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Abstract This is a note on Abrams’ paper “Modules, Comodules, and Cotensor Products
over Frobenius Algebras, Journal of Algebras” (1999). With the application of Frobenius
coordinates developed recently by Kadison, one has a direct proof of Abrams’ character-
ization for Frobenius algebras in terms of comultiplication (see L. Kadison (1999)). For
any Frobenius algebra, by using the explicit comultiplication, the explicit correspondence
between the category of modules and the category of comodules is obtained. Moreover,
with this we give very simplified proofs and improve Abrams’ results on the Hom functor
description of cotensor functor.
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1 Introduction

Recently Abrams provided in detail the proof of the equivalence of the category of two-
dimensional topological quantum field theories and the category of commutative Frobenius
algebras (see [1, 8]). His characterization for Frobenius algebras in terms of comultiplication
played an important role. This observation made the correspondence of the categories of two-
dimensional topological quantum field theories and commutative Frobenius algebras highly in-
tuitive. Later on he generalized the characterization to the case of noncommutative Frobenius
algebras, and then he could give an alternative description of Eilenberg and Moore’s coten-
sor product functor and its derived functors via the usual hom functor and the Hochschild
cohomology functors respectively (see [2, 3]).

This is a note on Abrams’ work [2] via the so-called Frobenius coordinates. These notions
were recently developed by Kadison [5] and have turned very useful in the study of Hopf algebras
and other related topics (see [6, 7, 10]).

Let A be a finite-dimensional algebra over an arbitrary field K. By A∗ we denote its dual
linear space. The regular bimodule structure on A naturally induces a A-bimodule structure
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on A∗. An algebra A is said to be a Frobenius algebra if there is a left A-modules isomorphism
Φ : AA −→ AA∗, or equivalently a right A-modules isomorphism AA

∼= A∗A. If A ∼= A∗ as A-
bimodules, then A is called a symmetric algebra. There are many other equivalent definitions
of Frobenius algebras and symmetric algebras. We refer the reader to [4] for more information.

Abrams provided a characterization of Frobenius algebras in terms of comultiplication: an
algebra A is a Frobenius algebra if and only if it has a coassociative counital comultiplication
∆ : A −→ A⊗A which is a map of A-bimodules. The comultiplication was defined as follows.
Assume now A is a Frobenius algebra and Φ : AA −→ AA∗ is an isomorphism. Let µ : A⊗A −→
A denote the multiplication and τ : A⊗A −→ A⊗A denote the canonical twist map. Denote
µτ = µ ◦ τ and µ∗τ its dual. The comultiplication map ∆ : A −→ A ⊗ A is defined to be the
composition (Φ−1 ⊗ Φ−1) ◦ µ∗τ ◦ Φ. Let ε = Φ(1A). Then (A, ∆, ε) is a coalgebra.

Applying the Frobenius coordinates, one obtains an explicit formula for the comultiplication
(see Lemma 2.1). Moreover, we observe that the coalgebra (A, ∆, ε) is nothing but A∗cop i.e.,
the coopposite coalgebra of the dual coalgebra of the Frobenius algebra A (see Proposition 2.1).
Hence it is straightforward that the category of left (resp. right) modules over a Frobenius
algebra A is isomorphic to the category of left (resp. right) comodules over the corresponding
coalgebra (A, ∆, ε); we also give the explicit correspondence between modules and comodules
(see Theorem 2.1 and Remark 2.1). With the explicit correspondence we are able to describe
for any Frobenius algebras the cotensor functor and its derived functors using the Hom functor
and the Hochschild cohomology (see Theorem 3.1 and Corollary 3.1).

For unexplained notations on coalgebras, we refer the reader to [9].

2 Frobenius Algebras and Frobenius Coordinates

Let K be a field and A a Frobenius algebra over K with unit 1A. Assume Φ : AA −→ AA∗

is an isomorphism of left A-modules. Denote φ := Φ(1A). Then φ is a cyclic generator of AA∗,
and the isomorphism Φ is given by Φ(a) = aφ, for all a ∈ A. Also φ is a cyclic generator of A∗A,

and the isomorphism AA
∼= A∗A is given by a 7→ φa. Suppose xi ∈ A, fi ∈ A∗ form dual bases,

i.e., for each a ∈ A,
∑
i

fi(a)xi = a. Let yi ∈ A such that fi = φyi. Then we have for all a ∈ A,

∑

i

xiφ(yia) = a =
∑

i

φ(axi)yi.

