lead us to
the critical points of the original variational problem. We are going to use the principle twice
in slightly different settings, but we will not mention it again.

We consider an S1 action on S3. (Wang [6] did the same reduction and his result will be
useful.) Let S3 = {(w, z) ∈ C × C | |z|2 + |w|2 = 1} be the unit 3-sphere. Given two coprime
integers k ≥ l ≥ 1. Define isometric action of S1 on S3

Tk,l : S1 → Iso(S3)

by
T θ

k,l(w, z) = (eikθw, eilθz). (3.1)

A continuous map f : S3 → S2 is S1-invariant under the action Tk,l if for any θ ∈ S1 and
(z, w) ∈ S3,

f(T θ
k,l(w, z)) = f(w, z).
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To study the S1-invariant maps, we need to know the space of orbits. Take coordinates on
S3, (η, α, β) which means

(sin η cos α, sin η sinα, cos η cos β, cos η sinβ),

where η ∈ [0, π
2 ] and α, β ∈ [0, 2π). Consider the equator of S3 given by sinα = 0, i.e.

(∗, 0, ∗, ∗) points. When we say S2 in the following, we mean this equator. Obviously, there are
two different types of orbits,

(1) Two special orbits.
The one given by η = 0 lies in S2 as equator.
The one given by η = π

2 intersects S2 at its poles.
(2) Generic orbits.
Any other orbit intersects each hemisphere of S2 k times.
To see this, for a point (η0, α0, β0) with η0 ∈ (0, π

2 ). The orbit is given by

(η0, α0 + kθ, β0 + lθ),

where θ runs from 0 to 2π. The number of intersections with S2 is the number of solutions

sin(α0 + kθ) = 0

for θ ∈ [0, 2π). There are 2k such θ’s. We are interested in the intersection with upper
hemisphere (determined by cosα = 1 and sinα = 0)

α0 + kθ = 2tπ.

There are k choices of integer t such that

θt =
2tπ − α0

k
∈ [0, 2π)

which corresponds to

αt = 0,

βt = β0 + l
2tπ − α0

k
= β0 − lα0

k
+

l

k
2tπ.

If we parameterize the upper hemisphere of S2 by

(sin η, 0, cos η cos β, cos η sinβ).

The above calculation suggests that the space of generic orbits is the finite quotient of the upper
hemisphere by the relation

(η, β) ∼
(
η, β +

2π

k

)

(Since k and l are coprime, + 2lπ
k is the same as + 2π

k ).
The entire orbit space is the two-point compactification of this quotient with a singular

north pole and a point representing the equator.
Next, we study the metric structure of the orbit space. Precisely, we find a metric (defined

on the smooth part of the orbit space) such that the natural projection map is a Riemannian
submersion.
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Given a point p = (η0, 0, β0) with η0 6= 0, π
2 , there are three natural directions in TpS

3. First
the fibre direction

e1 =
d

dθ

∣∣∣
θ=0

(sin η cos kθ, sin η sin kθ, cos η cos(β + lθ), cos η sin(β + lθ))

= (0, k sin η,−l cos η sinβ, l cos η cos β),

then

e2 =
∂

∂η
= (cos η, 0,− sin η cos β,− sin η sinβ),

e′3 =
∂

∂β
= (0, 0,− cos η sinβ, cos η cos β).

Now, e1⊥e2, e2⊥e′3. Set

e3 = e′3 −
(e′3, e1)e1

(e1, e1)
=

∂

∂β
− (l cos2 η)e1

k2 sin2 η + l2 cos2 η

=
(
0,

−kl cos2 η sin η

k2 sin2 η + l2 cos2 η
,
−k2 cos η sin2 η sinβ

k2 sin2 η + l2 cos2 η
,
k2 cos η sin2 η cos β

k2 sin2 η + l2 cos2 η

)
.

Therefore, e1, e2, e3 are perpendicular to each other.
Let ρ be the projection map from S3 to the space of orbits (parametrized by η, β as above).

We have
ρ∗(e1) = 0, ρ∗(e2) = ∂η, ρ∗(e3) = ∂β .

