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Abstract This paper is concerned with a class of semilinear hyperbolic systems in odd
space dimensions. Our main aim is to prove the existence of a small amplitude solution
which is asymptotic to the free solution as t → −∞ in the energy norm, and to show it
has a free profile as t → +∞. Our approach is based on the work of [11]. Namely we use
a weighted L

∞ norm to get suitable a priori estimates. This can be done by restricting
our attention to radially symmetric solutions. Corresponding initial value problem is also
considered in an analogous framework. Besides, we give an extended result of [14] for three
space dimensional case in Section 5, which is prepared independently of the other parts of
the paper.
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1 Introduction

This paper is concerned with the following system of semilinear wave equations:

{
∂2

t u1 − c21∆u1 = F (u2) in R
n × R,

∂2
t u2 − c22∆u2 = G(u1) in R

n × R,
(1.1)

where n ≥ 2, c1 and c2 are positive constants,

F (u2) = |u2|
p or |u2|

p−1u2, G(u1) = |u1|
q or |u1|

q−1u1 with 1 < p ≤ q.

In previous papers [13, 14], we studied the above system when n = 2 or n = 3, and proved the

existence of a global solution of the Cauchy problem for sufficiently small initial data, provided

Γ > 0 and p∗ > 0. Here p∗ and Γ are defined as follows:

p∗ =
n− 1

2
p−

n+ 1

2
, q∗ =

n− 1

2
q −

n+ 1

2
, (1.2)

α = pq∗ − 1, β = qp∗ − 1, Γ = α+ pβ. (1.3)
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Moreover, under the same assumption as above, we proved the following: Let u−i (x, t) ∈ C2(Rn×

R), i = 1, 2 be solutions of the homogeneous wave equations

∂2
t ui − c2i ∆ui = 0 in R

n × R (1.4)

with small initial data at t = 0. Then there exists uniquely a small amplitude solution (u1, u2) ∈

(C2(Rn × R))2 of (1.1) which is asymptotic to (u−1 , u
−
2 ) as t → −∞ in the energy norm. In

addition, there exists uniquely a pair of solutions (u+
1 , u

+
2 ) ∈ (C2(Rn × R))2 of (1.4) which

is asymptotic to (u1, u2) as t → ∞ in the energy norm. Namely, one can define a scattering

operator on a dense set of a neighborhood of 0 in the energy space by

(u−1 (x, 0), u−2 (x, 0), ∂tu
−
1 (x, 0), ∂tu

−
2 (x, 0)) (1.5)

7−→ (u+
1 (x, 0), u+

2 (x, 0), ∂tu
+
1 (x, 0), ∂tu

+
2 (x, 0)).

Thus we are interested mainly in the case where n ≥ 4 in the present article. (As for the case

of the single equation ∂2
t u− ∆u = |u|p, see [8, 17–19].)

First we focus on the Cauchy problem for (1.1) in R
n × (0,∞). In [4], the problem was

studied when c1 = c2, and the following condition was introduced besides Γ > 0, in order to

show the existence of a global small solution for n ≥ 4:

p− 1

pq − 1
>

n− 1

2(n+ 1)
, i.e., q <

2(n+ 1)

n− 1
−

n+ 3

(n− 1)p
. (1.6)

Since solutions of the Cauchy problem generically blow up in finite time if Γ < 0 even though

the initial data are small enough (see [3, 4, 6, 7]), and the blow-up occurs also when Γ = 0 and

either n = 2 or n = 3 (see [1, 5, 15, 16]), we need to assume Γ > 0 for the global existence.

While, it is an open problem whether (1.6) is an optimal condition to prove the existence result

or not.

In the present paper we prove the condition (1.6) can be relaxed by q < n+1
n−3 , as long as the

solution is radially symmetric and n is odd (for the details, see Theorems 4.1 and 4.2 below).

Indeed, (1.6) with p ≤ q yields 1 < q < n+3
n−1 . This means that the admissible region for the

exponents p, q (1 < p ≤ q) determined by Γ > 0 and q < n+1
n−3 is larger than that determined by

Γ > 0 and (1.6), since n+3
n−1 <

n+1
n−3 . Besides, we show that the condition p∗ > 0 assumed in [14]

for n = 3 can be removed, as in [3] where the case of c1 = c2 was handled (see also Theorem

5.1 below).

Next we turn our attention to asymptotic behavior as t → ±∞ of solutions to (1.1). The

aim here is to extend the result obtained in [13, 14] to the case where n is odd. Actually, we

can define the operator (1.5) when n is odd, provided that u−i (x, 0) and ∂tu
−
i (x, 0) are radially

symmetric and that Γ > 0 and

q∗ ≤ 1, i.e., q ≤
n+ 3

n− 1
if c1 = c2, (1.7)

q∗ < q, i.e., q <
n+ 1

n− 3
if c1 6= c2 (1.8)

(for the details, see Theorems 3.1 and 3.2 below).
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The proof of these results is based on the basic estimates given by Theorems 2.1 and 2.2

below. Those estimates are the refinements of the corresponding estimates obtained by [10, 11]

in which the single equation ∂2
t u−∆u = |u|p was considered. In order to treat the system (1.1)

with the possibly unequal propagation speeds, we need to extend the previous estimates as in

the theorems.

Although in the present article we restrict ourselves to the case of odd space dimensions

n = 2m+3 with m a nonnegative integer, we can also obtain the analogous results in even space

dimensions n = 2m+ 2, by strengthening the approach of [12]. (The details will be published

elsewhere.)

The plan of this paper is as follows. In the next section we derive a priori estimates for

radially symmetric solutions of the linear inhomogeneous wave equations in odd space dimen-

sions, which will play a crucial role in dealing with the system (1.1). Section 3 is devoted to

the study of the asymptotic behavior of radially symmetric solutions to the system (1.1). The

Cauchy problem for (1.1) in R
n × [0,∞) is discussed in Sections 4. We formulate the Cauchy

problem for the case of n = 3, independent of the other sections, and extend the result of [14]

to the case where p∗ ≤ 0 in Sections 5.

2 Linear Wave Equations

This section is concerned with radially symmetric solutions of linear wave equations. First

we consider the homogeneous wave equation

utt − c2
(
urr +

n− 1

r
ur

)
= 0 in Ω, (2.1)

where c is a positive constant, Ω = {(r, t) ∈ R
2; r > 0}, n = 2m+3 and m is a positive integer.

Let f ∈ C2([0,∞)) and g ∈ C1([0,∞)). Then it is shown in [11] that a solution u(r, t) ∈ C2(Ω)

of the equation (2.1) satisfying

u(r, 0) = f(r), ut(r, 0) = g(r) for r > 0 (2.2)

is given by

u(r, t) = Kc[f, g](r, t) for (r, t) ∈ Ω,

Kc[f, g](r, t) =
1

c

∫ |r+ct|

|r−ct|

g(λ)K(λ, r, ct)dλ +
1

c

∂

∂t

∫ |r+ct|

|r−ct|

f(λ)K(λ, r, ct)dλ.
(2.3)

Here we have set

K(λ, r, t) =
(−1)m

2m!

