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1 Introduction and Main Result

Regarding the second part of Hilbert’s sixteenth problem, a lot of important results have
been achieved on the study of the number and the distribution of limit cycles of polynomial
planar vector fields. C. S. Coleman in his survey (cf. [1]) stated that “For n > 2, the maximal
number of eyes is not known, nor is it known just which complex patterns of eyes within eyes,
or eyes enclosing more than a single critical point can exist.” Here so called “eye” means the
limit cycle. In recent years, the problem of limit cycles and the application were studied for
some polynomial systems by the bifurcation theory (cf. [2–5, 9–23]).

For the following Liénard system{
ẋ = y,

ẏ = x(1 − x2) − εy(a1 + a2x + a3x
2),

(1.1)

it was proved in paper [18] that there are at most three limit cycles if a1, a2 and a3 are analytic
functions of ε for |ε| small. Recently, Han (cf. [5]) studied the global bifurcation of Liénard
system {

ẋ = y,

ẏ = x(1 − bx − x2) − εy(a1 + a2x + a3x
2),

(1.2)

by using the method of analysis and the Poincaré map in a neighborhood of homoclinic and
double-homoclinic loop. He found that this system can have four limit cycles.
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In this paper, we consider the following system{
ẋ = y(c − x),

ẏ = x(1 − x2)(c − x) + εyf(x),
(1.3)

where c >
√

2, f(x) = a1 + a2x + a3x
2 + a4x

3. Our main result is as follows.

Theorem 1.1 There exists a c̄ >
√

2, such that for c > c̄, 0 < |ε| � 1 and suitable
ai, i = 1, · · · , 4, the system (1.3) can have six limit cycles with the two different distributions
1 + (3, 2) and 2 + (2, 2) (see Figure 4(1)–(2)).

2 Perturbation of Homoclinic Loops

When c >
√

2, x < c, by using the transformation t �→ t

c − x
, it follows from (1.3) that

⎧⎨
⎩

ẋ = y,

ẏ = x(1 − x2) +
εy

c − x
(a1 + a2x + a3x

2 + a4x
3).

(2.1)ε

Obviously, the unperturbed system (2.1)0 is Hamiltonian, with three singular points O(0, 0),
Ai((−1)i−1, 0), i = 1, 2, and O(0, 0) is saddle, Ai((−1)i−1, 0), i = 1, 2 are both centers. The
Hamiltonian function is

H(x, y) =
1
2
y2 − 1

2
x2 +

1
4
x4 = h, h ∈

[
− 1

4
, +∞

)
, (2.2)

where the value h = − 1
4 corresponds to the centers Ai((−1)i−1, 0), i = 1, 2, and h = 0 to the

double-homoclinic orbit Γ. Thus Γ = L1

⋃
L2 can be expressed as

L1 : y = ±x

√
1 − x2

2
, 0 < x <

√
2,

L2 : y = ±x

√
1 − x2

2
, −√

2 < x < 0.

(2.3)

For ε > 0 small enough, the system (2.1)ε has separatrices Ls
k, Lu

k near Lk, k = 1, 2, such
that Ls

1

⋃
Ls

2 and Lu
1

⋃
Lu

2 are the stable and unstable manifolds of saddle O(0, 0). Let a =
(a1, a2, a3, a4) with a4 > 0. Then the directed distance from Lu

k to Ls
k is measured by

dk(ε, a) = εNkMk(a) + O(ε2), (2.4)

where Nk is a positive constant, and

Mk(a) =
∮

Lk

f(x)
c − x

ydx =
3∑

i=0

Ak,i+1ai+1, k = 1, 2 (2.5)

with

A1,i+1 =
∮

L1

xi

c − x
ydx = 2

∫ √
2

0

xi+1

c − x

√
1 − x2

2
dx = A1,i+1(c),

A2,i+1 =
∮

L2

xi

c − x
ydx = (−1)i+1A1,i+1(−c) = A2,i+1(c), i = 0, 1, 2, 3.
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Making integral transformation x =
√

2 sin t, we have

A1,i+1 = 2(
√

2 )i+1

∫ π
2

0

sini+1 t cos2 t

c1 − sin t
dt, c1 =

c√
2
.

