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Abstract A Riemannian manifold (M, g) is called Einstein manifold if its Ricci tensor
satisfies r = c · g for some constant c. General existence results are hard to obtain,
e.g., it is as yet unknown whether every compact manifold admits an Einstein metric. A
natural approach is to impose additional homogeneous assumptions. M. Y. Wang and
W. Ziller have got some results on compact homogeneous space G/H. They investigate
standard homogeneous metrics, the metric induced by Killing form on G/H, and get some
classification results. In this paper some more general homogeneous metrics on some
homogeneous space G/H are studies, and a necessary and sufficient condition for this
metric to be Einstein is given. The authors also give some examples of Einstein manifolds
with non-standard homogeneous metrics.

Keywords Einstein manifold, Homogeneous space, General homogeneous metric
2000 MR Subject Classification 53C25, 53C30

1 Introduction

A Riemannian manifold (M, g) is called Einstein manifold if its Ricci tensor satisfies r =
c · g for some constant c. Einstein manifolds are not only interesting in themselves but are
also related to many important topics of Riemannian geometry. For example: Riemannian
submersions, homogeneous Riemannian geometry, Riemannian functionals and their critical
points, Yang-Mills theory, holonomy groups, etc.

General existence results are hard to obtain, e.g., it is as yet unknown whether every compact
manifold admits an Einstein metric. For c > 0, most known examples of Einstein manifolds
are compact homogeneous space, so a natural approach is to impose additional homogeneous
assumptions. M. Y. Wang and W. Ziller have got some results on compact homogeneous space
G/H (cf. [5]). They investigate standard homogeneous metrics, the metric induced by Killing
form on G/H, and get some classification results. In this paper we study some more general
homogeneous metrics on some homogeneous space G/H and get a necessary and sufficient
condition for this metric to be Einstein. We also give some examples of Einstein manifolds with
non-standard homogeneous metrics.
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2 Geometric Structure

Suppose G is a compact connected simple Lie group with real simple Lie algebra g. Let θ, τ

be two involutions of G, and θτ = τθ. Let K = {X ∈ G, θX = X} and K ′= {X ∈ G, τX = X}.
Let K+= K

⋂
K ′. It is clear that G/K+ is a reductive homogeneous space. θ, τ induce two

involutions of g, we still denote θ, τ , and we still have θτ = τθ. Let k, k+ denote the Lie algebras
of K, K+ respectively. It is clear that k+ = {X ∈ k, θX = X}. We denote p = {X ∈ g,

θX = −X}. Then g = k + p. θτ = τθ means that τk ⊂ k, τp ⊂ p. So we can write that
k = k+ + k−, p = p+ + p−, where k− = {X ∈ k, τX = −X}, p± = {X ∈ p, τX = ±X}. With
an easy observation, we get

Proposition 2.1 [k+, k+] ⊂ k+, [k+, k−] ⊂ k−, [k+, p+] ⊂ p+, [k+, p−] ⊂ p−, [k−, k−] ⊂ k+,
[k−, p+] ⊂ p−, [k−, p−] ⊂ p+, [p+, p+] ⊂ k+, [p+, p−] ⊂ k−, [p−, p−] ⊂ k+.

Remark 2.1 From the above proposition we see that k+ + k−, k+ + p+, k+ + p− are all
subalgebras of g.

Suppose 〈 , 〉 is an ad (K+)-invariant non-degenerate symmetric bilinear form on g/k+,
which satisfies 〈 , 〉|k− = aB( , ), 〈 , 〉|p+ = bB( , ), 〈 , 〉|p− = cB( , ), 〈X, Y 〉 = 0 for others,
where B( , ) denotes the Killing form of g, and a, b, c are any negative real constants. Let g be
the G-invariant metric corresponding to 〈 , 〉. Notice that if a = b = c then g will be standard
homogeneous metric.

Next, we investigate the Riemannian connection of M = G/K+. For each X ∈ g we denote
by Exp(tX) the one-parameter subgroup of G generated by X. The action of Exp(tX) on M

is defined by

ϕt(y) = Exp(tX)y.

From now on we will identify X ∈ g with the vector field on M generated by ϕt. In doing so,
we identify g with the set of those Killing vector field of (M, g) which generate one-parameter
subgroups of G.

Remark 2.2 There is one subtle point in this identification. Let [ , ] be the Lie bracket of
vector fields in M and [ , ]g the Lie algebra bracket of g. Then using the identification given
above, we have

[X, Y ]g = −[X, Y ].

