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Abstract Let {Xm(t), t ∈ R+} be an m-Fold integrated Brownian motion. In this paper,
with the help of small ball probability estimate, a functional law of the iterated logarithm
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process. Furthermore, a result about the weighted occupation measure for Xm(t) is also
obtained.
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1 Introduction

Let {W (t), t ∈ R+} be a standard Brownian motion with W (0) = 0. A Gaussian process
{Xm(t), t ∈ R+} is called m-fold integrated Brownian motion with positive integer m provided
X0(t) = W (t) and

Xm(t) =
∫ t

0

Xm−1(s)ds, m ≥ 1.

That is,

Xm(t) =
∫ t

0

(t− s)m

m!
dW (s).

From the definition, it follows that Xm is a self-similar process with scaling property

Xm(ct) d= c(2m+1)/2Xm(t),

where X
d= Y means X and Y have the same finite dimensional distributions. This process Xm

is an interesting process and has been studied by many authors in different view points. For
example, Watanabe [17] established the law of the iterated logarithm for X1(t). Wahba [15, 16]
used Xm( · ) to derive a correspondence between smoothing by splines and Bayesian estimation
in certain stochastic models. Lachal [10, 11] considered the law of the iterated logarithm and the
regular points for Xm(t),m ≥ 1. Khoshnevisan and Shi [6] obtained the small ball probability(
A small ball probability of a process Y is refered to the probability P

{
sup

0≤s≤1
|Y (s)| ≤ ε

})
and
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Chung’s law of the iterated logarithm for X1(t). Lin [13] studied the increment properties for
Xm(t),m ≥ 1. Recently, Chen and Li [2] obtained a general result of the small ball probability
and Chung’s law of the iterated logarithm for Xm(t),m ≥ 1. They showed that for any integer
m ≥ 1,

lim
ε→0

ε2/(2m+1) log P
{

sup
0≤t≤1

|Xm(t)| ≤ ε
}

= −κm (1.1)

with

m + 1
2

[
(2m + 2) sin

π

2m + 2

]−(2m+2)/(2m+1)

≤ κm ≤ 2m + 1
2

(π

2

)2/(2m+1)(
2m sin

π

2m

)−2m/(2m+1)

and lim
m→∞

κm

m
=

1
π

. Furthermore,

lim inf
t→∞

( log log t

t

)(2m+1)/2

sup
0≤s≤t

|Xm(s)| = κ(2m+1)/2
m . (1.2)

Let
M(t) = sup

0≤s≤t
|Xm(s)| and ηn(t) =

M(nt)
(κmn/ log log n)(2m+1)/2

,

where κm is defined as in (1.1). The main purpose of this paper is to establish a functional LIL
for the {ηn( · )}, then use this result to obtain the Chung’s LIL and some weighted occupation
measures for this process. This kind of functional LIL has ever been considered by Wichura
[18] for standard Brownian motion, Chen, Kuelbs and Li [1] for the symmetric stable process,
and Kuelbs and Li [8] for fractional Brownian motion. And it is different from that of classic
Strassen’s functional LIL.

For convenience, in this paper we define

U = {f : f maps [0,∞) to [0,∞] with f(0) = 0, lim
t→∞

f(t) = ∞
and f is right continuous, nondecreasing}

and let U be endowed with the topology of weak convergence, i.e., pointwise convergence at all
continuity points of the limit function. Then the weak topology on U is metrizable, separable
and complete. More detail can be found in Chen, Kuelbs and Li [1].

For any sequence {fn} ⊆ U, we define C({fn}) as the cluster set of {fn}. That is, all
possible subsequential limits of {fn} in the weak topology. Assume that {fn} is relatively
compact in the weak topology and C({fn}) = A ⊆ U, then we write it as {fn} ⇒ A.

The first result we obtain is the functional LIL for Xm(t).

Theorem 1.1 Let {Xm(t), t ∈ R+} be an m-fold integrated Brownian motion with positive
integer m. Then

P ({ηn} ⇒ K) = 1, (1.3)

where
K =

{
f : f ∈ U,

∫ ∞

0

f−2/(2m+1)(t)dt ≤ 1
}

.
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As a consequence of Theorem 1.1, we have the following Chung’s LIL.