We refer to φ as a Frobenius homomorphism, (xi, yi) as dual bases,
∑
i

xi ⊗ yi as the Frobenius

element, and (φ, xi, yi) as Frobenius coordinates after Kadison and Stolin [6] (also see [10]).
The following lemma is Abrams’ characterization of Frobenius algebras in terms of comulti-

plication. Via Frobenius coordinates, Kadison gave a simplified proof (see [5]). For completeness
and later use, we include a proof.

Lemma 2.1 An algebra A is a Frobenius algebra if and only if it has a coassociative counital
comultiplication ∆ : A −→ A⊗A which is a map of A-bimodules.

Proof Assume that the algebra A has a coassociative counital comultiplication ∆ : A −→
A ⊗ A which is a map of A-bimodules. Let ε : A −→ K be the counit. We claim that the
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left A-module morphism Φ given by Φ(a) = aε is an isomorphism and hence A is a Frobenius
algebra. It suffices to verify that Φ is injective. Assume

∆(1A) =
∑

i

xi ⊗ yi.

Thus
∆(a) = (∆(1A))a =

∑

i

xi ⊗ yia.

If aε = 0, then we have
a =

∑

i

xiε(yia) =
∑

i

xi(aε)(yi) = 0,

since the comultiplication is counital.
Conversely, assume that A is a Frobenius algebra with left A-module isomorphism Φ. Let

(φ, xi, yi) be the Frobenius coordinates. Define ∆ : A −→ A⊗A to be the linear map given by

∆(a) =
∑

i

axi ⊗ yi =
∑

i

xi ⊗ yia.

Note that ∆ is an A-bimodule map by the definition. Let ε = φ. Now it is easy to check that
(A,∆, ε) is a coalgebra.

By direct calculation we show that the coalgebra we construct above coincides with Abrams’
coalgebra (see [2]). Note that for any a, x, y ∈ A,

µ∗τ ◦ Φ(a)(x⊗ y) = µ∗τ (aφ)(x⊗ y) = (aφ)(yx) = φ(yxa) = φ
(
y

∑

i

φ(xaxi)yi

)

=
∑

i

φ(yyi)φ(xaxi) =
∑

i

(axiφ)(x)(yiφ)(y).

Now it follows that ∆ = (Φ−1 ⊗ Φ−1) ◦ µ∗τ ◦ Φ.

From the proof of Lemma 2.1, we obtain a satisfactory understanding of the element ∆(1A)
and the submodule ∆(A) of A ⊗ A generated by it. The element ∆(1A) is just the Frobenius
element

∑
i

xi ⊗ yi, and the module

∆(A) =
{∑

i

axi ⊗ yi

∣∣∣ a ∈ A
}

=
{∑

i

xi ⊗ yia
∣∣∣ a ∈ A

}
.

It is obvious that ∆(A) ∼= A as bimodules since ∆ is injective.
Moreover, by the explicit comultiplication map, we observe that the coalgebra (A,∆, ε) is

actually isomorphic to A∗cop, the coopposite coalgebra of the dual coalgebra of A.

Proposition 2.1 The linear map Φ : A −→ A∗cop given by Φ(a) = aφ is an isomorphism
of coalgebras.

Proof It remains to check that Φ is a coalgebra map since it is bijective. Recall that for
any f ∈ A∗cop,

∆(f) =
∑

f1 ⊗ f2
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if and only if
f(ab) =

∑
f1(b)f2(a) for all a, b ∈ A.

Applying again the Frobenius coordinates, we have

∆ ◦ Φ(a)(x⊗ y) = ∆(aφ)(x⊗ y) = φ(yxa) = φ
(
y

∑

i

φ(xaxi)yi

)

=
∑

i

φ(yyi)φ(xaxi) =
∑

i

(axiφ)(x)(yiφ)(y)

= (Φ⊗ Φ) ◦∆(a)(x⊗ y)

for all a, x, y ∈ A. The verification of ε = ε ◦ Φ is immediate. This completes the proof.