(This ∂β is a tangent vector of the orbit space. The last one is true because e3 and e′3 differ
by a multiple of fibre direction.) Let h be the metric tensor of the orbit space. To make ρ a
Riemannian submersion at this point, we require

h(∂η, ∂η) = (e2, e2) = 1,

h(∂β , ∂β) = (e3, e3) =
k2 sin2 η cos2 η

k2 sin2 η + l2 cos2 η
,

h(∂β , ∂η) = (e3, e2) = 0,

i.e.,

h = dη2 +
k2 sin2 η cos2 η

k2 sin2 η + l2 cos2 η
dβ2.

(This is 1
4 of (3.1) in the paper of Wang, where his η is twice ours.) This construction shows ρ

is Riemannian submersion at the equator. Since each orbit passes through the equator and the
action is by isometry, ρ is Riemannian submersion at every point.

Denote the orbit space by Q. By the above discussion, every S1-invariant map f can be
identified with some continuous map uf from Q to S2,

uf (x) = f(ρ−1(x)).

Set
W (η) = (k2 sin2 η + l2 cos2 η)

1
2
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for simplicity. We want to express E(f) = 1
2

∫
S3 |∇f |2 dV in terms of integration of uf . First,

take an orthonormal basis e1, e2, e3 at any point p in S3 with e1 the fibre direction. Then

|∇f |2 =
3∑

i=1

|eif |2.

Since f is S1-invariant, we have e1f = 0. The projection ρ is Riemannian submersion, then
ρ∗e2, ρ∗e3 is an orthonormal basis at ρ(p). So

|∇f |2 = |∇uf |2h .

The length of the orbit passing through (η, β) ∈ Q is given by integrating
∣∣ ∂
∂θ

∣∣ from 0 to 2π,
that is, 2πW .

E(f) =
1
2

∫

S3
|∇f |2 dV (3.2)

= π

∫

Q

|∇uf |2h WdVQ. (3.3)

The other integral that is important to us is
∫

S3 f (3)dV . By the same reason, it is reduced to

I(f) = 2π

∫

Q

u
(3)
f WdVQ. (3.4)

Remark 3.1 The metric h is defined for η ∈ (0, π
2 ) and β ∈ [0, 2π

k ). There are two
singularities on Q corresponding to η = 0, π

2 . They do not affect the integration.

4 The Case of k = l = 1

When k = l = 1, we first observe that W is a constant. It is easy to see that Q is topologically
a sphere. Now the metric on Q becomes

h = dη2 + sin2 η cos2 ηdβ2 =
1
4
(d(2η)2 + sin2(2η)dβ2),

where β ∈ [0, 2π) and η ∈ (0, π
2 ). Therefore, Q is a round sphere of radius 1

2 . Moreover, up to
a constant (3.2) is just the energy of maps from S2 to S2. So the reduced variational problem
is the same as the original problem for M = S2 and N = S2. We have discussed this in [3].
Theorem 1.1 of that paper implies Theorem 1.1.

5 The Case of k 6= l

This case is more complicated because W is not constant. If we take a minimizing sequence
{fi} for the functional E(f) − λI(f). It is not difficult to see E(f) is bounded and since
l ≤ W ≤ k, we know W 1,2-norms of fi are bounded. However, this is the critical case for
compactness needed for convergence. One might think naturally whether the famous Sacks-
Uhlenbeck [7] method could be applied here. This will involve the proof of an a priori estimate
and a removal of singularity theorem for a new equation. So far, the authors do not know
whether this approach is possible. The method used in this paper is different. Notice that
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Q has a rotation-invariant symmetry, which enables us to further reduce the problem to 1
dimensional. Hence, we get the compactness we need. Of cause, that causes some technical
problems, i.e., the new expression for functional E(f) will be singular near the ends of the
interval.