(λ
r

)2m+1( ∂

∂λ

1

2λ

)m

φm(λ, r, t) (2.4)

with

φ(λ, r, t) = r2 − (λ − t)2. (2.5)

The following lemma is proven in [11, Section 2].
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Lemma 2.1 Let (λ, r, t) ∈ R
3 and r 6= 0. Then we have

K(−λ, r, t) = −K(λ, r, t), (2.6)

K(λ, r,−t) = K(λ, r, t). (2.7)

Moreover, suppose that r > 0, t ≥ 0 and |r − t| ≤ λ ≤ r + t. Then we have

|∂σφm(λ, r, t)| ≤ Cr2m−|σ| for |σ| ≤ 2m, (2.8)

|∂σK(λ, r, t)| ≤ C(r−m−1λm+1−|σ| + r−m−1−|σ|λm+1) for |σ| ≤ 2, (2.9)

where ∂ = (∂λ, ∂r, ∂t), and C is a constant depending only on m.

In order to state the decay estimates for solutions of (2.1)-(2.2), we introduce

Yµ(ε) = {(f(r), g(r)) ∈ C2([0,∞)) × C1([0,∞)); sup
r>0

(1 + r)1+µ|||(f, g)(r)||| ≤ ε} (2.10)

for ε, µ > 0, where |||(f, g)(r)||| is defined by

|||(f, g)(r)||| =

2∑

j=0

∣∣∣
( d

dr

)j

f(r)
∣∣∣(1 + r)m−1+j +

1∑

j=0

∣∣∣
( d

dr

)j

g(r)
∣∣∣(1 + r)m+j . (2.11)

In addition, for (r, t) ∈ Ω we set

w+(r, t) = (1 + r + t), wc(r, t) = (1 + |r − ct|). (2.12)

Then we have the following.

Theorem 2.1 Let ε, µ be positive numbers such that µ 6= 1. If (f, g) ∈ Yµ(ε), then

the Cauchy problem (2.1)–(2.2) admits uniquely a solution u(r, t) := Kc[f, g](r, t) ∈ C2(Ω)

satisfying

|u(r, t)| ≤

{
Cεr1−m(1 + r)−1w+(r, |t|)−1wc(r, |t|)

1−µ, if µ > 1,

Cεr1−m(1 + r)−1w+(r, |t|)−µ, if 0 < µ < 1,
(2.13)

|∂u(r, t)| ≤ Cεr−m(1 + r)−1wc(r, |t|)
−µ, (2.14)

|∂2u(r, t)| ≤ Cεr−m−1wc(r, |t|)
−1−µ (2.15)

for (r, t) ∈ Ω, where ∂ = (∂r , ∂t), C is a constant depending only on m, c and µ.

Proof When µ > 1, the theorem follows immediately from [11, Theorem 1.1]. The case

where 0 < µ < 1 can be also proven analogously, if we make use of the estimate

∫ t+r

t−r

(1 + |ξ|)−µdξ ≤ Cr(1 + r + |t|)−µ for (r, t) ∈ Ω, 0 < µ < 1. (2.16)

Hence we omit the details.

Next we consider the inhomogeneous wave equation

utt − c2
(
urr +

n− 1

r
ur

)
= F (r, t) (2.17)
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in Ω = {(r, t) ∈ R
2; r > 0} or Ω+ = {(r, t) ∈ Ω; t ≥ 0}, where c and n are as in (2.1) and F (r, t)

is a given function. A solution of the Cauchy problem for (2.17) in Ω+ with the zero initial

data at t = 0 is given by

L+
c (F )(r, t) =

1

c

∫ t

0

ds

∫ r+c(t−s)

|r−c(t−s)|

F (λ, s)K(λ, r, c(t− s))dλ for (r, t) ∈ Ω+, (2.18)

provided F satisfies certain conditions. Moreover, a solution of (2.17) in Ω having the asymptotic

behavior |u(r, t)| + |∂tu(r, t)| → 0 as t→ −∞ is given by

Lc(F )(r, t) =
1

c

∫ t

−∞

ds

∫ r+c(t−s)

|r−c(t−s)|

F (λ, s)K(λ, r, c(t− s))dλ for (r, t) ∈ Ω, (2.19)

provided F is chosen appropriately (see (2.72) below).

The aim of the present section is to prove the basic a priori estimates for L+
c (F ) and Lc(F )

which will be stated in Theorem 2.2 below.

Let µ and a be positive numbers with µ 6= 1. Let α, β, γ and δ be nonnegative real numbers

satisfying

α < m+ 1, (2.20)

γ + δ ≥ µ, (2.21)

α+ β + γ − (m+ 1) ≥ µ, (2.22)

α+ β + γ + δ − (m+ 1) > 1 + µ. (2.23)

For a function F (r, t) ∈ C(Ω+) with ∂rF (r, t) ∈ C(Ω+), we set

M+(F, a) = sup
(λ,s)∈Ω+

{|F (λ, s)| + |∂λF (λ, s)|λ(1 + λ)−1}

× λα(1 + λ)β(1 + λ+ s)γ(1 + |λ− as|)δ. (2.24)

For a function F (r, t) ∈ C(Ω) with ∂rF (r, t) ∈ C(Ω), we also put

M(F, a) = sup
(λ,s)∈Ω

{|F (λ, s)| + |∂λF (λ, s)|λ(1 + λ)−1}

× λα(1 + λ)β(1 + λ+ |s|)γ(1 + |λ− a|s||)δ. (2.25)

Then the main result of this section is the following.

Theorem 2.2 Let µ and a be positive numbers with µ 6= 1. Assume that α, β, γ and δ

fulfill (2.20) through (2.23).

(A) Let F (r, t) ∈ C(Ω), ∂rF (r, t) ∈ C(Ω) and M(F, a) <∞. Suppose that either µ > 1 or

a 6= c. Then Lc(F ) ∈ C2(Ω) and we have

|Lc(F )(r, t)| ≤ CM(F, a)r1−m(1 + r)−1Φ1(r, t;µ, c), (2.26)

|∂σLc(F )(r, t)| ≤ CM(F, a)r1−m−|σ|(1 + r)−2+|σ|Φ2(r, t;µ, c) (2.27)
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for (r, t) ∈ Ω and |σ| = 1, 2, where ∂ = (∂r, ∂t), and C is a constant depending only on µ, m,

c, a, α, β, γ and δ. Moreover Φ1 and Φ2 are defined as follows:

Φ1(r, t;µ, c) =

{
w+(r, |t|)−1wc(r, t)

1−µ, if µ > 1,

w+(r, |t|)−µ, if 0 < µ < 1,
(2.28)

Φ2(r, t;µ, c) =

{
wc(r, |t|)

−1wc(r, t)
1−µ, if µ > 1,

wc(r, t)
−µ, if 0 < µ < 1.