Moreover, the curvature tensor at x ∈ m is identified with a tensor on the vector space m.
Since K+ acts by isometries, the resulting tensor on m is in particular Ad G(K+)-invariant. For
any Killing vector field X, Y ∈ m, we only need to determine the value ∇XY at o ∈ m, denoted
by Λm(X)Y .

Lemma 2.1 (Cf. [4]) Let M = K/H be a reductive homogeneous space with an ad (H)-
invariant decomposition k = h + m and an ad (H)-invariant non-degenerate symmetric bilinear
form 〈 , 〉 on m. Let g be the K-invariant metric corresponding to 〈 , 〉. Then the Riemannian
connection for g is given by Λm(X)Y = 1

2 [X, Y ]m + U(X, Y ), where U(X, Y ) is the symmetric
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bilinear mapping of m×m into m defined by

2〈U(X, Y ), Z〉 = 〈X, [Z, Y ]m〉+ 〈[Z, X]m, Y 〉

for all X, Y, Z ∈ m.

Proposition 2.2 The Riemannian connection of M = G/K+ for g is given as follows:

Λm(X1)X2 = 0, Λm(X1)Y1 =
b + c− a

2c
[X1, Y1], Λm(X1)Z1 =

b + c− a

2b
[X1, Z1],

Λm(Y1)Y2 = 0, Λm(Y1)X1 =
a + c− b

2c
[Y1, X1], Λm(Y1)Z1 =

a + c− b

2a
[Y1, Z1],

Λm(Z1)Z2 = 0, Λm(Z1)X1 =
a + b− c

2b
[Z1, X1], Λm(Z1)Y1 =

a + b− c

2a
[Z1, Y1],

where Xi ∈ k−, Yi ∈ p+, Zi ∈ p−, i = 1, 2.

Proof Let Y ∈ m. Then

2〈U(X1, X2), Y 〉 = 〈Xi, [Y, X2]m〉+ 〈[Y, X1]m, X2〉 = 0.

We get

U(X1, X2) = 0,

so

Λm(X1)X2 =
1
2
[X1, X2]m + U(X1, X2) = 0.

From

2〈U(X1, Y1), Y 〉 = 〈X1, [Y, Y1]m〉+ 〈[Y, X1]m, Y1〉
= 〈X1, [Y, Y1]k−〉+ 〈[Y, X1]p+ , Y1〉
= aB(X1, [Y, Y1]k−) + bB([Y, X1]p+ , Y1)

= −aB([X1, Y1], Y ) + bB([X1, Y1], Y )

= −aB([X1, Y1], Yp−) + bB([X1, Y1], Yp−)

=
〈b− a

c
[X1, Y1], Y

〉
,

we get

U(X1, Y1) =
b− a

2c
[X1, Y1], Λm(X1)Y1 =

b + c− a

2c
[X1, Y1].

By the same reason, we get the other identities.

Lemma 2.2 (Cf. [4]) Let M = K/H as in Lemma 2.1. Then the curvature tensor R of
Riemannian connection correspinding to Λm can be expressed at origin o as follows:

R(X, Y )o = [Λm(X),Λm(Y )]− Λm([X, Y ]m)− ad ([X, Y ]h).
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Let E1, E2, · · · , Em be the standard orthogonal basis of k− with respect to 〈 , 〉|k− , F1,

F2, · · · , Fn be the standard orthogonal basis of p+ with respect to 〈 , 〉|p+ , and G1, G2, · · · , Gl

be the standard orthogonal basis of p− with respect to 〈 , 〉|p− .

Proposition 2.3 The Ricci curvature of M = G/K+ is given as follows:

r(Eα, Fβ) = r(Eα, Gβ) = r(Fα, Gβ) = 0,

r(Eα, Eβ) = 〈(Ck − Ck+) · Eα, Eβ〉

+
2c(a− c + b)− (c− b + a)(c− a + b)

4ac
〈(Ck++p+ − Ck+) · Eα, Eβ〉

+
2b(a− b + c)− (b− c + a)(b− a + c)

4ab
〈(Ck++p− − Ck+) · Eα, Eβ〉,

r(Fα, Fβ) =
2c(a− c + b)− (c− b + a)(c− a + b)

4bc
〈(Ck − Ck+) · Fα, Fβ〉

+ 〈(Ck++p+ − Ck+) · Fα, Fβ〉

+
2a(b + c− a)− (a− c + b)(a− b + c)

4ab
〈(Ck++p− − Ck+) · Fα, Fβ〉,

r(Gα, Gβ) =
2b(a + c− b)− (b− a + c)(b− c + a)

4bc
〈(Ck − Ck+) ·Gα, Gβ〉

+
2a(b + c− a)− (a− b + c)(a− c + b)

4ac
〈(Ck++p+ − Ck+) ·Gα, Gβ〉

+ 〈(Ck++p− − Ck+) ·Gα, Gβ〉,

where Ck, Ck+ , Ck++p+ , Ck++p−denote the Casimir operator of corresponding Lie algebra.