We will focus on the following S1-equivariant maps from Q to S2,

u : (η, β) 7→ (f(η), kβ) = (sin f cos kβ, sin f sin kβ, cos f), (5.1)

where f : [0, π
2 ] → [0, π] and f(0), f(π

2 ) ∈ πZ. Calculation shows

|∇u|2 = (f ′)2 +
k2 sin2 η + l2 cos2 η

sin2 η cos2 η
sin2 f,

dV =
k sin η cos η

W
dηdβ.

(Recall that β ∈ [0, 2π
k ).) Then, the functionals are

E(u) =
∫

Q

|∇u|2 WdV = 2π

∫ π
2

0

[
(f ′)2 +

k2 sin2 η + l2 cos2 η

sin2 η cos2 η
sin2 f

]
sin η cos ηdη, (5.2)

I(u) = 2π

∫ π
2

0

cos f sin η cos ηdη. (5.3)

The Euler-Lagrange equation is

f ′′ +
f ′ cos 2η

sin η cos η
− k2 sin2 η + l2 cos2 η

sin2 η cos2 η
sin f cos f = λ sin f. (5.4)

Now we minimize E(f) under the condition I(f) = c. If f is a critical point, then there
should exist some λ such that f satisfies equation (5.4). Consider H1

loc(0, π
2 ) space, i.e. f :

(0, π
2 ) → R is weakly differentiable,

∫ π
2−ε

ε

(f ′)2 + f2dt < +∞

for any ε > 0 and a subset

X =
{

f ∈ H1
loc

(
0,

π

2

) ∣∣∣ E(f) < ∞, I(f) = c
}

(5.5)

for some c ∈ (−π, +π), (π = 2π
∫ π

2
0

sin t cos tdt). Notice that we require no condition on the
boundary value of f .

Take a minimizing sequence fi in X of E(f). We prove a series of properties of fi.

Lemma 5.1 |fi(x)− fi(y)| is uniformly bounded for any x, y, i.

Proof It is well known that the energy of a map uf is greater than the area covered by the
image. Since l ≤ W ≤ k, we know that E(uf ) is comparable to the energy of uf . The lemma
follows from the fact that E(ufi

) is uniformly bounded and the above two facts.

Remark 5.1 Because of this lemma, we can assume fi are uniformly bounded.

Lemma 5.2 fi(0), fi(π
2 ) must be kπ for k ∈ Z.
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Proof Prove for fi(0) only. Since E(fi) < +∞, we know from (5.2) that for small ε > 0,

∫ ε

0

sin2 f

sin η
dη < +∞.

This implies that there exists a sequence of ηi → 0 such that sin f(ηi) → 0. Due to the previous
remark, we can assume f(ηi) goes to some kπ. It suffices to show that fi can not vibrate too
much when η approaches zero. The reason is the same as in the proof of the previous lemma.

We can see from (5.2) that for any ε > 0, the H1(ε, π
2 − ε) norms of fi are bounded.

Therefore, we can take a subsequence by diagonal method, still denoted by {fi}, such that

fi → f weakly in H1
(
ε,

π

2
− ε

)
, ∀ ε > 0.

Lemma 5.3

E(f) ≤ lim inf
i→∞

E(fi) < +∞,

I(f) = c.

Proof Weak convergence in H1 implies uniform convergence. So the second assertion is
true. For the first one, the part of integrand involving f ′ is convex and therefore integration of
this part is weakly lower-semi-continuous. For the other term, uniform convergence on [ε, π

2 − ε]
implies

lim
i→∞

∫ π
2−ε

ε

k2 sin2 η + l2 cos2 η

sin2 η cos2 η
sin2 fi sin η cos ηdη

=
∫ π

2−ε

ε

k2 sin2 η + l2 cos2 η

sin2 η cos2 η
sin2 f sin η cos ηdη.

Let ε go to zero and the fact that the integrand is nonnegative gives the required inequality.
(Notice that the integrand may not be bounded, compare with I(f).)