(2.29)

Here w+(r, t) and wc(r, t) are given by (2.12).

(B) Let F (r, t) ∈ C(Ω+), ∂rF (r, t) ∈ C(Ω+) and M+(F, a) < ∞. Then L+
c (F ) ∈ C2(Ω+)

and we have

|L+
c (F )(r, t)| ≤ CM+(F, a)r1−m(1 + r)−1Φ1(r, t;µ, c), (2.30)

|∂σL+
c (F )(r, t)| ≤ CM+(F, a)r1−m−|σ|(1 + r)−2+|σ|Φ3(r, t;µ, c) (2.31)

for (r, t) ∈ Ω+ and |σ| = 1, 2, where we have set

Φ3(r, t;µ, c) =




wc(r, t)

−µ, if µ > 1,

wc(r, t)
−µ

( 1 + r + ct

1 + |r − ct|

)(1−µ)χ

, if 0 < µ < 1.
(2.32)

Here χ = 1 if a = c and α+ β + γ − (m+ 1) ≤ 1, while χ = 0 otherwise.

Remark 2.1 When (r, t) ∈ Ω with t ≤ 0, we see from (2.12) and (2.28) that Φ1(r, t;µ, c)

is equivalent to (1 + r + |t|)−µ for any µ(6= 1) and c > 0.

Proof of Theorem 2.2 We begin with proving the part (A). It suffices to show the theorem

for c = 1, since Lc(F )(r, t) = L1(Fc)(r, ct) with Fc(r, t) =
F (r, t

c
)

c2 . We set

w(s, r, t) =

∫ λ+

|λ−|

F (λ, s)K(λ, r, t− s)dλ (2.33)

with λ± = t− s± r, so that (2.19) yields

L1(F )(r, t) =

∫ t

−∞

w(s, r, t)ds for (r, t) ∈ Ω. (2.34)

First we show that L1(F ) ∈ C2(Ω). Let l be an arbitrary positive number and set

Ωl = {(r, t) ∈ Ω : r + |t| < l}.

For (r, t) ∈ Ωl and s ≤ t, we shall prove that there is a number θ > 1 such that

|w(s, r, t)| ≤ CM(F, a)(1 + |s|)−θr−m, (2.35)

|∂r,tw(s, r, t)| ≤ CM(F, a)(1 + |s|)−θ(r−m + r−m−1), (2.36)

|∂2
r,tw(s, r, t)| ≤ CM(F, a)(1 + |s|)−θ{r−m + r−m−2 + r−m−1(1 + ψ(|λ−|))} (2.37)
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hold, provided either µ > 1 or a 6= 1 (c = 1). Here ψ(λ) = 0 for λ > 1 and we have set for

0 < λ ≤ 1,

ψ(λ) =





0, if α < m,

| logλ|, if α = m,

λm−α, if α > m.

(2.38)

Suppose that (2.35) through (2.37) are valid. Then we see from (2.34), (2.35) and (2.36)

that L1(F ) ∈ C1(Ωl). If α < m, then we have L1(F ) ∈ C2(Ωl), making use of (2.37). When

m ≤ α < m+ 1, one can also show that L1(F ) ∈ C2(Ωl), analogously to [11, Proposition 4.5].

Hence in order to prove L1(F ) ∈ C2(Ω), we have only to show (2.35) through (2.37).

We begin with proving them for θ = µ > 0. It follows from (2.33), (2.9) and (2.25) that

|w(s, r, t)| ≤ CM(F, a)r−m−1

∫ λ+

|λ−|

λm+1−α(1 + λ)−β(1 + λ+ |s|)−γ(1 + |λ− a|s||)−δdλ

= CM(F, a)r−m−1

∫ λ+

|λ−|

λ(1 + λ)−1W (λ, s)dλ for (r, t) ∈ Ω, s ≤ t, (2.39)

where C is a constant depending only on m and we have set

W (λ, s) = λm−α(1 + λ)1−β(1 + λ+ |s|)−γ(1 + |λ− a|s||)−δ. (2.40)

From (2.21) and (2.22) we get

W (λ, s) ≤ C(1 + λ+ |s|)−µλm−α for 0 < λ ≤ 1, s ∈ R, (2.41)

W (λ, s) ≤ C(1 + λ+ |s|)−µ{(1 + λ)−1−ρ + (1 + |λ− a|s||)−1−ρ} for λ ≥ 1, s ∈ R, (2.42)

where we have set

ρ = α+ β + γ + δ − (m+ 1) − (1 + µ), (2.43)

and C is a constant depending only on α, β, γ, δ, µ and a. Note that

ρ > 0 and ρ ≥ δ − 1, (2.44)

according to (2.22) and (2.23). Therefore we see from (2.39) and (2.20) that (2.35) holds for

θ = µ.

To derive (2.36), we use the following identity

∂r,tw(s, r, t) =

∫ λ+

|λ−|

F (λ, s)∂r,tK(λ, r, t− s)dλ+ F (λ+, s)K(λ+, r, t− s)

− (∂r,tλ−)F (|λ−|, s)K(λ−, r, t− s) for s ≤ t, (2.45)

which follows from (2.33) and (2.6). By (2.9) and (2.25) we get

|∂r,tw(s, r, t)| ≤ CM(F, a)
[
r−m−1

∫ λ+

|λ−|

(1 + λ)−1W (λ, s)dλ

+ r−m−2

∫ λ+

|λ−|

λ(1 + λ)−1W (λ, s)dλ + r−m−1λ(1 + λ)−1W (λ, s)
∣∣
λ=|λ±|

]
.
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Using (2.41), (2.42) and (2.20), we obtain (2.36) for θ = µ. Similarly one can also prove (2.37),

hence the detail is omitted (see also [11, Lemma 4.3]).

Next we show (2.35) through (2.37) for θ = 1 + µ, when µ > 0 and a 6= 1. If (r, t) ∈ Ωl and

t ≥ s ≥ −2l(1 + |a − 1|−1) − 2, then 1 + |s| is bounded by some constant which depends on l

and a. Therefore the previous argument shows that they are also valid for θ = 1 + µ.

On the contrary, suppose that

s ≤ −2l(1 + |a− 1|−1) − 2. (2.46)

Then we see that
|s|

2
≥ l,

|a− 1|

2
|s| ≥ l, |s| ≥ 2.

Hence we get

λ− = t− s− r ≥ |s| − l ≥
|s|

2
≥ 1, (2.47)

|λ− a|s|| ≥
|a− 1|

2
|s| for |λ−| ≤ λ ≤ λ+, (r, t) ∈ Ωl. (2.48)

Indeed, (2.48) follows from the fact that |λ− |s|| ≤ l for (r, t) ∈ Ωl, s ≤ 0 and |λ−| ≤ λ ≤ λ+.