Proof We only compute r(Eα, Eβ). Using Lemma 2.2 we get

〈Ro(Eα, Ei) · Eβ , Ei〉 = 〈Λ(Eα)(Λ(Ei)Eβ), Ei〉 − 〈Λ(Ei)(Λ(Eα)Eβ), Ei〉
− 〈Λ([Eα, Ei]m)Eβ , Ei〉 − 〈[[Eα, Ei]k+ , Eβ ], Ei〉

= −〈[[Eα, Ei]k+ , Eβ ], Ei〉 = −aB([[Eα, Ei]k+ , Eβ ], Ei)

= aB(ad 2(Ei)(Eα), Eβ) = 〈ad 2(Ei)(Eα), Eβ〉,
〈Ro(Eα, Fj) · Eβ , Fj〉 = 〈Λ(Eα)(Λ(Fj)Eβ), Fj〉 − 〈Λ(Fj)(Λ(Eα)Eβ), Fj〉

− 〈Λ([Eα, Fj ]m)Eβ , Fj〉 − 〈[[Eα, Fj ]k+ , Eβ ], Fj〉
= 〈Λ(Eα)(Λ(Fj)Eβ), Fj〉 − 〈Λ([Eα, Fj ]m)Eβ , Fj〉
= bB(Λ(Eα)(Λ(Fj)Eβ), Fj)− bB(Λ([Eα, Fj ])Eβ , Fj)

=
2c(a + b− c)− (c− a + b)(c− b + a)

4ac
〈ad 2(Fj)Eα, Eβ〉.

By the same reason,

(Ro(Eα, Gk) · Eβ , Gk) =
2b(a + c− b)− (b− a + c)(b− c + a)

4ab
〈ad 2(Gk)Eα, Eβ〉,
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so

r(Eα, Eβ) =
m∑

i=1

〈Ro(Eα, Ei) · Eβ , Ei〉+
n∑

j=1

〈Ro(Eα, Fj) · Eβ , Fj〉+
l∑

k=1

〈Ro(Eα, Gk) · Eβ , Gk〉

=
〈 m∑

i=1

ad 2(Ei)Eα, Eβ

〉
+

〈 n∑

j=1

ad 2(Fj)Eα, Eβ

〉
+

〈 l∑

k=1

ad 2(Gk)Eα, Eβ

〉

= 〈(Ck − Ck+) · Eα, Eβ〉

+
2c(a− c + b)− (c− b + a)(c− a + b)

4ac
〈(Ck++p+ − Ck+) · Eα, Eβ〉

+
2b(a− b + c)− (b− c + a)(b− a + c)

4ab
〈(Ck++p− − Ck+) · Eα, Eβ〉.

Assume that k− = k−1 + k−2 + · · ·+ k−r , where the {k−i } are irreducible representations of k+.
Then Ck+ |k−i = aiId . We see that

〈(Ck − Ck+) · Eα, Eβ〉 = 0 if α 6= β.

By the same reason we have

Corollary 2.1 If α 6= β, then

r(Eα, Eβ) = r(Fα, Fβ) = r(Gα, Gβ) = 0.

Theorem 2.1 The metric g defined as above is an Einstein metric if and only if that g

satisfies
{

(Ck − Ck+) +
2c(a− c + b)− (c− b + a)(c− a + b)

4ac
(Ck++p+ − Ck+)

+
2b(a− b + c)− (b− c + a)(b− a + c)

4ab
(Ck++p− − Ck+)

}∣∣∣
k−

= A Id k− ,

{
(Ck++p+ − Ck+) +

2c(a− c + b)− (c− b + a)(c− a + b)
4bc

(Ck − Ck+)

+
2a(b + c− a)− (a− c + b)(a− b + c)

4ab
(Ck++p− − Ck+)

}∣∣∣
p+

= A Id p+ ,

{
(Ck++p− − Ck+) +

2b(a + c− b)− (b− a + c)(b− c + a)
4bc

(Ck − Ck+)

2a(b + c− a)− (a− b + c)(a− c + b)
4ac

(Ck++p+ − Ck+)
}∣∣∣

p−
= A Id p− ,

where A is a constant.