A corollary of this lemma is that f is a minimizer of E(f) in X .
Next, we will prove that f satisfies (5.4). The singular integrand in (5.2) causes some

trouble. It will be overcome by the following consideration. Fix ε > 0, let l(t) : [ε, π
2 − ε] → R

be the linear function such that l(ε) = f(ε) and l(π
2 − ε) = f(π

2 − ε).
Set

Ẽ : H1
0

[
ε,

π

2
− ε

]
→ R,

f̃ 7→ E
(
l + f̃ , ε,

π

2
− ε

)

and similar for Ĩ, where E(l + f̃ , ε, π
2 − ε) means integration on the interval [ε, π

2 − ε]. It is easy
to see that f − l minimizes Ẽ under the condition Ĩ(f − l) = I(f, ε, π

2 − ε). Now Ẽ and Ĩ are
C1 functionals. So f − l satisfies an Euler-Lagrange equation, which in terms of f is exactly
(5.4). Notice that for different ε the Lagrange multipliers have to be the same unless sin f ≡ 0.
This is impossible due to our choice of c in the condition I(f) = c. This condition also shows
that f is a nontrivial map.
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We need to show λ 6= 0. This follows from a result of Wang [6]. Wang showed that there
is no Tk,l-invariant harmonic maps from S3 to S2. If λ = 0, then the map from S3 to S2

determined by f is such a harmonic map. This is impossible, so λ 6= 0.
f determines a uf from Q to S2 and this uf determines a u from S3 to S2. Since f(0), f(π

2 ) ∈
πZ, we know uf , hence u, is continuous. By the reduction process, it is not difficult to see that
u is smooth outside two special orbits. We will prove that u is smooth on the entire S3.

First, we will prove that u is a W 1,2(S3, S2) weak solution to the equation (2.3). Then, the
regularity follows from general PDE regularity theorems.

u is weakly differentiable because u is smooth away from two special orbits. For any p in the
special orbits, take a coordinates around p. u is smooth along almost all line segment parallel
to the coordinate axis. According to Theorem 2.1.4 in [8], u is weakly differentiable and to
show u ∈ W 1,2(S3, S2), it suffices to show integrability of the square of the classic derivatives
of u. For a fixed coordinate system, the square of any partial derivative of u is dominated by
1
2 |∇u|2. Moreover, we know that the energy of u is finite. So, u ∈ W 1,2(S3, S2).

To show u is a weak solution to equation (2.3), it suffices to show for any φ ∈ C∞c (S3,R3),
∫

S3
−∇u · ∇φ + |∇u|2 u · φ + λ(P (u)e3) · φdV = 0. (5.6)

For some ε > 0, set

T1(ε) = {(η, α, β) ∈ S3 | η < ε},

T2(ε) =
{

(η, α, β) ∈ S3
∣∣∣ η >

π

2
− ε

}
.

Since u satisfies (2.3) on S3 − T1 − T2, we have
∫

S3−T1−T2

4u · φ + |∇u|u · φ + λ(P (u)e3) · φdV = 0. (5.7)

Integration by parts for the first term shows that we need only to prove there exists a sequence
of {εi} going to zero, such that

lim
i→+∞

∫

∂T1+∂T2

∇u · ~ndV (5.8)

can be arbitrarily small. It is obvious the area of ∂T1 is proportional to sin 2εi. By the definition
of T1, the outward normal vector of T1 is ∂

∂η . Therefore

∇u · ~n =
∂u

∂η
= f ′(cos f cos kβ, cos f sin kβ,− sin f).

So
|∇u · ~n| = |f ′| .

Since the energy is finite, ∫ ε

0

(f ′)2 sin ηdη < +∞.

So for any δ > 0, there is a sequence {εi} such that

(f ′)2 sin η|η=εi <
δ

εi
,
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i.e.,

|f ′(εi)| ≤
√

δ

εi sin εi
, lim

i→∞
(f ′)(εi) sin 2εi = 2

√
δ.

Hence (5.8) can be arbitrarily small. The same argument works for T2. Because the left-hand
side of (5.6) is absolutely integrable, no matter how to choose εi, the limit of (5.7) is always the
left side of (5.6). This shows the left side of (5.6) vanishes.

Now, u is a continuous weak solution of (2.3). Due to a theorem of Hildebrandt, S. [9], u is
smooth. That completes the proof of Theorem 1.2.
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