Now by this observation, the following Abrams’ theorem is straightforward. See Theorem
3.3 in [2]. Before stating the theorem, we fix some notations. Assume that C is a coalgebra and
A is an algebra. By CM we denote the category of left C-comodules and AM the category of
A-modules. Similarly we use MC and MA.

Theorem 2.1 The category of left (resp. right) modules over a Frobenius algebra A is
isomorphic to the category of left (resp. right) comodules over A.

Proof It is well known that for a finite-dimensional algebra A, AM ∼= MA∗ and that for
a coalgebra C, CcopM∼= MC . Now by Proposition 2.1, the theorem follows immediately.

Remark 2.1 It is interesting to write down the explicit correspondence between AM and
AM. This will be used in Section 3. Let N be a left A-module. Then by Theorem 2.1, N also
has a corresponding left A-comodule structure. We denote the comodule map by

ρN : N −→ A⊗N.

Then for any n ∈ N,

ρN (n) =
∑

n−1 ⊗ n0 ⇐⇒ a.n =
∑

n0φ(an−1) for all a ∈ A.

And similarly, let M be a right A-module and the corresponding right A-comodule structure is
denoted by (M, δM ). Then for any m ∈ M,

δM (m) =
∑

m0 ⊗m1 ⇐⇒ m.a =
∑

m0φ(am1) for all a ∈ A.

3 Cotensor Product and Its Derived Functors

Let Ae = A ⊗ Aop be the tensor product of the algebra A and the opposite algebra Aop.

Thus an A-bimodule is exactly an Ae-module and vice versa. The aim of this section is to
understand the cotensor product over a Frobenius algebra A using the functor HomAe(A,−).

Let M be a right A-module and N a left A-module. Thus by Theorem 2.1, M and N are
right and left A-comodule respectively. Denote their comodule structure maps as δM and ρN

respectively. The cotensor product M¤N of M and N over A is defined to be the kernel of

θ : M ⊗N −→ M ⊗A⊗N,
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where

θ = δM ⊗ IdN − IdM ⊗ ρN .

Theorem 3.1 There is a vector space isomorphism

M¤N ∼= HomAe(A,N ⊗M).

Proof Recall our explicit correspondence of modules and comodules in Remark 2.1. It is
not hard to observe that

∑
m⊗ n ∈ M¤N ⇐⇒

∑
m.a⊗ n =

∑
m⊗ a.n for all a ∈ A.

In fact, suppose
∑

m⊗ n ∈ M¤N. Then

∑
m0 ⊗m1 ⊗ n =

∑
m⊗ n−1 ⊗ n0.

Applying IdM ⊗ φa⊗ IdN to both sides, we have

∑
m.a⊗ n =

∑
m⊗ a.n.

Similarly we have the converse part.
Now note that any f ∈ HomAe(A,N ⊗M) is uniquely determined by f(1A). Since f is an

Ae-map, we have

f(1A) =
∑

n⊗m ⇐⇒
∑

n⊗m.a =
∑

a.n⊗m for all a ∈ A.

Hence

f(1A) ∈ M¤N.

Map f to τ ◦ f(1A), the theorem follows.

Let Cot∗A(−,−) be the right derived functors of the cotensor product and H∗(−,−) be the
Hochschild cohomology functors (see [4]). The following corollary is a direct consequence of
Theorem 3.1.

Corollary 3.1 Let A, M, and N be as above. We have linear isomorphisms

Cot∗A(M, N) ∼= Ext∗Ae(A,N ⊗M) ∼= H∗(A,N ⊗M).

Remark 3.1 Note that in Theorem 4.5 of [2], Abrams used the Ae-module D, which is
generated by the twist of the Frobenius element

τ ◦∆(1A) =
∑

i

yi ⊗ xi.

Actually, this is not true. The reason is that the correspondence between right modules and
comdules over A in [2] was not right.
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