Corollary 1.1 Let {ηn( · )} be defined as that in Theorem 1.1. Then

lim inf
n→∞

ηn(1) = 1 a.s.

Remark 1.1 A similar argument shows that if n is changed into T , then as T → ∞, the
conclusions of Theorem 1.1 and Corollary 1.1 are also true, and hence we have the conclusion
(1.2); As T → 0, if we write ηn(x) as

η̃T (x) =
M(Tx)

(κmT/ log log 1/T )(2m+1)/2
,

then the conclusions of Theorem 1.1 and Corollary 1.1 are true for η̃T .

The next results is about the weighted occupation measure for the m-fold Brownian motion.
This is very similar to that of Chen et al. [1] for symmetric stable processes and Kuelbs and
Li [8] for fractional Brownian motion. We have lim inf

n→∞
ηn(1) = 1 by Corollary 1.1, but how

fast does ηn( · ) get away from zero function, say over interval [0, 1], and how many samples
ηn( · ), n ≤ t fall into the interval [0, c], c ≥ 1? One measure of these questions is the weighted
occupation measure

ϕc(t) =
1
t

∫ t

0

I[0,c]

(
ηs(1)θ

(s

t

))
ds, (1.4)

where c ≥ 1, θ : (0, 1] → [1,∞) with θ(1) = 1, θ(s) is non-increasing and lim
s→0+

θ(s) = ∞.

Let

h(s) = θ2/(2m+1)(s) +
∫ 1

s

θ2/(2m+1)(u)
u

du, 0 ≤ s ≤ 1. (1.5)

Then the range of h(s) is all of [1,∞). For more detail about this, we refer to Chen et al. [1]
and Kuelbs and Li [8].

Corollary 1.2 Let θ : (0, 1] → [1,∞) be defined as above. If h(s) defined as in (1.5) is a
strictly decreasing and continuous function from (0, 1] to [1,∞), then

lim sup
t→∞

ϕc(t) = 1− sc a.s., (1.6)

where s = sc is the solution to h(s) = c2/(2m+1), c ≥ 1.

Example Let θ(s) = (1 + log 1
s )(2m+1)/2, 0 < s ≤ 1. Then

sc = exp
{

2− 2

√
1 +

c2/(2m+1) − 1
2

}
,

lim sup
t→∞

1
t

∫ t

0

I[0,c]

(
ηs(1)

(
1 + log

t

s

)(2m+1)/2)
ds = 1− exp

{
2− 2

√
1 +

c2/(2m+1) − 1
2

}
a.s.

Corollary 1.3

lim sup
t→∞

1
t

∫ t

0

I[0,c]

(
ηt

(s

t

))
ds =

{
1 if c ≥ 1,

c2/(2m+1) if 0 ≤ c < 1.
(1.7)
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2 Proof of Theorem 1.1

In this section, we will show Theorem 1.1 with the application of the small ball probability
estimates. In order to do this, we need the following lemmas.

Lemma 2.1 Fix sequences {ti}l
i=1, {ai}l

i=1 and {bi}l
i=1 such that 0 = t0 < t1 < · · · < tl,

and 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ al < bl < ∞. Then

lim sup
ε→0

ε2/(2m+1) log P{aiε ≤ M(ti) ≤ biε, 1 ≤ i ≤ l} ≤ −κm

l∑

i=1

ti − ti−1

b
2/(2m+1)
i

.

Proof Let Ai =
{

sup
ti−1≤t≤ti

|X(t)| ≤ biε
}

, 1 ≤ i ≤ l. Then

P{aiε ≤ M(ti) ≤ biε, 1 ≤ i ≤ l} ≤ P
( l⋂

i=1

Ai

)
. (2.1)

For any t ≥ ti, 0 ≤ i ≤ l − 1, we set ξ0 = 0 and

ξi(t) = (m!)−1

∫ ti

0

(t− s)mdW (s).

