A Lower Bound on Unknotting Number***

JIMING MA* RUIFENG QIU**

Abstract In this paper the authors use a modified Wirtinger presentation to give a lower bound on the unknotting number of a knot in S^3 .

Keywords Unknotting number, Knot, Commutator subgroup **2000 MR Subject Classification** 57M05, 57M25

1 Introduction

Let K be a knot in S^3 , and for each regular projective diagram D_K of K, it is possible to make a crossing change: transform overcrossing to undercrossing or vice versa. Denote by $u(D_K)$ the smallest number of such changes required in D_K to obtain the unknot. The unknotting number u(K) of a knot K is the smallest number of such changes required to obtain the unknot, the minimum taken over all regular projections. Note that u(K) can not always be realized on the minimal crossing regular projective diagram of K. According to the classical definition, we could after each change do an ambient isotopy, then perform next change in the new projection, etc., and continue in this manner until the unknot is obtained. According to the standard definition, we must perform all changes in a single (fixed) projection of K. These two definitions are equivalent (see [1, p.58]).

Let G be the fundamental group of $S^3 - N(K)$, and G' be the commutator subgroup of G. Then G' is the normal subgroup of G such that

$$G/G' = Z.$$

G is the semi-product of *Z* and *G'*, that is, there is a homomorphism from *Z* to $\operatorname{Aut}(G')$ as in [2]. If there are *n* elements, say $x_1, x_2, \dots x_n$, in *G'* such that *G'* is the normal closure of $x_1, x_2, \dots x_n$ in *G*, that is,

$$G' = \langle x_1, x_2, \cdots, x_n \rangle^G,$$

and if n is minimal along all such presentations of G' in G, then we define a(K) = n. Since K is trivial in S^3 iff $\pi_1(S^3 - N(k))$ is infinite cyclic, so

$$a(K) = 0$$
 iff K is trivial in S^3 .

Manuscript received on September 10, 2004.

^{*}Institute of Mathematics, Peking University, Beijing 100871, China. E-mail: majiming2000@sohu.com

^{**}Department of Mathematics, Dalian University of Technology, Dalian 116024, Liaoning, China. E-mail: qiurf@dlut.edu.cn

^{***}Project supported by the National Natural Science Foundation of China (No.10171038).

In this paper, we show that a(K) is a lower bound of u(K), that is,

Theorem 1 $u(K) \ge a(K)$.

Let K_1, K_2 be two nontrivial knots in S^3 , and

$$K = K_1 \sharp K_2$$

be the connected sum of K_1 and K_2 . By an observation, we have the following proposition:

Proposition 2 $a(K_1 \sharp K_2) \ge \max\{a(K_1), a(K_2)\}.$

2 Modified Wirtinger Presentation and the Proof of the Theorem

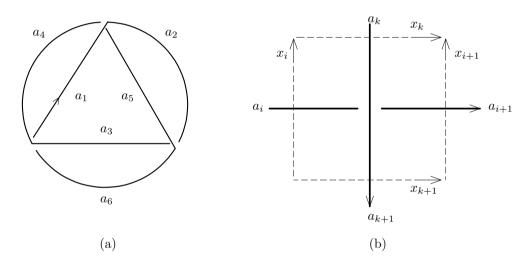


Figure 1

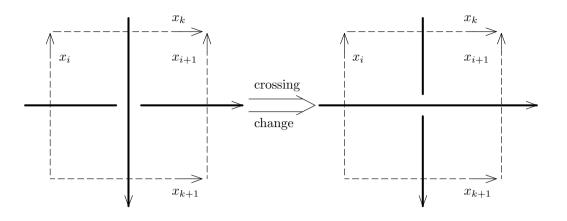
As we all know, Wirtinger gave a presentation of the fundamental group of the complement of a knot in S^3 as in [3]. Now we give a modified Wirtinger presentation as follows.

Let K be a knot in S^3 with a given orientation and D(K) be a projection diagram of K with n crossings, say v_1, \ldots, v_n . Now the n crossings separate D(K) into 2n arcs, we denote the 2n arcs by a_1, a_2, \cdots, a_{2n} , so that a_i connects with a_{i-1} and $a_{i+1} \pmod{2n}$ as in Figure 1(a). Then we obtain a presentation of $\pi_1(S^3 - \operatorname{int} N(K))$ such that each arc a_i induces a generator, denoted by x_i , and each crossing v_j induces two relations C_j and A_j , where C_j is $x_{k+1}x_{i+1} = x_ix_k$, and A_j is $x_k = x_{k+1}$ for some i and k as in Figure 1(b).