3 Some Examples on SU(n + 1)

Although we give the necessary and sufficient condition, the complete classification is hard
to get. In this section we will investigate some examples on SU(n + 1).

Let us first recall in brief some part of Yen’s classification theory of real simple Lie algebra.
In essence, his method is a better control of Gantmacher’s canonical form of Cartan involutions.
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Lemma 3.1 Let g0 be a real semisimple Lie algebra, and g0 = k0 + p0 be Cartan de-
composition of g0 with respect to θ. Fix a maximally compact Cartan subalgebra hc

0 of g0 with
decomposition hc

0 = kc
0 + ac

0. Let u = k0 + ip0. Then hn
0 = kc

0 + iac
0 is a Cartan subalgebra of u

and there exists a γ ∈ Ad u such that γθγ−1 = θ0e
ad H , where θ0 is a diagram automorphism of

u’s Dynkin diagram and H ∈ h0 = {H1 ∈ hn
0 , θ0(H1) = H1}.

Let gc, hc be the complexification of g0, h
c
0 respectively. Let ∆(gc, hc) be the root system of

g with respect to hc. Fix a system of positive roots, ∆+(gc, hc), for ∆(gc, hc) with the set of
simple roots Π = {α1, · · · , αl}. Let E1, F1, · · · , El, Fl be a relative Weyl basis of gc such that

α∨ = [Ei, Fi]. Let ϕ =
l∑

i=1

miαi be the highest weight relative to Π.

Definition 3.1 Let Π, ϕ be as above. The Yen Diagram is the diagram of the system
{α1, · · · , αl,−ϕ} defined in the same way as that of the Dynkin Diagram.

Example 3.1 gc = A5, Π = {α1, α2, α3, α4, α5}, ϕ = α1 + α2 + α3 + α4 + α5.

Dynkin Diagram Yen Diagram

c c c c c
α1 α2 α3 α4 α5 c c c c c

cXXXX »»»»

−ϕ

α1 α2 α3 α4 α5

For any nonempty subset I ⊂ {1, · · · , n}, we can define a unique automorphism θ(Π, I) of
gc, which satisfies:

(1) θ(Π, I)|hc = Id .

(2) θ(Π, I)(Ei) =

{
Ei, i /∈ I,

Fi, i ∈ I.

Lemma 3.2 Let gc be a simple Lie algebra. Then for any θ(Π, I), there exists a system of
simple roots Π′ = {α′1, . . . , α′l} with highest weight ϕ′ = m1α

′
1 + · · · + mlα

′
l and i ∈ {1, · · · , l}

satisfying mi = 1 or 2, such that θ(Π, I) = θ(Π′, {i}).
Set θi = θ(Π, {i}). Then Lemma 3.2 can be restated as: any θ(Π, I) is conjugate to some θi

under W (gc, hc). Set ki = {x ∈ gc, θi(x) = x}, which is called the characteristic subalgebra of
θi. Set V c

i = {x ∈ gc, θi(x) = −x}.
Lemma 3.3 (Cf. [6]) (1) If mi = 1, then Πi = Π\{αi} is a system of simple roots of

∆(ki, h
c), whose Dynkin Diagram is the subdiagram of Π with αi omitted. and ad V c

i
ki has two

highest weights: ϕ and −αi.
(2) If mi = 2, then Πi = {α1, · · · , α̂i, · · · , αl,−ϕ} is a system of simple roots of ∆(ki, h

c),
whose Dynkin Diagram is the subdiagram of the Yen Diagram of Π with αi omitted. and the
highest weight of ad V c

i
ki is −αi.

Remark 3.1 For the situation of mi = 1, for ad V c
i
ki, V c

i = V1 + V 1, so the Casimir
operator of ki on V c is still A Id , where A is a constant.

We also need to compute Casimir operator of a irreducible representation. For a simple
Lie algebra gc, let V (λ) be the irreducible representation of gc with highest weight λ, and let
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δ = 1
2

∑
α, where α ranges from all positive roots of ∆(gc, hc).

Lemma 3.4 Let gc, V (λ) as above, C be the Casimir operator relative to Killing form.
Then

C = (〈λ + δ, λ + δ〉 − 〈δ, δ〉)Id .