Then

P
( l⋂

i=1

Ai

)
= P

( l−1⋂

i=1

Ai, sup
tl−1≤t≤tl

|X(t)| ≤ blε
)

= P
( l−1⋂

i=1

Ai, sup
tl−1≤t≤tl

∣∣∣ξl−1(t) +
∫ t

tl−1

(t− s)m

m!
dW (s)

∣∣∣ ≤ blε
)

= E
{

P
( l−1⋂

i=1

Ai, sup
tl−1≤t≤tl

∣∣∣
∫ t

tl−1

(t− s)m

m!
dW (s) + ξl−1(t)

∣∣∣ ≤ blε
)∣∣∣ξl−1(t)

}
. (2.2)

Since
∫ t

tl−1

(t−s)m

m! dW (s) is independent of Ai, 1 ≤ i ≤ l − 1 and ξl−1(t), it follows from the
Anderson inequality that the right-hand side of (2.2) is no more than

P
( l−1⋂

i=1

Ai

)
P

(
sup

tl−1≤t≤tl

∣∣∣
∫ t

tl−1

(t− s)m

m!
dW (s)

∣∣∣ ≤ blε
)
. (2.3)

Clearly,
∫ a+h

a
(a+h−s)m

m! dW (s) and Xm(h) =
∫ h

0
(h−s)m

m! dW (s) have the same distribution. This
yields that (2.3) is equal to

P
( l−1⋂

i=1

Ai

)
P

(
sup

0≤t≤tl−tl−1

|Xm(t)| ≤ blε
)
,

which in combination with (2.2) implies

P
( l⋂

i=1

Ai

)
≤ P

( l−1⋂

i=1

Ai

)
P

(
sup

0≤t≤tl−tl−1

|Xm(t)| ≤ blε
)
.



A Functional LIL for m-Fold Integrated Brownian Motion 463

Iterating this argument and using the scaling property Xm(ct) = c(2m+1)/2Xm(t), we obtain

P
( l⋂

i=1

Ai

)
≤

l∏

i=1

P
(

sup
0≤t≤ti−ti−1

|Xm(t)| ≤ biε
)

=
l∏

i=1

P
(

sup
0≤t≤1

|Xm(t)| ≤ biε

(ti − ti−1)(2m+1)/2

)
. (2.4)

Combining (1.1) with (2.4) yields

lim
ε→0

ε2/(2m+1) log P
( l⋂

i=1

Ai

)

≤ lim
ε→0

l∑

i=1

ε2/(2m+1) log P
(

sup
0≤t≤1

|Xm(t)| ≤ biε

(ti − ti−1)(2m+1)/2

)
= −κm

l∑

i=1

ti − ti−1

b
2/(2m+1)
i

,

which in combination with (2.1) draws the conclusion of Lemma 2.1.

The following lemma is a Gaussian correlation conjecture obtained by Li [12].

Lemma 2.2 Let U be a centered Gaussian measure on separable Banach space E. Then
for any two symmetric U -measurable convex sets A,B on E and any 0 < λ < 1,

U(A ∩B) ≥ U(λA)U(
√

1− λ2B).

Lemma 2.3 Let (X1, X2, · · · , XN ) be a centered Gaussian vector in RN . Then for any
positive numbers λi, 1 ≤ i ≤ N,

P
{ N⋂

i=1

(|Xi| ≤ λi)
}
≥

N∏

i=1

P (|Xi| ≤ λi).

This lemma is due to Khatri [5] and Šidák [14], and is always called the Khatri-Šidák lemma,
in which the covariance matrix of (X1, X2, · · · , Xn) is arbitrary.

The following lemma is a lower bound for the small ball probability in Lemma 2.1.

Lemma 2.4 Let {ti}, {ai}, {bi}, 1 ≤ i ≤ l be as in Lemma 2.1. Then

lim inf
ε→0

ε2/(2m+1) log P{aiε ≤ M(ti) ≤ biε, 1 ≤ i ≤ l} ≥ −κm

l∑

i=1

ti − ti−1

b
2/(2m+1)
i

. (2.5)

Proof Let Ai, ξi be defined as in Lemma 2.1. By a similar argument of Kuelbs and Li [8],
it is sufficient for the proof of Lemma 2.4 to show

lim inf
ε→0

ε2/(2m+1) log P
( l⋂

i=1

Ai

)
≤ −κm

l∑

i=1

ti − ti−1

b
2/(2m+1)
i

. (2.6)



464 R. M. Zhang and Z. Y. Lin

For any 0 < δ < min{bi, 1 ≤ i ≤ l} and 0 < λ < 1, using Lemma 2.2 we have

P
( l⋂

i=1

Ai

)
= P

( l−1⋂

i=1

Ai, sup
tl−1≤t≤tl

∣∣∣
∫ t

tl−1

(t− s)m

m!
dW (s) + ξl−1(t)