Now we see from (2.23), (2.39), (2.42), (2.47) and (2.48) that (2.35) holds for θ = 1 + µ.

In a similar fashion, one can also prove (2.36) and (2.37) for θ = 1 + µ, making use of (2.45).

Thus we have shown that L1(F ) ∈ C2(Ω).

In order to derive the estimates (2.26) and (2.27), we will repeatedly make use of the

following two lemmas.

Lemma 2.2 Let µ and a be positive numbers with µ 6= 1. Let α, β, γ and δ be nonnegative

numbers satisfying (2.20) through (2.23). Suppose that either µ > 1 or a 6= 1. Then for

(r, t) ∈ Ω we have

∫ t

−∞

ds

∫ λ+

|λ−|

W (λ, s)dλ ≤ CrΦ1(r, t;µ, 1), (2.49)

∫ t

−∞

ds

∫ λ+

|λ−|

λ−1W (λ, s)dλ ≤ C(1 + |r − t|)−µ, (2.50)

where λ± = t − s ± r, W (λ, s) and Φ1(r, t;µ, c) are defined by (2.40) and (2.28) respectively,

and C is a constant depending only on m, µ, a, α, β, γ and δ.

Proof Fisrtly we shall prove (2.49). By (2.41) and (2.42) we see that the left-hand side of

(2.49) is estimated by some constant times a sum of the following integrals:

I1 =

∫ t

−∞

ds

∫ λ+

|λ−|

(1 + λ+ |s|)−µ(1 + λ)−1−ρdλ,

I2 =

∫ t

−∞

ds

∫ λ+

|λ−|

(1 + λ+ |s|)−µ(1 + |λ− a|s||)−1−ρdλ,

I3 =

∫ (t−r+1)∧t

t−r−1

ds

∫ 1∧λ+

|λ−|

(1 + |s|)−µλm−αdλ.
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Here and in what follows we write

a ∧ b = min{a, b}, a ∨ b = max{a, b} for a, b ∈ R. (2.51)

First we shall prove

I3 ≤ CrΦ1(r, t;µ, 1) for (r, t) ∈ Ω. (2.52)

Let r ≥ 1. By (2.20) we easily have I3 ≤ C(1 + |t− r|)−µ, which yields

I3 ≤

{
C(1 + |t| + r)−µ, if t ≥ 2r or t ≤ 0,

Cr(1 + r + |t|)−1(1 + |t− r|)−µ, if 0 ≤ t ≤ 2r.

Hence (2.52) follows when r ≥ 1. While, it follows that

I3 ≤ C(1 + |t− r|)−µ

∫ t−r+1

t−r−1

(1 + |λ−|
m−α)ds

∫ λ+

λ−

dλ ≤ Cr(1 + |t− r|)−µ

by (2.20). Since the above estimate implies (2.52) if 0 < r ≤ 1, we have proved (2.52).

Next we shall prove

I1 + I2 ≤ CrΦ1(r, t;µ, 1) for (r, t) ∈ Ω, (2.53)

or equivalently

∫ t

−∞

ds

∫ λ+

|λ−|

(1 + λ+ |s|)−µ(1 + |λ− b|s||)−1−ρdλ ≤ CrΦ1(r, t;µ, 1) (2.54)

for (r, t) ∈ Ω, b ≥ 0 and ρ > 0, provided either µ > 1 or 0 < µ < 1 and b 6= 1.

If µ > 1 and b > 0, then the estimate follows from [14, Propositions 2.4 and 2.5]. Besides,

the proofs given there are still valid when µ > 1 and b = 0. Therefore, we have only to consider

the case where

b 6= 1 and 0 < µ < 1. (2.55)

When t > 0, we divide the integral in (2.54) at s = 0 and denote by J± the integrals over

±s ≥ 0, so that the left-hand side of (2.54) is estimated by J+ + J−. If t ≤ 0, then we put

J+ = 0 and J− stands for the integral in (2.54) itself. Introducing new variables ξ, η by

ξ = λ+ s, η = λ− s, (2.56)

we have

J+ =
1

2

∫ r+t

|r−t|

(1 + ξ)−µdξ

∫ ξ

r−t

(
1 +

∣∣∣1 − b

2
ξ +

1 + b

2
η
∣∣∣
)−1−ρ

dη for t > 0, (2.57)

J− =
1

2

∫ t+r

t−r

dξ

∫ ∞

ξ∨|r−t|

(1 + η)−µ
(
1 +

∣∣∣1 + b

2
ξ +

1 − b

2
η
∣∣∣
)−1−ρ

dη, (2.58)

where we have used the notation in (2.51).
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First we deal with J+. Let t > 0. Since ρ > 0 and 1 + b 6= 0, we have

J+ ≤ C

∫ r+t

|r−t|

(1 + ξ)−µdξ,

which yields

J+ ≤ Cr(1 + r + |t|)−µ for r > 0, t > 0, 0 < µ < 1. (2.59)

Next we consider J−. Since (1 + η)−µ ≤ (1 + |ξ|)−µ for η ≥ ξ ∨ |r− t| and t− r ≤ ξ ≤ t+ r,

we have

J− ≤ C

∫ t+r

t−r

(1 + |ξ|)−µdξ

by (2.55). Therefore, for (r, t) ∈ Ω and 0 < µ < 1, we see from (2.16) that J− has the same

bounds as in (2.59). Thus the desired estimate (2.54) follows. Now we get (2.49) from (2.52)

and (2.53).

Secondly we shall prove (2.50). From (2.21) and (2.22) we have

λ−1W (λ, s) ≤ C{(1 + λ+ |s|)−µ(1 + λ)−2−ρ

+ (1 + λ+ |s|)−1−µ(1 + |λ− a|s||)−1−ρ} for λ ≥ 1, s ∈ R, (2.60)

where ρ(> 0) is the same number as in (2.43). By the above estimate together with (2.41), we

see that the left-hand side of (2.50) is evaluated by some constant times a sum of the following

integrals:

I4 =

∫ t

−∞

ds

∫ λ+

|λ−|

(1 + λ+ |s|)−µ(1 + λ)−2−ρdλ,

I5 =

∫ t

−∞

ds

∫ λ+

|λ−|

(1 + λ+ |s|)−1−µ(1 + |λ− a|s||)−1−ρdλ,

I6 =

∫ t−r+1

t−r−1

(1 + |s|)−µds

∫ 1

|λ−|

λm−α−1dλ.

It follows that

I6 ≤ C(1 + |r − t|)−µ

∫ t−r+1

t−r−1

(1 + ψ(|λ−|))ds ≤ C(1 + |r − t|)−µ

by (2.20). Here ψ(λ) is the function defined by (2.38). Applying (2.54) to I5, we get

I5 ≤ CrΦ1(r, t; 1 + µ, 1) ≤ C(1 + |r − t|)−µ

by (2.28). Besides, thanks to the following inequality

|λ−| + |s| ≥ |r − t| for s ≤ t, (2.61)

we get

(1 + |r − t|)µI4 ≤

∫ t

−∞

ds

∫ λ+

|λ−|

(1 + λ)−2−ρdλ ≤ C.
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Thus we obtain (2.50) and the proof is complete.