Note that∫ π
2

0

1
c1 − sin t

dt =
1√

c2
1 − 1

(π

2
+ n

)
,

∫ π
2

0

1
c1 + sin t

dt =
1√

c2
1 − 1

(π

2
− n

)
,

where n = arctan[c2
1 − 1]−

1
2 ∈ (0, π

2 ), we easily obtain

A11 = 2
√

2
[π

4
+

π

2
(c2

1 − 1) + c1 − c1

√
c2
1 − 1

(π

2
+ n

)]
,

A12 = 4
[2
3

+
π

4
c1 + (c2

1 − 1) +
π

2
c1(c2

1 − 1) − c2
1

√
c2
1 − 1

(π

2
+ n

)]
,

A13 = 4
√

2
[3π

16
+

2
3
c1 +

π

4
(c2

1 − 1) + c1(c2
1 − 1) +

π

2
c2
1(c

2
1 − 1) − c3

1

√
c2
1 − 1

(π

2
+ n

)]
,

A14 = 8
[ 8
15

+
3π

16
c1 +

2
3
(c2

1 − 1) +
π

4
c1(c2

1 − 1) + c2
1(c2

1 − 1)

+
π

2
c3
1(c

2
1 − 1) − c4

1

√
c2
1 − 1

(π

2
+ n

)]
,

A21 = 2
√

2
[
− π

4
− π

2
(c2

1 − 1) + c1 − c1

√
c2
1 − 1

(π

2
− n

)]
,

A22 = 4
[2
3
− π

4
c1 + (c2

1 − 1) − π

2
c1(c2

1 − 1) − c2
1

√
c2
1 − 1

(π

2
− n

)]
,

A23 = 4
√

2
[
− 3π

16
+

2
3
c1 − π

4
(c2

1 − 1) + c1(c2
1 − 1) − π

2
c2
1(c

2
1 − 1) − c3

1

√
c2
1 − 1

(π

2
− n

)]
,

A24 = 8
[ 8
15

− 3π

16
c1 +

2
3
(c2

1 − 1) − π

4
c1(c2

1 − 1) + c2
1(c

2
1 − 1)

−π

2
c3
1(c2

1 − 1) − c4
1

√
c2
1 − 1

(π

2
− n

)]
.

Thus, we have

A21A12 − A11A22 =
4
3
√

2 (2c2
1π − π − 4c1

√
c2
1 − 1 n),

A23A12 − A13A22 = −
√

2π

3
[2 + 3c2

1(−2 +
√

c2
1 − 1π)],

A24A12 − A14A22 = − 2
15

c1 [c2
1π(2 + 15

√
c2
1 − 1 π) − 64c1

√
c2
1 − 1n − 6π],

A24A13 − A14A23 =
8
√

2
15

[π(1 + 4c2
1 − 8c4

1) + c3
1

√
c2
1 − 1 n]

(2.6)

and

lim
c1→+∞A12(c1)

= 4 lim
c1→+∞

[2
3

+
π

4
c1 + (c2

1 − 1) +
π

2
c1(c2

1 − 1) − c2
1

√
c2
1 − 1

(π

2
+ n

)]
= 4 lim

c1→+∞

{2
3

+
π

4
c1 + (c2

1 − 1) + c1

√
c2
1 − 1

[π

2
(
√

c2
1 − 1 − c1) − c1 arctan

1√
c2
1 − 1

]}

= 4 lim
c1→+∞

[2
3

+
π

4
c1 + (c2

1 − 1) − π

2
c1

√
c2
1 − 1√

c2
1 − 1 + c1

− c2
1

]
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= 4 lim
c1→+∞

(
− 1

3
+

π

4
c2
1 − c1

√
c2
1 − 1√

c2
1 − 1 + c1

)
= −4

3
,

which implies A12(c1) < 0 for c1 large sufficiently. For c1 = 1 + 0, we have A12(1 + 0) =
2
3

+
π

4
> 0. Therefore, there exists a c∗1 > 1 such that A12(c∗1) = 0.

Thus, we obtain the following result.

Lemma 2.1 For A12 �= 0 and ε small enough, there exists a function

K2(a1, a3, a4, ε) = −A11

A12
a1 − A13

A12
a3 − A14

A12
a4 + O(ε) (2.7)

such that for ε > 0, d1 ≥ 0 (< 0) if and only if A12a2 ≥ (<)A12K2(a1, a3, a4, ε), and that the
system (1.3) or (2.1)ε has a homoclinic loop L∗

1 near L1 if and only if a2 = K2(a1, a3, a4, ε).
Furthermore when a2 = K2(a1, a3, a4, ε), there exists a function

K3(a1, a4, ε) = −A21A12 − A11A22

A23A12 − A13A22
a1 − A24A12 − A14A22

A23A12 − A13A22
a4 + O(ε) (2.8)

such that d2 ≥ 0 (< 0) if and only if A12a3 ≤ (>)A12K3(a1, a4, ε), and that the system (1.3)
or (2.1)ε has a double-homoclinic loop Γ∗ = L∗

1

⋃
L∗

2 near Γ if and only if a3 = K3(a1, a4, ε).