∣∣∣ ≤ blε
)

≥ P
( l−1⋂

i=1

Ai, sup
tl−1≤t≤tl

∣∣∣
∫ t

tl−1

(t− s)m

m!
dW (s)

∣∣∣ ≤ (bl − δ)ε, sup
tl−1≤t≤tl

|ξl−1(t)| ≤ δε
)

= P
(

sup
tl−1≤t≤tl

∣∣∣
∫ t

tl−1

(t− s)m

m!
dW (s)

∣∣∣ ≤ (bl − δ)ε
)
P

( l−1⋂

i=1

Ai, sup
tl−1≤t≤tl

|ξl−1(t)| ≤ δε
)

≥ P
(

sup
0≤t≤tl−tl−1

|Xm(t)| ≤ (bl − δ)ε
)
· P

( l−1⋂

i=1

sup
ti−1≤t≤ti

|X(t)| ≤ biλε
)

· P
(

sup
tl−1≤t≤tl

|ξl−1(t)| ≤
√

1− λ2 δε
)
. (2.7)

Repeating this estimate, we get

P
( l⋂

i=1

Ai

)
≥ H1H2, (2.8)

where

H1 =
l∏

i=1

P
(

sup
0≤t≤ti−ti−1

|Xm(t)| ≤ (bi − δ)λl−iε
)
,

H2 =
l∏

i=1

P
(

sup
ti−1≤t≤ti

|ξi−1(t)| ≤
√

1− λ2 δλl−iε
)
.

Next we turn to estimate the lower bounds of H1 and H2. By (1.1) and the scaling property
of Xm(t), it is easy to obtain

lim
ε→0

ε2/(2m+1) log H1 =
l∑

i=1

lim
ε→0

ε2/(2m+1) log P
(

sup
0≤t≤1

|Xm(t)| ≤ λl−i(bi − δ)ε
(ti − ti−1)(2m+1)/2

)

= −κm

l∑

i=1

ti − ti−1

[λl−i(bi − δ)]2/(2m+1)
. (2.9)

Note that

ξi−1(t) =
1
m!

∫ ti−1

0

(t− ti−1 + ti−1 − s)mdW (s)

=
m∑

k=0

Ck
m(t− ti−1)k

m!

∫ ti−1

0

(ti−1 − s)m−kdW (s)

=
m∑

k=0

(t− ti−1)k

k!
Xm−k(ti−1).
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By Lemma 2.3, it follows that

H2 =
l∏

i=1

P
(

sup
ti−1≤t≤ti

|ξi−1(t)| ≤
√

1− λ2 δλl−iε
)

=
l∏

i=1

P
( m∑

k=0

(ti − ti−1)k

k!
|Xm−k(ti−1)| ≤

√
1− λ2 δλl−iε

)

≥
l∏

i=1

P
{ m⋂

k=0

(
|Xm−k(ti−1)| ≤ k!

√
1− λ2 δλl−iε

m(ti − ti−1)k

)}

≥
l∏

i=1

m∏

k=0

P
(
|Xm−k(ti−1)| ≤ k!

√
1− λ2 δλl−iε

m(ti − ti−1)k

)
. (2.10)

Since for any 1 ≤ k ≤ m, EXm−k(ti−1) = 0 and

EX2
m−k(ti−1) =

1
(m− k)!

∫ ti−1

0

(ti−1 − s)2(m−k)ds =
t
2(m−k)+1
i−1

(m− k)!(2m− 2k + 1)
, (2.11)

it follows that

H2 ≥
l∏

i=1

m∏

k=0

P
(√

(m− k)!(2m− 2k + 1) |Xm−k(ti−1)|
t
(m−k)+1/2
i−1

≤ k!
√

(m− k)!(2m− 2k + 1)(1− λ2) δλl−iε

mt
(m−k)+1/2
i−1 (ti − ti−1)k

)

=
l∏

i=1

m∏

k=0

P (|N(0, 1)| ≤ Aikε),

where N(0, 1) denotes the standard normal variable and

Aik = A(λ, ti, ti−1, δ, k) =
k!