Lemma 2.3 Suppose that the hypotheses of the preceding lemma are fulfilled. Then for

(r, t) ∈ Ω we have

∫ t

−∞

W (λ+, s)ds ≤ CΦ2(r, t;µ, 1), (2.62)

∫ t

−∞

W (|λ−|, s)ds ≤ C(1 + |r − t|)−µ, (2.63)

where λ± = t − s ± r, W (λ, s) and Φ2(r, t;µ, c) are defined by (2.40) and (2.29) respectively,

and C is a constant depending only on m, µ, a, α, β, γ and δ.

Proof First we shall prove (2.62). By (2.41) and (2.42) we see that the left-hand side is

estimated by some constant times a sum of the following integrals:

I1 =

∫ t

−∞

(1 + λ+ + |s|)−µ(1 + λ+)−1−ρds,

I2 =

∫ t

−∞

(1 + λ+ + |s|)−µ(1 + |λ+ − a|s||)−1−ρds,

I3 = 0 for r > 1,

I3 =

∫ t

t+r−1

(1 + |s|)−µ(λ+)m−αds for 0 < r ≤ 1.

From (2.20) we easily have

I3 ≤ C(1 + r + |t|)−µ for (r, t) ∈ Ω. (2.64)

Next we shall prove

I1 + I2 ≤ CΦ2(r, t;µ, 1) for (r, t) ∈ Ω, (2.65)

which follows, as is easily seen, from

∫ t

−∞

(1 + λ+ + |s|)−µ(1 + |λ+ − bs|)−1−ρds ≤ CΦ2(r, t;µ, 1) (2.66)

for (r, t) ∈ Ω, b ∈ R and ρ > 0, provided either µ > 1 or 0 < µ < 1 and b 6= −1.

By I we denote the left-hand side of (2.66). Since

λ+ + |s| ≥ r + |t| for s ≤ t, (2.67)

it is easy to see that

I ≤ (1 + r + |t|)−µ

∫ ∞

−∞

(1 + |t+ r − (1 + b)s|)−1−ρds,

which yields the desired estimate, if b 6= −1.

Therefore, it remains to consider the case where b = −1 and µ > 1. Then

I = (1 + |t+ r|)−1−ρ
[ ∫ t∧0

−∞

(1 + λ+ − s)−µds+

∫ t∨0

0

(1 + λ+ + s)−µds
]
.
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Since µ > 1, the above integrals are both evaluated by C(1 + r + |t|)1−µ, hence (2.66) follows.

Now we get (2.62) from (2.64) and (2.65).

Next we shall prove (2.63). By (2.41) and (2.42) we see that the left-hand side is estimated

by some constant times a sum of the following integrals:

I1 =

∫ t

−∞

(1 + |λ−| + |s|)−µ(1 + |λ−|)
−1−ρds,

I2 =

∫ t

−∞

(1 + |λ−| + |s|)−µ(1 + ||λ−| − a|s||)−1−ρds,

I3 =

∫ (t−r+1)∧t

t−r−1

(1 + |s|)−µ|λ−|
m−αds.

From (2.20) we easily have

I3 ≤ C(1 + |r − t|)−µ for (r, t) ∈ Ω. (2.68)

Next we shall prove that I1 and I2 have the same bound as in (2.68), which is a consequence of

∫ t

−∞

(1 + |λ−| + |s|)−µ(1 + |λ− − bs|)−1−ρds ≤ C(1 + |r − t|)−µ (2.69)

for (r, t) ∈ Ω, b ∈ R and ρ > 0, provided either µ > 1 or 0 < µ < 1 and b 6= −1.

When b 6= −1, making use of (2.61), we see that (2.69) follows, as before.

If b = −1 and µ > 1, then the left-hand side of (2.69) is estimated by

(1 + |r − t|)−ρ+ε−µ

∫ ∞

−∞

(1 + |s|)−1−εds ≤ C(1 + |r − t|)−µ,

where we have used (2.61) and taken a positive number ε satisfying ε ≤ µ− 1 and ε ≤ ρ. Thus

we have proved (2.69), and hence (2.63) follows. The proof is complete.

We are now in a position to derive the estimates (2.26) and (2.27). First we deal with the

case where r ≥ 1. It follows from (2.19), (2.25), (2.9) with |σ| = 0 and (2.40) that

|L1(F )(r, t)| ≤ CM(F, a)r−m−1

∫ t

−∞

ds

∫ λ+

|λ−|

W (λ, s)dλ.

Making use of (2.49), we get (2.26) for r ≥ 1.

Next we shall prove (2.27) for |σ| = 1. It follows from (2.34), (2.45), (2.9), (2.25) and (2.40)

that

|∂L1(F )(r, t)| ≤ CM(F, a)

4∑

k=1

Ik for (r, t) ∈ Ω, (2.70)

where

I1 = r−m−2

∫ t

−∞

ds

∫ λ+

|λ−|

W (λ, s)dλ,

I2 = r−m−1

∫ t

−∞

ds

∫ λ+

|λ−|

(1 + λ)−1W (λ, s)dλ,
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I3 = r−m−1

∫ t

−∞

W (λ+, s)ds,

I4 = r−m−1

∫ t

−∞

W (|λ−|, s)ds.

Making use of Lemma 2.2 for I1, I2 and Lemma 2.3 for I3, I4, we get

I1 ≤ Cr−m−1Φ1(r, t;µ, 1),

I3 ≤ Cr−m−1Φ2(r, t;µ, 1),

I2 + I4 ≤ Cr−m−1(1 + |r − t|)−µ.

Thus (2.27) with |σ| = 1 for r ≥ 1 immediately follows, since Φ1(r, t;µ, 1) and (1 + |r − t|)−µ

are dominated by Φ2(r, t;µ, 1) (recall (2.28) and (2.29)).

Finally we shall prove (2.27) for |σ| = 2. Since if r ≥ 1, then (2.9) implies

|∂K(λ, r, t)| ≤ Cr−m−1λm(1 + λ),

analogously to (2.70) we have

|∂r∂r,tL1(F )(r, t)| ≤ CM(F, a)
4∑

k=1

Ik for (r, t) ∈ Ω with r ≥ 1, (2.71)

where

I1 = r−m−3

∫ t

−∞

ds

∫ λ+

|λ−|

W (λ, s)dλ,

I2 = r−m−1

∫ t

−∞

ds

∫ λ+

|λ−|

λ−1(1 + λ)−1W (λ, s)dλ,

I3 = r−m−1

∫ t

−∞

W (λ+, s)ds,

I4 = r−m−1

∫ t

−∞

W (|λ−|, s)ds.