Proof (2.7) follows directly from (2.5). Using the implicit function theorem and substitute
a2 = K2(a1, a3, a4, ε) into (2.5), we get

M2(a, ε) =
A21A12 − A11A22

A12
a1 +

A23A12 − A13A22

A12
a3 +

A24A12 − A14A22

A12
a4 + O(ε).

It follows from the figure of g1(c1) that

A23A12 − A13A22 < 0 for c >
√

2c1,2,

where c1,2 will be given later. Thus, d2 ≥ 0 (< 0) if and only if A12a3 ≤ (>)A12K3(a1, a4, ε).
This completes the proof.

Next, we study the stability of Γ∗ under conditions a2 = K2 and a3 = K3.
The origin O(0, 0) is always a saddle of the system (2.1)ε. The divergence of (2.1)ε at the

origin has the value
σ0(Oε) = (Px + Qy)|Oε = −a1

c
ε + O(ε2).

As we know, the sign of σ0(Oε) determines the stability of Γ∗. More precisely, if σ0(Oε) > 0 (<
0), then the homoclinic loop L∗

1, L∗
2 and the double-homoclinic loop Γ∗ are unstable (stable)

(cf. [6–8]). Hence, we have

Lemma 2.2 Under the conditions a2 = K2(a1, a3, a4, ε) and a3 = K3(a1, a4, ε), there exists
a function

K1(a4, ε) = O(ε), (2.9)

such that the homoclinic loop L∗
1, L∗

2 and the double-homoclinic loop Γ∗ are unstable (stable)
for a1 < (>)K1(a4, ε).
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Lemma 2.3 (Cf. [6]) Let ai = Ki, i = 1, 2, 3. Then the following results hold:

( i ) The integral σ1k =
∮

L∗
k

(Px + Qy)dt = σ1k(a4, ε) converges finitely, and L∗
k is stable

(unstable) if σ1k < 0 (> 0);

( ii ) σ1k =
∮

Lk

(Px + Qy)dt + O(ε);

(iii) If σ11 + σ12 > 0 (< 0), then the double-homoclinic loop Γ∗ is unstable (stable) outside,
where k = 1, 2.

Suppose ai = Ki, i = 1, 2, 3. Then we have

a1 + a2x + a3x
2 + a4x

3 =
[
x3 − A24A12 − A14A22

A23A12 − A13A22
x2 +

A24A13 − A14A23

A23A12 − A13A22
x
]
a4 + O(ε)

and
σ1k =

∮
Lk

a1 + a2x + a3x
2 + a4x

3

(c − x)y
dx + O(ε) = Δka4 + O(ε), (2.10)

where

Δk = Jk3 − A24A12 − A14A22

A23A12 − A13A22
Jk2 +

A24A13 − A14A23

A23A12 − A13A22
Jk1,

Jki =
∮

Lk

xi

(c − x)y
dx, k = 1, 2, i = 1, 2, 3.

Note that

J1i(c) = 2(
√

2)i−1

∫ π
2

0

sini−1 t

c1 − sin t
dt, J2i(c) = (−1)i−1J1i(−c) for i = 1, 2, 3.

Thus we have

J11 = 2
∫ π

2

0

1
c1 − sin t

dt =
2√

c2
1 − 1

(π

2
+ n

)
,

J12 = 2
√

2
[
c1

∫ π
2

0

1
c1 − sin t

dt − 1
]

= 2
√

2
[
− π

2
+

c1√
c2
1 − 1

(π

2
+ n

)]
,

J13 = 4
∫ π

2

0

[
− sin t − c1 +

c2
1

c1 − sin t

]
dt = 4

[
− 1 − π

2
c1 +

c2
1√

c2
1 − 1

(π

2
+ n

)]
,

J21 =
2√

c2
1 − 1

(π

2
− n

)
,

J22 = 2
√

2
[π

2
+

c1√
c2
1 − 1

(π

2
− n

)]
,

J23 = 4
[
− 1 +

π

2
c1 +

c2
1√

c2
1 − 1

(π

2
− n

)]
.