√
(m− k)!(2m− 2k + 1)(1− λ2) δλl−i

mt
(m−k)+1/2
i−1 (ti − ti−1)k

.

Then

H2 ≥
l∏

i=1

m∏

k=0

P (|N(0, 1)| ≤ Aikε) =
l∏

i=1

m∏

k=0

∫ Aikε

−Aikε

1√
2π

e−x2/2dx ≥
l∏

i=1

m∏

k=0

2Aikεe−(Aikε)2/2

√
2π

,

which implies

lim
ε→0

ε2/(2m+1) log H2 = lim
ε→0

ε2/(2m+1)
[ l∑

i=1

m∑

k=0

(
log

2Aikε√
2π

− A2
ikε2

2

)]
= 0. (2.12)

Therefore, by (2.8), (2.9) and (2.12), we have

lim inf
ε→0

ε2/(2m+1) log P
( l⋂

i=1

Ai

)
≥ lim inf

ε→0
ε2/(2m+1)(log H1 + log H2)

≥ −κm

l∑

i=1

ti − ti−1

[λl−i(bi − δ)]2/(2m+1)
.
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Letting λ ↗ 1 and δ ↘ 0, we get (2.6). This completes the proof of Lemma 2.4.

Proof of Theorem 1.1 By a similar argument of Chen, Kuelbs, Li [1] or Kuelbs, Li [8],
in order to show Theorem 1.1, it is enough to establish the following three propositions

P ({ηn} is relatively compact in U) = 1, (2.13)

P (C({ηn}) ⊆ K) = 1, (2.14)

P (K ⊆ C({ηn})) = 1. (2.15)

Applying (1.1) and the small ball probability estimate in Lemma 2.1 and along the proof of
Chen, Kuelbs and Li [8], (2.13) and (2.14) are easy to obtain. However, the proof of (2.15) is
different from theirs.

From the arguments of Chen, et al. [1] (see also Kuelbs and Li [8]), in order to show
(2.15), it is enough to prove, for any fixed f ∈ U with

∫∞
0

f−2/(2m+1)(t)dt < 1 and every weak
neighborhood Nf of f, that

P{ηn ∈ Nf , i.o.} = 1. (2.16)

To establish (2.16), we define
t∗f = sup{t : f(t) < ∞}.

Since f ∈ U, f is right continuous and f(0) = 0. This implies that t∗f = ∞ or 0 < t∗f < ∞.

In the case of t∗f = ∞, a typical neighborhood of f is of the form Nf =
p⋂

i=1

Gi, where

Gi = {g : f(ti)− θ < g(ti) < f(ti) + θ}, θ > 0

and 0 = t0 < t1 < t2 < · · · < tp.

Otherwise, if 0 < t∗f < ∞, then a typical neighborhood of f can be written as Nf =
( p⋂

i=1

Gi

) ⋂ ( q⋂
j=1

G̃p+j

)
, where Gi, 1 ≤ i ≤ p is defined as above and

G̃p+j = {g : g(tp+j) > mj}, mj > 0, 1 ≤ j ≤ q.

The proof for either case is similar. Therefore, we only consider here the case of t∗f = ∞,

that is, Nf =
p⋂

i=1

Gi.

Let
β = 1−

∫ ∞

0

f−2/(2m+1)(t)dt > 0, nl = exp{l1+β}.
For any large l satisfying nl−1tp/nl < t1 (In fact, there exists a l0 ∈ N such that for any l > l0,
nl−1tp/nl < t1.) define

Al =
{

sup
nl−1tp

nl
≤t≤ti

( κmnl

log log nl

)−(2m+1)/2∣∣∣
∫ nlt

nl−1tp

(nlt− s)m

m!
dW (s)

∣∣∣∈
(
f(ti)− θ

2
, f(ti)+

θ

2

)
, 1≤ i≤ p

}
,

Bl =
{

sup
nl−1tp

nl
≤t≤ti

( κmnl

log log nl

)−(2m+1)/2∣∣∣
∫ nl−1tp

0

(nlt− s)m

m!
dW (s)

∣∣∣ ≤ θ

2
, 1 ≤ i ≤ p

}
,

Cl ={ηnl
(ti) ∈ (f(ti)− θ, f(ti) + θ), 1 ≤ i ≤ p }.
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Then Al ∩Bl ⊆ Cl and this yields