As before, we see that (2.27) holds for ∂r∂r,tL1(F ), if r ≥ 1.

To estimate ∂2
tL1(F ) we note that L1(F ) is a solution of (2.17) with c = 1, namely

∂2
tL1(F )(r, t) =

(
∂2

r +
n− 1

r
∂r

)
L1(F )(r, t) + F (r, t) for (r, t) ∈ Ω. (2.72)

This identity can be derived from (2.34) based on the estimtes (2.35) through (2.37).

We also claim that

|F (r, t)| ≤ CM(F, a)r−m−1(1 + r + |t|)−µ for (r, t) ∈ Ω. (2.73)

In fact, it follows from (2.25) and (2.20) that

|F (r, t)| ≤ CM(F, a)r−m−1(1 + r)m+1−α−β(1 + r + |t|)−γ(1 + |r − a|t||)−δ for (r, t) ∈ Ω.

Using (2.22) (resp. (2.21)) when r ≥ 1 and a|t| ≤ 2r (resp. 0 < r ≤ 1 or a|t| ≥ 2r), we get

(2.73).
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Since we have already shown that (2.27) holds for r ≥ 1 except for ∂2
tL1(F ), we can conclude

that it is also valid for ∂2
tL1(F ) from (2.72) and (2.73). Thus it remains to show (2.26) and

(2.27) for 0 < r ≤ 1. This can be done if we show the following proposition.

Proposition 2.1 Suppose that the hypotheses of Lemma 2.2 are fulfilled and that F (r, t) ∈

C(Ω), ∂rF (r, t) ∈ C(Ω) and M(F, a) < ∞. Then for (r, t) ∈ Ω with 0 < r ≤ 1 and |σ| ≤ 2 we

have

|∂σL1(F )(r, t)| ≤ CM(F, a)r1−m−|σ|(1 + |t|)−µ. (2.74)

Proof In what follows we suppose that (r, t) ∈ Ω with 0 < r ≤ 1. From (2.34) we have for

|σ| ≤ 2,

∂σ
r,tL1(F )(r, t) =

∫ t−2r

−∞

∂σ
r,tw(s, r, t)ds +

∫ t

t−2r

∂σ
r,tw(s, r, t)ds + χσF (r, t) (2.75)

≡ Aσ(r, t) +Bσ(r, t) + χσF (r, t),

where χσ = 1 if ∂σ
r,t = ∂2

t , while χσ = 0 otherwise.

First we shall prove

|Aσ(r, t)| ≤ CM(F, a)r1−m−|σ|(1 + |t|)−µ for |σ| ≤ 2, (2.76)

which follows from

|∂σ
r,tw(s, r, t)| ≤ CM(F, a)r1−m−|σ|

(1

r

∫ λ+

λ−

W (λ, s)ds+W (λ+, s) +W (λ−, s)
)

for s ≤ t− 2r, |σ| ≤ 2 (2.77)

by Lemmas 2.2 and 2.3, since 0 < r ≤ 1.

It follows from (2.4) that K(λ, r, t) is of the following form

K(λ, r, t) = r−2m−1
m∑

j=0

Cjλ
j+1∂

j
λφ

m(λ, r, t),

where Cj are constants. Hence, if we set

wj(s, r, t) =

∫ λ+

λ−

λj+1F (λ, s)∂j
λφ

m(λ, r, t− s)dλ, (2.78)

then (2.33) yields

w(s, r, t) = r−2m−1
m∑

j=0

Cjwj(s, r, t) for s ≤ t− 2r. (2.79)

Therefore, (2.77) follows from

|∂σ
r,twj(s, r, t)| ≤ CM(F, a)rm+2−|σ|

(1

r

∫ λ+

λ−

W (λ, s)ds+W (λ+, s) +W (λ−, s)
)

for 0 ≤ j ≤ m, s ≤ t− 2r, |σ| ≤ 2. (2.80)
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Fisrt we consider the case 0 ≤ j ≤ m− 1. When λ ≥ λ− ≥ r, we get from (2.8)

|∂σ
r,t∂

j
λφ

m(λ, r, t− s)| ≤ Cr2m−j−|σ| ≤ Crm+1−|σ|λm−1−j for 0 ≤ j ≤ m− 1, |σ| ≤ 2. (2.81)

Therefore, we obtain (2.80) for 0 ≤ j ≤ m − 1 from (2.78) and (2.25). The last two terms in

(2.80) appear from the estimate for the second derivatives of wm−1(s, r, t).

Next we consider the case j = m. Integrating by parts, we have

wm(s, r, t) =

∫ λ+

λ−

Fm(λ, s)∂m−1
λ φm(λ, r, t− s)dλ, (2.82)

where Fm(λ, s) = −∂λ(λm+1F (λ, s)). Since (2.25) yields

|Fm(λ, s)| ≤ CM(F, a)λm−α(1 + λ)1−β(1 + λ+ |s|)−γ(1 + |λ− a|s||)−δ for (λ, s) ∈ Ω,

we get (2.80) for j = m, by using (2.81) with j = m− 1. Thus we have shown (2.76).

Next we shall prove

|Bσ(r, t)| ≤ CM(F, a)r1−m−|σ|(1 + |t|)−µ for |σ| ≤ 2. (2.83)

Since 0 < r ≤ 1, we have

|λ−| ≤ λ+ ≤ 3r ≤ 3 for t− 2r ≤ s ≤ t. (2.84)

From (2.40), (2.84), (2.21) and 0 < r ≤ 1, we get

W (λ, s) ≤ Cλm−α(1 + |t|)−µ for |λ−| ≤ λ ≤ λ+, t− 2r ≤ s ≤ t. (2.85)

Note that (2.9) yields

|∂σK(λ, s, t− s)| ≤ Cr−m−1λm+1−|σ| for λ ≤ 3r, |σ| ≤ 2, (2.86)

where ∂ = (∂λ, ∂r, ∂t).

First we derive (2.83) for σ = 0. It follows from (2.39), (2.85), (2.84) and (2.20) that

|w(s, r, t)| ≤ CM(F, a)r−m−1(1 + |t|)−µ

∫ λ+

|λ−|

dλ

≤ CM(F, a)r−m(1 + |t|)−µ for t− 2r ≤ s ≤ t.

Therefore we get (2.83) for σ = 0.

Next we deal with the case |σ| = 1. It follows from (2.45), (2.25), (2.86) and (2.40) that

|∂r,tw(s, r, t)| ≤ CM(F, a)r−m−1
[ ∫ λ+

|λ−|

W (λ, s)dλ + λ+W (λ+, s) + |λ−|W (|λ−|, s)
]
.

By (2.85), (2.20) and (2.84), we see that (2.83) holds for |σ| = 1.

Finally we deal with the case |σ| = 2. As above we have

∑

|σ|=2

|Bσ(r, t)| ≤ CM(F, a)r−m−1(1 + |t|)−µ

∫ t

t−2r

[
(λ+)m−α + |λ−|

m−α +

∫ 3

|λ−|

λm−1−αdλ
]
ds.
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Since the above integral is bounded for 0 < r ≤ 1, according to (2.20), we thus obtain (2.83)

for |σ| = 2.