Comparing with the Wirtinger presentation, note that in Wirtinger presentation, n crossings separate D(K) into just n arcs, and C_j is the proper relation given by the crossing in the Wirtinger presentation, and A_j is just the relation that identifies x_k and x_{k+1} . Since they are the same generator in the Wirtinger presentation. So this modified Wirtinger presentation gives a presentation of $\pi_1(S^3 - \operatorname{int} N(K))$ such that

$$\pi_1(S^3 - \operatorname{int} N(K)) = \langle x_1, x_2, \cdots, x_{2n} \mid C_1, C_2, \cdots, C_n, A_1, A_2, \cdots, A_n \rangle.$$

438



Proof of Theorem 1 Let B_j be the relation $x_i = x_{i+1}$ for the crossing v_j in which C_j is $x_{k+1}x_{i+1} = x_ix_k$ and A_j is $x_k = x_{k+1}$. Then, after doing a crossing change on v_j , A_j transforms to B_j , but C_j is the same, as in Figure 2. Since, after doing u(D(K)) = u times crossing changes, we obtain a trivial knot, so

$$\langle x_1, x_2, \cdots, x_{2n} \mid C_1, \cdots, C_n, B_{j_1}, \cdots, B_{j_u}, A_{j_{u+1}}, \cdots, A_{j_n} \rangle$$

is an infinite cyclic group, where

$$\{j_1, \cdots, j_n\} = \{1, 2, \cdots, n\}.$$

Since $[x_i]$ is the generator of

$$H_1(S^3 - N(K)) = G/G' = Z,$$

 \mathbf{so}

$$\langle x_1, \cdots, x_{2n} \mid C_1, \cdots, C_n, B_{j_1}, \cdots, B_{j_u}, A_{j_1}, \cdots, A_{j_u}, \cdots, A_{j_n} \rangle$$

is also the infinite cyclic group. Since $B_{j_1}, B_{j_2}, \cdots, B_{j_u} \in G', G' = \langle B_{j_1}, \cdots, B_{j_u} \rangle^G$, hence

$$u(D_K) \ge a(K)$$
 for any D_K .

That means $u(K) \ge a(K)$.

Proof of Proposition 2 Let $\pi_1(S^3 - N(K_1)) = G_1$, and $\pi_1(S^3 - N(K_2)) = G_2$. Then

$$\pi_1(S^3 - N(K_1 \sharp K_2)) = G = \langle G_1 * G_2 \mid ab^{-1} \rangle,$$

where a is the generator of $H_1(S^3 - N(K_1))$, and b is the generator of $H_1(S^3 - N(K_2))$. Let $a(K_1) = t$, $a(K_2) = s$. We may assume that $t \ge s$. Now suppose that

$$G_{1}^{'} = \langle r_{1}^{1}, r_{2}^{1} \cdots, r_{t}^{1} \rangle^{G_{1}}, \quad G_{2}^{'} = \langle r_{1}^{2}, r_{2}^{2} \cdots, r_{s}^{2} \rangle^{G_{2}}.$$

Suppose that there are α elements $r_1, r_2 \cdots, r_{\alpha}$ in G' such that

$$G' = \langle r_1, \cdots, r_\alpha \rangle^G.$$

Note that $G^{'} = G_{1}^{'} * G_{2}^{'}$ as in [2], and

$$\langle G \mid r_1^2, r_2^2, \cdots, r_s^2 \rangle = G_1, \quad \langle G \mid r_1^2, \cdots, r_s^2, r_1, \cdots, r_\alpha \rangle = \langle G^1 \mid r_1^\star, \cdots, r_\alpha^\star \rangle = Z_s$$

where r_i^{\star} is the element in G_1' induced by r_i . So $\alpha \geq t$.

3 Remark

Y. Nakanishi [4] gave a lower bound of unknotting number, that is, he defined a knot invariant m(K), where M_K is the universal Abelian covering space of $S^3 - N(K)$, $\Lambda = Z[t, t^{-1}]$. Then $H_1(M_K)$ has a Λ -module structure, m(K) is the minimal number of generators of $H_1(M_K)$ as Λ -module.

In fact, it is easy to see $a(K) \ge m(K)$. But for many knots, for example, double knots with twisting number zero, m(K) is zero. Since a(K) is not zero for nontrivial knots, so a(K) is strictly larger than m(K) for many cases.

Acknowledgement The authors would like to thank the referee for the helpful advice on this paper.

References

- [1] Adams, C. C., The Knot Book, Freeman, New York, 1994.
- [2] Burde, G. and Zieschang, H., Knots, Walter de Gruyter, Berlin, New York, 1985.
- [3] Rolfsen, D., Knots and Links, Publish and Perish Inc., Berkeley, 1976.
- [4] Nakanishi, Y., A note on unknotting number, Math. Sem. Notes, Kobe University, 1981, 99–108.