P (Cl, i.o.) ≥ P (Al ∩Bl, i.o.) ≥ P (Al, i.o.)− P (Bc
l , i.o.). (2.17)

Note that ∫ nlt

nl−1tp

(nlt− s)m

m!
dW (s)

and Xm(nlt−nl−1tp) have the same distribution. Hence, by the scaling property of Xm(t) and
Lemma 2.4, we have that for any 0 < γ < β2/(1− β2),

P (Al) = P
{

sup
0≤u≤nlti−nl−1tp

( κmnl

log log nl

)−(2m+1)/2

|Xm(u)| ∈
(
f(ti)− θ

2
, f(ti) +

θ

2

)
, i ≤ p

}

= P
{

sup
0≤u≤ti−nl−1tp

nl

( κm

log log nl

)−(2m+1)/2

|Xm(u)| ∈
(
f(ti)− θ

2
, f(ti) +

θ

2

)
, i ≤ p

}

≥ exp
{
−

( t1 − nl−1tp/nl

(f(t1) + θ/2)2/(2m+1)
+

p∑

i=2

ti − ti−1

(f(ti) + θ/2)2/(2m+1)

)
(1 + γ) log log nl

}
.

Since f(t) is non-decreasing and non-negative function, it follows that

−
( t1 − nl−1tp/nl

(f(t1) + θ/2)2/(2m+1)
+

p∑

i=2

ti − ti−1

(f(ti) + θ/2)2/(2m+1)

)

≥ −
∫ ∞

0

1
(f(t) + θ/2)2/(2m+1)

dt ≥ −
∫ ∞

0

f−2/(2m+1)(t)dt = −(1− β),

which implies that

P (Al) ≥ exp{−(1− β)(1 + γ) log l1+β} = l−(1+β)(1−β)(1+γ).

Because 0 < γ < β2/(1−β2), we get (1−β2)(1+γ) < 1. This yields
∞∑

l=1

P (Al) = ∞. Therefore,

by the independence of Al, l = 1, 2 · · · , and the Borel-Cantelli lemma, it follows that

P (Al, i.o.) = 1. (2.18)

By some elementary computation, we have

Bl =
{ m∑

k=0

[(nl − nl−1)tp]k|Xm−k(nl−1tp)|
k!(κmnl/ log log nl)(2m+1)/2

≤ θ

2

}
,

which implies that

P (Bc
l ) = P

{ m∑

k=0

[(nl − nl−1)tp]k|Xm−k(nl−1tp)|
k!(κmnl/ log log nl)(2m+1)/2

≥ θ

2

}

≤
m∑

k=0

P
{ [(nl − nl−1)tp]k|Xm−k(nl−1tp)|

k!(κmnl/ log log nl)(2m+1)/2
≥ θ

2m

}
. (2.19)
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By (2.11), the right-hand side of (2.19) is equal to
m∑

k=0

P
{
|N(0, 1)| ≥ θ[(m− k)!(2m− 2k + 1)]1/2k!(κmnl/ log log nl)(2m+1)/2

2m(nl−1tp)m−k+1/2[(nl − nl−1)tp]k

}

≤
m∑

k=0

P
{
|N(0, 1)| ≥ κ

m+1/2
m

2mt
m+1/2
p

(nl/nl−1)1/4
}

≤ (m + 1)P
{
|N(0, 1)| ≥ κ

m+1/2
m

2mt
m+1/2
p

exp{lβ}
}

. (2.20)

Obviously, the right-hand side of (2.20) is summable. This in combination with (2.19) and the
Borel-Cantelli lemma implies that

P (Bc
l , i.o.) = 0. (2.21)

By (2.17), (2.18) and (2.21), we have P (Cl, i.o.) = 1. That is,

P{ηnl
∈ Nf , i.o.} = 1.

This implies (2.15), and the proof is completed.

Proof of Corollary 1.1 The proof is similar to that of Chen, Kuelbs and Li [1], here we
will omit the details.

Proof of Corollary 1.2 and Corollary 1.3 In order to show Corollary 1.2 and Corollary
1.3, we need the following two facts.