Now the desired estimate (2.74) follows from (2.75), (2.76), (2.83) and (2.73) when (r, t) ∈ Ω

with 0 < r ≤ 1. The proof is complete.

Since we have shown the part (A) in Theorem 2.2 so far, it remains to show the part (B).

The procedure is analogous to the proof of the part (A) when either µ > 1 or a 6= c. Hence we

suppose in what follows that

a = c = 1 and 0 < µ < 1. (2.87)

Seeing the proof of (2.35) through (2.37) with θ = 1 + µ, we find that they are still valid for

0 ≤ s ≤ t. Hence L+
1 (F ) ∈ C2(Ω+). As for the estimates (2.30) and (2.31), it suffices to modify

Lemmas 2.2 and 2.3 so that they include the case of a = c. In fact, the following estimates

(2.88), (2.89), (2.91) and (2.92) enable us to derive the same conclusion of Proposition 2.1 under

the assumption (2.87).

Fisrt we show that

∫ t

0

ds

∫ λ+

|λ−|

W (λ, s)dλ ≤ CrΦ1(r, t;µ, 1), (2.88)

∫ t

0

ds

∫ λ+

|λ−|

λ−1W (λ, s)dλ ≤ C(1 + |r − t|)−µ (2.89)

hold for (r, t) ∈ Ω+, a = 1 and 0 < µ < 1. Since (2.59) holds for b = 1, we have

∫ t

0

ds

∫ λ+

|λ−|

(1 + λ+ s)−µ(1 + |λ− bs|)−1−ρdλ ≤ CrΦ1(r, t;µ, 1) (2.90)

for (r, t) ∈ Ω+, b ≥ 0, ρ > 0, and 0 < µ < 1. Therefore, repeating the argument in the proof of

Lemma 2.2, we get (2.88) and (2.89).

Next we prove

∫ t

0

W (λ+, s)ds ≤ CΦ2(r, t;µ, 1), (2.91)

∫ t

0

W (|λ−|, s)ds ≤ CΦ3(r, t;µ, 1) (2.92)

for (r, t) ∈ Ω+, a = 1 and 0 < µ < 1. Here Φ3(r, t;µ, 1) is defined by (2.32). Since (2.66) holds

for b = 1, we get (2.91) analogously to (2.62).

To prove (2.92), we devide the argument into two cases. First suppose that

α+ β + γ − (m+ 1) ≤ 1. (2.93)

Then χ = 1 in (2.32). Seeing the proof of (2.63), we find that our task is reduced to the

following estimate:

∫ t

0

(1 + |λ−| + s)−µ(1 + |λ− − bs|)−1−ρds ≤ CΦ3(r, t;µ, 1) (2.94)
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for (r, t) ∈ Ω+, b ∈ R, ρ > 0, and 0 < µ < 1.

When b 6= −1, making use of (2.61), we see that the left-hand side of (2.94) is estimated

by C(1 + |r − t|)−µ. Hence (2.94) holds. On the contrary, if b = −1, then the left-hand side of

(2.94) is equal to

(1 + |r − t|)−1−ρ

∫ t

0

(1 + |λ−| + s)−µds ≤ C(1 + |r − t|)−1−ρ(1 + t)1−µ

= C(1 + |r − t|)−µ−ρ
( 1 + t

1 + |r − t|

)1−µ

,

which implies (2.94).

Next suppose that (2.93) does not hold. Then (2.43) yields δ < µ+ ρ. By (2.21) and (2.43),

we have

W (λ, s) ≤ C{(1 + λ+ s)−µ(1 + λ)−1−ρ + (1 + λ+ s)δ−µ−1−ρ(1 + |λ− as|)−δ}

for λ ≥ 1 and s ≥ 0. Employing this bound instead of (2.42), we see that it suffces to show

∫ t

0

(1 + |λ−| + s)δ−µ−1−ρ(1 + |λ− − bs|)−δds ≤ C(1 + |r − t|)−µ (2.95)

for (r, t) ∈ Ω+, b ∈ R and 0 < µ < 1, provided ρ satisfies (2.44).

When b 6= −1, it is easy to see from (2.44) and (2.61) that (2.95) holds. While, in the case

where b = −1, we take a positive number ε so that ε ≤ µ+ ρ− δ and ε ≤ ρ. Then we see that

the left-hand side of (2.95) is equal to

(1 + |r − t|)−δ

∫ t

0

(1 + |λ−| + s)δ−µ−1−ρds ≤ C(1 + |r − t|)ε−µ−ρ

∫ t

0

(1 + s)−1−εds.

Thus we get (2.95), hence (2.92). This completes the proof of the part (B) in Theorem 2.2.

Theorem 2.3 Let µ and a be positive numbers with µ 6= 1. Assume that α, β, γ and δ

fulfill (2.20) through (2.23).

(A) Let F (r, t) ∈ C(Ω) and

M̃(F, a) := sup
(λ,s)∈Ω

|F (λ, s)|λα+1(1 + λ)β−1(1 + λ+ |s|)γ(1 + |λ− a|s||)δ <∞. (2.96)

Suppose that either µ > 1 or a 6= c. Then we have

|Lc(F )(r, t)| ≤ CM̃(F, a)r−mΦ1(r, t;µ, c) for (r, t) ∈ Ω, (2.97)

where C is a constant depending only on µ, m, c, a, α, β, γ and δ.

(B) Let F (r, t) ∈ C(Ω+) and

M̃+(F, a) := sup
(λ,s)∈Ω+

|F (λ, s)|λα+1(1 + λ)β−1(1 + λ+ s)γ(1 + |λ− as|)δ <∞. (2.98)

Then we have

|L+
c (F )(r, t)| ≤ CM̃+(F, a)r−mΦ1(r, t;µ, c) for (r, t) ∈ Ω+. (2.99)
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Proof We may assume c = 1 without loss of generality. It follows from (2.33), (2.9), (2.96)

and (2.40) that

|w(s, r, t)| ≤ CM̃(F, a)r−m−1

∫ λ+

|λ−|

W (λ, s)dλ.

Therefore (2.97) with c = 1 follows from (2.34) and (2.49). Moreover, we get (2.99) with c = 1,

if we use (2.88) instead of (2.49). This completes the proof.

3 Asymptotic Behavior

In this section we study asymptotic behavior as t→ ±∞ of radially symmetric solutions to

the system (1.1) in odd space dimensions. For simplicity, we take F (v) = |v|p and G(u) = |u|q.

We shall write the solutions as u1(x, t) = u(|x|, t) and u2(x, t) = v(|x|, t), so that u(r, t) and

v(r, t) satisfy the following system:





utt − c21

(
urr +

n− 1

r
ur

)
= |v|p,

vtt − c22

(
vrr +

n− 1

r
vr

)
= |u|q

(3.1)

in Ω, where n and Ω are as in (2.1), and 1 < p ≤ q.