Therefore, by (2.6), we have

Δ1 =
4g2(c1)

5g1(c1)
√

c2
1 − 1

= Δ1(c1),

Δ2 =
−4g3(c1)

5g1(c1)
√

c2
1 − 1

= Δ2(c1),

Δ1 + Δ2 =
8g4(c1)

5g1(c1)
√

c2
1 − 1

,
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where
g1(c1)= 2 + 3c2

1(
√

c2
1 − 1π − 2),

g2(c1)= −8c1

√
c2
1 − 1π + 16c3

1

√
c2
1 − 1π − 2(5

√
c2
1 − 1 + π + 2n)

−c4
1(15π + 32n) + c2

1[32n + 15(2
√

c2
1 − 1 + π)],

g3(c1)= −8c1

√
c2
1 − 1π + 16c3

1

√
c2
1 − 1π + 2(5

√
c2
1 − 1 + π − 2n)

+c4
1(15π − 32n) + c2

1[32n− 15(2
√

c2
1 − 1 + π)],

g4(c1)= −15c4
1π + 15c2

1(2
√

c2
1 − 1 + π) − 2(5

√
c2
1 − 1 + π).

By [24], we know that g1 and g2 has unique zero c1,2 = 1.1014386685799062 · · · and c1,5 =
1.232010827 · · · , respectively, and g3(c1) > 0, g4(c1) < 0 for c1 > 1 (The figure of gi(c1),
i = 1, · · · , 4, see Figure 1(1)–(4)).
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Figure 1

3 Stability Analysis

In this part, firstly, we determine the stability of the foci Pi((−1)i−1, 0), i = 1, 2 under the
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conditions ai = Ki, i = 1, 2, 3. It is direct that

div(1.3)|Pi =
ε

c − (−1)i−1
{a1 + a2(−1)i−1 + a3[(−1)i−1]2 + a4[(−1)i−1]3} + O(ε2)

= εa4

{
[(−1)i−1]3 − A24A12 − A14A22

A23A12 − A13A22
[(−1)i−1]2 +

A24A13 − A14A23

A23A12 − A13A22
(−1)i−1

}
+ O(ε2)

≡ εa4fi + O(ε2), i = 1, 2. (3.1)

We easily obtain by (2.6)

f1 =
h1(c1)

5
√

2πg1(c1)
, f2 =

h2(c1)
5
√

2πg1(c1)
,

where, for c1 > 1,

h1(c1) = 2
√

2π + 12c1π + 64
√

2 c4
1π + c2

1[128
√

c2
1 − 1n +

√
2π(−62 + 15

√
c2
1 − 1π)]

−2c3
1[64

√
2 n

√
c2
1 − 1 + (2 + 15π

√
c2
1 − 1)π],

h2(c1) = −2
√

2π + 12c1π − 64
√

2 c4
1π + c2

1[128
√

c2
1 − 1n +

√
2π(62 − 15

√
c2
1 − 1π)]

+2c3
1[64

√
2 n

√
c2
1 − 1 − (2 + 15π

√
c2
1 − 1 )π].

By [24], we can know that h1(c1) has a unique zero c1,6 = 1.2526178 · · · , and h2(c1) has a
unique zero c1,1 = 1.004468630935794 · · · (see Figure 2(1)–(2)).
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(1) The figure of h1(c1) (2) The figure of h2(c1)

Figure 2

In order to determine the existence and the number of the large limit cycles surrounding
all three singular points, we should prove that, b0 ∈ (

√
2, c), the positive orbit γ+

B of (2.1)ε

starting at B(b0, 0) is bounded. In other words, we need to prove that the first intersection
point γ+

B

⋂{x > 0, y = 0} = B∗(b∗, 0) satisfies b∗ < b0. For this purpose, we can take B as the
intersection point of the closed curve H(B) = h, where h → h∗ + 0, h∗ = H(c, 0). Then we
have

H(B∗) − H(B) = εa4

∮
Γh

y

c − x

(
x3 − A24A12 − A14A22

A23A12 − A13A22
x2 +

A24A13 − A14A23

A23A12 − A13A22
x
)
dx + O(ε2)

= −εa4D
∗(h, c1) + O(ε2), (3.2)
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where
D∗(h, c1) =

∮
Γh

x2ydx + N

∮
Γh

xydx + M

∮
Γh

ydx − cM

∮
Γh

y

c − x
dx,

and from (2.6),

M = c2 − A24A12 − A14A22

A23A12 − A13A22
c +

A24A13 − A14A23

A23A12 − A13A22
= − 8

5[2 + 3c2
1(

√
c2
1 − 1π − 2)]

,

N = c − A24A13 − A14A23

A23A12 − A13A22
.