Fact 2.1 Let Fc(f) =
∫ 1

0
I[0,c](f(u)r(u))du and

Gc(t) =
∫ 1

0

I[0,c]

(
ηt(u)r(u)

( log log tu

log log t

)(2m+1)/2)
du,

where r : (0, 1] → [0,∞) is measurable. Then for each c > 0,

lim sup
t→∞

Gc(t) ≤ sup
f∈K

Fc(f) a.s. (2.22)

Furthermore, if sup
f∈K

Fc(f) is left continuous at c, then the two sides in (2.22) are equal.

Along the proof line of Chen, Kuelbs and Li [1], we obtain the conclusion of Fact 2.1.

The following fact is due to Kuelbs and Li [8].

Fact 2.2 Let g be a real-valued, non-negative and continuous function on (0, 1] with
0 < g(1) < 1. Suppose that tg(t) is non-increasing on (0, 1] and lim

t→0
tg(t) > 1. Then

sup
f∈F

∫ 1

0

I{t:f(t)≥g(t)}(x)dx = 1− u0,

where F is the set of non-negative, non-increasing, right continuous functions f on (0, 1] with∫ 1

0
f(t)dt ≤ 1 and u = u0 is the solution of the equation

ug(u) +
∫ 1

u

g(υ)dυ = 1.
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By Fact 2.1 and Fact 2.2, Corollary 1.2 can be drawn as that of Kuelbs and Li [8] did. By
Fact 2.1 and a similar argument of Chen, Kuelbs and Li [1], Corollary 1.3 is followed.

3 The Functional LIL for Integrated Kiefer Process

Let W (x, y) be a two parameter Wiener process. A Kiefer process K(x, y), 0 ≤ x ≤ 1, 0 ≤
y < ∞ is defined by

K(x, y) = W (x, y)− xW (1, y).

In this section, we will use the method in Theorem 1.1 to study the functional LIL for integrated
Kiefer process and then with the help of strong approximation result of a Kiefer process to draw
the Chung LIL for integrated empirical process.

Theorem 3.1 Let {K(x, y), 0 ≤ x ≤ 1, 0 ≤ y < ∞} be a Kiefer process. Define Y0(x, y) =
K(x, y)/

√
y, Ym(x, y) =

∫ x

0
Ym−1(s, y)ds and M̃n(x) = sup

0≤t≤x
|Ym(t, n)|,

η̃n(x) =
M̃n(x)

(κm/ log log n)(2m+1)/2
.

Then

P ({η̃n(x)} ⇒ K̃) = 1,

where

K̃ =
{

f : f ∈ Ũ,

∫ 1

0

f−2/(2m+1)(t)dt ≤ 1
}

and

Ũ = {f : f maps [0, 1] to [0,∞] with f(0) = 0, f is right continuous, nondecreasing}.

Proof Noting that

K(t, y) = W (t, y)− tW (1, y),

where {W (x, y), 0 ≤ x, y < ∞} is a two-parameter (standard) Brownian motion, we have

Ym(t, y) =
∫ t

0

Ym−1(x, y)dx =
∫ t

0

(t− s)m

√
y m!

dW (s, y)− tm√
y m!

W (1, y).

It is easy to see that for any y > 0,

lim
ε→0

ε−2/(2m+1) log P
(

sup
0≤t≤1

∣∣∣ tm√
y m!

W (1, y)
∣∣∣ ≤ ε

)

= lim
ε→0

ε−2/(2m+1)P (|N(0, 1)| ≤ m!ε) = 0. (3.1)

Hence, by the independence of
∫ t

0
(t−s)m

√
y m! dW (s, y) and tm

√
y m!W (1, y), it follows from (1.1) that
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for any δ > 0,

lim
ε→0

ε−2/(2m+1) log P
(

sup
0≤t≤1

|Ym(t, y)| ≤ ε
)

≥ lim
ε→0

ε−2/(2m+1)
(

log P
(

sup
0≤t≤1

∣∣∣
∫ t

0

(t− s)m

√
ym!

dW (s, y)
∣∣∣ ≤ (1− δ)ε

)

+ log P
(

sup
0≤t≤1

∣∣∣ tm√
ym!