Now we investigate some examples on SU(n + 1). Set θ = θi, τ = θj (i < j), we give
the Casimir operators which appear in Proposition 2.3. Using Lemma 3.3, we get the Dynkin
Diagram of k is

c c c c c c c c c c
α1 α2 αi−2 αi−1 αi+1 αi+2 αn−1 αn

Notice that k has a 1-dimensional center which is generated by λi, where λi satisfies 2〈λi,αj〉
〈αj ,αj〉 =

δij . We know

λi =
1

n + 1
((n− i+1)α1 + · · ·+(i−1)(n− i+1)αi−1 + i(n− i+1)αi + i(n− i)αi+1 + · · ·+ iαl),

so 〈λi, λi〉 = i(n−i+1)
n+1 , and the standard base of the center is λ′i =

√
n+1

i(n−i+1) λi. We get

ad 2(λ′i)|p = n+1
i(n−i+1) Id .

From the Dynkin Diagram of k we see that k = k1 + k2 + Rλ′i where k1 = su(i) and k2 =
su(l − i + 1), and for ad pk, one has

λ = −αi, δ =
i−1∑

j=1

j(i− j)αj

2
+

n∑

j=i+1

(j − i)(n + 1− j)αj

2
,

so
Ck|p =

(
n + 1 +

n + 1
i(n− i + 1)

)
Id .

Repeating this process, we get

Ck|k− = (2n− 2i + 2)Id ,

Ck+ |k− =
(
(n− i + 1) +

n− i + 1
(j − i)(n− j + 1)

)
Id ,

Ck++p+ |k−+p− =
(
(n + 1) +

n + 1
j(n− j + 1)

)
Id ,

Ck++p+ |p+ = 2j Id ,

Ck+ |p+ =
(
j +

j

i(j − i)

)
Id ,

Ck++p− |k−+p+ =
(
(n + 1) +

n + 1
(j − i)(n + i− j + 1)

)
Id ,

Ck++p− |p− = 2(n− j + i + 1)Id ,

Ck+ |p− =
(
(i− j + i + 1) +

n− j + i + 1
i(n− j + 1)

)
Id .

Remark 3.2 For the situation of θτ = θ{i,j}, there exists an s ∈ W (g) such that
s(α1, · · · , αn) = (α1, · · · , α̂i, · · · , αn,−ϕ) and s · θ{i,j} = ead H′

, where H ′ satisfies: 〈αj ,H
′〉 =
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πi, 〈αk,H ′〉 = 0 (k 6= i, j), 〈−ϕ,H ′〉 = 0. Now it returns to the situation which we have
discussed.

Now using Theorem 2.1, for the examples we just investigated, we get the necessary and
sufficient condition of Einstein metric. The equations that we get is still complicated. We only
give the equations when i + j = n + 1.

Proposition 3.1 Let G = SU(n + 1), θ = θi, τ = θj , i + j = n + 1. Then g is an Einstein
metric if and only if




(
4i− 2

i

)
a2 − 4

(
i + j − 3

2i
+

1
i− j

)
ac−

(
4i− 2

i

)
b2 + 4

(
i + j − 3

2i
+

1
i− j

)
bc = 0,

(
2j +

3
j

+
1

i− j
− 5

2i

)
a2 −

(
4i + 4j +

6
j
− 11

i
+

2
i− j

)
ab +

(2
j

+
2

i− j
+

1
i

)
ac

+
(
2j − 4i +

3
j
− 1

2i
+

1
i− j

)
b2+

(
4i + 4j − 5

i
+

6
i− j

+
2
j

)
bc−

(
2j +

5
j
− 3

2i
+

3
i−j

)
c2= 0.

From the first equation, we get a = b or c =
i− 1

2i

i + j − 3
2i + 1

i−j

(a + b). In case of a = b, the

second equation turns into

8
(
i− 1

i

)
a2 − 4

(
i + j − 1

i
+

1
j

+
2

i− j

)
ac +

(
2j +

5
j

+
3

i− j
− 3

2i

)
c2 = 0.

We see that if i = 1, then a = b =
2j + 5

j + 3
1−j − 3

2

4j + 1
j + 2

1−j

c. If i 6= 1, we see that the second equation

has two solutions when j À i. In the second case, the second equation turns into a bivariate
quadratic homogeneous equation. We can find infinite many {i, j} such that the equation has
solutions which satisfy a 6= b 6= c, that is, the correspond metrics are non-standard homogenous.

Remark 3.3 In the case of i + j = n + 1, which we just discussed, it is easy to get that
Einstein metric g is standard homogeneous, that is, a = b = c, if and only if j = 2i. In this
situation, θ, τ, θτ are conjugate under Weyl group of g.
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