The inequality b∗ < b0 will be satisfied for ε > 0 small and D∗(h, c) > 0.
Since

H(x, y) =
y2

2
− x2

2
+

x4

4
=

x4
0

4
− x2

0

2
,

where H(x0, 0) = h, x0 > 0, with
√

2 < x0 < c, and
√

c2 − 2 <
√

x2
0 + x2 − 2 <

√
2(c2 − 1) as

h → h∗ i.e., x0 → c, we have

∮
Γh

y

c − x
dx = 2

√
2c

∫ x0

−x0

√
x4
0
4 − x2

0
2 + x2

2 − x4

4

c2 − x2
dx = 2

√
2c

∫ x0

0

√
x2

0 − x2
√

x2
0 + x2 − 2

c2 − x2
dx.

Noting that

0 <
√

x2
0 − 2 ≤ √

x2
0 + x2 − 2 ≤ √

2x2
0 − 2

and

2c

∫ x0

0

√
x2

0 − x2

c2 − x2
dx = cπ +

x2
0 − c2

x0

( ∫ π
2

0

1
c/x0 − sin θ

dθ +
∫ π

2

0

1
c/x0 + sin θ

dθ
)

= cπ − π
√

c2 − x2
0 → cπ, as x0 → c,

we have, as x0 → c,
√

2πc4

8

√
c2 − 2 ≤

∮
Γh

x2ydx ≤ πc4

4

√
c2 − 1,

∮
Γh

xydx = 0,

√
2πc2

2

√
c2 − 2 ≤

∮
Γh

ydx ≤ πc2
√

c2 − 1,

√
2πc

√
c2 − 2 ≤

∮
Γh

y

c − x
dx ≤ 2πc

√
c2 − 1.

Therefore, denoting D∗(c1) = lim
h→h∗

D∗(h, c1), we have

c2

8

√
c2 − 2 +

M

2

√
c2 − 2 −

√
2M

√
c2 − 1 ≤ D∗(c1)

≤
√

2c2

8

√
c2 − 1 +

√
2M
2

√
c2 − 1 − M

√
c2 − 2 for M > 0

and
c2

8

√
c2 − 2 +

√
2M
2

√
c2 − 1 − M

√
c2 − 2 ≤ D∗(c1)

≤
√

2c2

8

√
c2 − 1 +

M

2

√
c2 − 2 −√

2M
√

c2 − 1 for M < 0.



Global Bifurcation of a Perturbed Double-homoclinic Loop 433

Denote

r1(c1)=
c2

8M

√
c2 − 2 +

√
c2 − 2
2

−√
2
√

c2 − 1

=
1

16
√

2
{16

√
c2
1 − 1 − 32

√
2c2

1 − 1 − 5c2
1

√
c2
1 − 1 [2 + 3c2

1(
√

c2
1 − 1 π − 2)]},

r2(c1)=
√

2c2

8M

√
c2 − 1 +

√
2
√

c2 − 1
2

−
√

c2 − 2

=
1

16
√

2
{16

√
2c2

1 − 1 − 32
√

c2
1 − 1 − 5c2

1

√
2c2

1 − 1 [2 + 3c2
1(

√
c2
1 − 1π − 2)]},

r3(c1)=
c2

8M

√
c2 − 2 +

√
2
√

c2 − 1
2

−
√

c2 − 2

=
1
2

√
4c2

1 − 2 −
√

2c2
1 − 2 − 5

32
c2
1

√
2c2

1 − 2 [2 + 3c2
1(

√
c2
1 − 1π − 2)],

r4(c1)=
√

2c2

8M

√
c2 − 1 +

√
c2 − 2
2

−
√

2
√

c2 − 1

=
√

2
2

√
c2
1 − 1 − √

4c2
1 − 2 − 5

32
c2
1

√
4c2

1 − 2 [2 + 3c2
1(

√
c2
1 − 1π − 2)].