W (1, y)
∣∣∣ ≤ δε

))

= lim
ε→0

ε−2/(2m+1) log P
(

sup
0≤t≤1

|Xm(t)| ≤ (1− δ)ε
)

= −κm(1− δ)2/(2m+1). (3.2)

On the other hand, by (1.1)

− κm(1 + δ)2/(2m+1)

= lim
ε→0

ε−2/(2m+1) log P
(

sup
0≤t≤1

∣∣∣
∫ t

0

(t− s)m

√
ym!

dW (s, y)
∣∣∣ ≤ (1 + δ)ε

)

≥ lim
ε→0

ε−2/(2m+1)
(

log P
(

sup
0≤t≤1

|Ym(t, y)| ≤ ε
)

+ log P
(

sup
0≤t≤1

∣∣∣ tm√
ym!

W (1, y)
∣∣∣ ≤ δε

))

= lim
ε→0

ε−2/(2m+1)
(

log P
(

sup
0≤t≤1

|Ym(t, y)| ≤ ε
)

+ log P (|N(0, 1)| ≤ m!δε)
)

= lim
ε→0

ε−2/(2m+1) log P
(

sup
0≤t≤1

|Ym(t, y)| ≤ ε
)
. (3.3)

Let δ ↘ 0. Then (3.2) and (3.3) imply

lim
ε→0

ε−2/(2m+1) log P
(

sup
0≤t≤1

|Ym(t, y)| ≤ ε
)

= −κm. (3.4)

Furthermore, by Lemma 2.1, Lemma 2.4 and (3.1), we have that for any fixed sequences
{ti}l

i=1, {ai}l
i=1 and {bi}l

i=1 such that 0 = t0 < t1 < · · · < tl ≤ 1, and 0 ≤ a1 < b1 ≤ a2 < b2 ≤
· · · ≤ al < bl < ∞,

lim
ε→0

ε2/(2m+1) log P{aiε ≤ M̃n(ti) ≤ biε, 1 ≤ i ≤ l} = −κm

l∑

i=1

ti − ti−1

b
2/(2m+1)
i

. (3.5)

Similar to the proof of Theorem 1.1, to show Theorem 3.1, it is enough to establish the
following three propositions

P ({η̃n} is relatively compact in U) = 1, (3.6)

P (C({η̃n}) ⊆ K̃) = 1, (3.7)

P (K̃ ⊆ C({ηn})) = 1. (3.8)

By (3.3) and (3.5) and along the proof of Chen, Kuelbs and Li [8], (3.6) and (3.7) are easy to
obtain. The proof of (3.8) is very similar to that of Theorem 1.1; we only need to revise the
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definitions of the sets Al, Bl, Cl and define

Ãl =
{

sup
0≤t≤ti

( κm

log log nl

)−(2m+1)/2∣∣∣
∫ t

0

(t− s)m

m!
√

n
d(W (s, n)−W (s, nl−1tp))

− tm(W (1, n)−W (1, nl−1tp))
m!
√

n

∣∣∣ ∈
(
f(ti)− θ

2
, f(ti) +

θ

2

)
, i ≤ p

}
,

B̃l =
{

sup
0≤t≤ti

( κm

log log nl

)−(2m+1)/2∣∣∣
∫ t

0

(t− s)m

m!
√

n
dW (s, nl−1tp)

+
tmW (1, nl−1tp)

m!
√

n

∣∣∣ ≤ θ

2
, 1 ≤ i ≤ p

}
,

C̃l =
{

η̃nl
(ti) ∈ (f(ti)− θ, f(ti) + θ), 1 ≤ i ≤ p

}
.

Then along the proof of Theorem 1.1, we can get the conclusion of Theorem 3.1.

Theorem 3.2 Let {αn(t), 0 ≤ t ≤ 1} be the empirical process based on the first n observa-
tions of independent variables with the uniform distribution in (0, 1). Define Λ0(t, n) = αn(t)
and

Λm(t, n) =
∫ t

0

Λm−1(x, n)dx.

Then
lim inf
n→∞

(log log n)(2m+1)/2 sup
o≤t≤1

|Λm(t, n)| = κm a.s.

Proof By Theorem 3.1, we have

lim inf
n→∞

(log log n)(2m+1)/2 sup
o≤t≤1

|Ym(t, n)| = κm a.s. (3.9)

By a strong approximation result of Kiefer [7] (see also [3, Theorem 4.3.2]) and (3.9), Theorem
3.2 follows, and the proof is completed.
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