Then by [24], we easily obtain that function r2(c1) has unique root c
(3)
1 =1.1206387468394088 · · · ,

the root of r3(c1) is c
(4)
1 = 1.1363325434708866 · · · , r1(c1) < 0, and r4(c1) < 0. The figure of

ri(c1), i = 1, 2, 3, 4, see Figure 3(1)–(4).
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Figure 3
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As M > 0, we can not determine the sign of D∗(c1) from the sign of r1(c1), r2(c1); as M < 0
and c1 > c

(4)
1 , we can get D∗(c1) > 0. Thus, we get the following table as c1 > c

(4)
1 .

The table to determine the qualitative analysis of system (2.1)ε

c1 (c(4)
1 , c

(5)
1 ) (c(5)

1 , c
(6)
1 ) (c(6)

1 , +∞)

the sign of Δ1 − + +

the sign of Δ2 − − −
the sign of Δ1 + Δ2 − − −
the sign of f1 + + −
the sign of f2 − − −
the sign of D∗(c1) + + +

In the table, under assumptions a4 > 0, and ε > 0 small enough, according to the previous
analysis, we have that as Δi < 0 (> 0), the homoclinic loop L∗

i is stable (unstable) inside; as
Δ1 + Δ2 < 0 (> 0), the double-homoclinic loop Γ∗ = L∗

1

⋃
L∗

2 is stable (unstable) outside; as
fi < 0 (> 0), the focus Ai is stable (unstable); and as D∗(c1) > 0 (< 0), the trajectories are
bounded (unbounded) on the left of x = c, where i = 1, 2.

Now, we complete the proof of the main result. For convenience, we give the assumptions
that a4 > 0 and ε > 0 small enough.

By (2.10), (3.1) and (3.2), Lemma 2.3 and according to the table, for c1 ∈ (c(4)
1 , c

(5)
1 ), the

trajectories of the system (2.1)ε are bounded on the left of x = c, the focus A1 is unstable and
A2 is stable, but the homoclinic loop L∗

1, L
∗
2 and the double-homoclinic Γ∗ = L∗

1

⋃
L∗

2 are all
stable. We can get that there is a small unstable limit cycle L

(1)
2 inside L∗

2.
For a4 > 0 fixed and small enough, according to Lemma 2.2, when a1 > K1(ε, a4), and

0 < |a1 − K1(ε, a4)| � a4, the double-homoclinic loop Γ∗ and homoclinic loop L∗
1, L

∗
2 change

their stabilities into unstable (cf. [6–8]). Then there is a large stable limit cycle Γ(1) which
appears near and outside the double-homoclinic loop Γ∗, with two small stable limit cycle
L

(1)
1 , L

(2)
2 appeared near inside L∗

1, L∗
2 and outside L

(1)
2 .

For fixed a1, a4 small, according to Lemma 2.1, when

0 < K3(ε, a1, a4) − a3 � |a1 − K1(ε, a4)| � a4,

the homoclinic loop L∗
2 breaks up and an unstable limit cycle L

(3)
2 appears near L∗

2 and outside
L

(2)
2 ; when 0 < a3 − K3(ε, a1, a4) � |a1 − K1(ε, a4)| � a4, L∗

2 breaks up and a large unstable
limit cycle Γ(2) appears near Γ∗ and inside Γ(1). Finally, for fixed a1, a3, a4, if

0 < a2 − K2(ε, a1, a3, a4) � |K3(ε, a1, a4) − a3| � |a1 − K1(ε, a4)| � a4

holds, then the homoclinic loop L∗
1 breaks up, and a small stable limit cycle L

(2)
1 appears near

L∗
1 and outside L

(1)
1 . The distributions of the system (1.3) are 1 + (3, 2) and 2 + (2, 2) (see

Figure 4(1)–(2)).
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(1) The figure as c1 ∈ (c(4)
1 , c

(5)
1 )

⋃
(c(5)

1 , c
(6)
1 ), and distribution of 1 + (3, 2)

(2) The figure as c1 ∈ (c(4)
1 , c

(5)
1 )

⋃
(c(5)

1 , c
(6)
1 ), and distribution of 2 + (2, 2)

Figure 4

Using the similar methods, when c1 ∈ (c(5)
1 , c

(6)
1 ), we get the same result of the limit cycles

and the distributions as c1 ∈ (c(4)
1 , c

(5)
1 ), and when c1 ∈ (c(6)

1 , +∞), we get five limit cycles and
the distributions are 1 + (3, 1) and 2 + (2, 1).
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