First we prepare two preliminary lemmas.

Lemma 3.1 Let n = 2m + 3 with m a positive integer and let 1 < p ≤ q. Assume that

conditions

Γ = Γ(p, q) > 0, (3.2)

q∗ < q, i.e., q <
n+ 1

n− 3
= 1 +

2

m
(3.3)

hold, where Γ and q∗ are defined by (1.3) and (1.2).

(A) If m ≥ 3, then we have

p∗ > 0, i.e., p >
n+ 1

n− 1
=
m+ 2

m+ 1
. (3.4)

(B) If m = 1 or m = 2, then we have

p∗ > −
1

2
. (3.5)

If we assume in addition that

q∗ ≤ 1, i.e., q ≤
n+ 3

n− 1
= 1 +

2

m+ 1
, (3.6)

then (3.4) holds.

Proof First we prove (A). Suppose contrary that

p∗ ≤ 0. (3.7)
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It follows from (1.3) that

p∗ =
Γ − pq∗ + 1 + p

pq
.

Therefore, (3.7), (3.2) and (3.3) give p > m
2 , which is inconsistent with (3.7) if m ≥ 3. Thus

(A) holds.

Next we prove the first part of (B). Suppose contrary that

p∗ +
1

2
≤ 0 and either m = 1 or m = 2. (3.8)

It follows from (1.3) that

p∗ +
1

2
=

2Γ − 2pq∗ + 2 + 2p+ pq

2pq
.

Therefore, p∗ + 1
2 ≤ 0, (3.2) and (3.3) give

( 2

m
− 1

)
p > 2. (3.9)

When m = 2, we have a contradiction immediately. While, if m = 1, then (3.9) yields p > 2.

This is contradictory to p∗ + 1
2 ≤ 0 when m = 1.

The second part of (B) can be shown similarly to the proof of (A). This completes the proof.

Lemma 3.2 Let 1 < p ≤ q. Assume that (3.2) is satisfied.

(A) Suppose that p∗ > 0. Then there exist positive numbers κ1, κ2 satisfying the following

four conditions:

0 < κ1 ≤ p∗, (3.10)

0 < κ2 ≤ q∗, (3.11)

1 + κ1 < p∗ + pκ2, (3.12)

1 + κ2 < q∗ + qκ1. (3.13)

(B) Suppose that − 1
2 < p∗ ≤ 0. Then there exist a negative number κ1 and a positive number

κ2 satisfying (3.11), (3.12), (3.13) and the following condition:

−
1

2
< κ1 ≤ p∗ and κ1 < 0. (3.14)

Proof Since (A) follows from [14, Lemma 3.1], we shall prove (B). Note that (3.2) yields

p∗ >
1

q

(
− q∗ + 1 +

1

p

)
.

Since − 1
2 < p∗ ≤ 0, we can therefore take κ1 satisfying (3.14) and

κ1 >
1

q

(
− q∗ + 1 +

1

p

)
, i.e., q∗ + qκ1 − 1 >

1

p
.

Hence, for such κ1, there is κ2 such that

q∗ + qκ1 − 1 > κ2 >
1

p
.



526 H. Kubo and K. Kubota

In conclusion we find that (3.11), (3.12) and (3.13) hold for κ1, κ2 chosen in the above. The

proof is complete.

In what follows we shall fix a pair of numbers κ1 and κ2 satisfying conditions (3.11) through

(3.13) and either (3.10) or (3.14). Then we introduce two Banach spaces X1 and X2 by

Xj = {u(r, t) ∈ C1(Ω); ‖u‖j <∞}, j = 1, 2. (3.15)

Here the norm is defined by

‖u‖j = sup
(r,t)∈Ω

(|u(r, t)|rm−1(1 + r) + |∂r,tu(r, t)|r
m){Φ1(r, |t|; 1 + κj , cj)}

−1, (3.16)

where Φ1(r, t;µ, c) is given by (2.28).

Let (fj , gj) ∈ Y1+κj
(ε) for ε > 0, j = 1, 2, where Yµ(ε) is defined by (2.10). If we set

u−(r, t) = Kc1
[f1, g1](r, t), v−(r, t) = Kc2

[f2, g2](r, t), (3.17)

then we find from Theorem 2.1 that

u− ∈ X1 ∩ C
2(Ω), v− ∈ X2 ∩ C

2(Ω), (3.18)

‖u−‖1 ≤ C0ε, ‖v−‖2 ≤ C0ε, (3.19)

where C0 is a positive constant depending only on m, c1, c2, κ1 and κ2, because

(1 + r)−1wc(r, |t|)
−µ ≤ CΦ1(r, |t|;µ, c).

We are now in a position to state the main results in this section.

Theorem 3.1 Assume that conditions 1 < p ≤ q, (3.2) and (3.3) are satisfied. Besides,

when m = 1 or m = 2, we suppose that (3.4) holds. Let κ1 and κ2 be positive numbers

satisfying (3.10) through (3.13). Suppose that (fj , gj) ∈ Y1+κj
(ε) for ε > 0, j = 1, 2. Then

there is a positive constant ε0 (depending only on m, c1, c2, p, q, κ1 and κ2) such that for any ε

with 0 < ε ≤ ε0, there exists uniquely a solution (u, v) of the system (3.1) satisfying

u ∈ X1 ∩ C
2(Ω), v ∈ X2 ∩ C

2(Ω), (3.20)

‖u‖1 + ‖v‖2 ≤ 2(‖u−‖1 + ‖v−‖2), (3.21)

E(u(t) − u−(t); c1) ≤ C‖v‖p
2(1 + |t|)−θ1 for t ≤ 0, (3.22)

E(v(t) − v−(t); c2) ≤ C‖u‖q
1(1 + |t|)−θ2 for t ≤ 0, (3.23)

where

θ1 = min
{
p∗, p+ pκ2 − 1,

1

2
+ κ1

}
, θ2 = min

{
q∗, q + qκ1 − 1,

1

2
+ κ2

}
,

C is a constant depending only on m, c1, c2, p, q, κ1 and κ2, and we have set

E(w(t); c) =
{1

2

∫

Rn

(|∂tw(|x|, t)|2 + c2|∂xw(|x|, t)|2)dx
} 1

2

(3.24)
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for a function w(r, t) ∈ C1(Ω). Moreover we have for (r, t) ∈ Ω,

|u(r, t) − u−(r, t)| ≤ C‖v‖p
2r

1−m(1 + r)−1Φ1(r, t; 1 + κ1, c1), (3.25)

|∂σ
r,t(u(r, t) − u−(r, t))| ≤ C‖v‖p

2r
1−m−|σ|(1 + r)|σ|−2Φ2(r, t; 1 + κ1, c1) for |σ| = 1, 2, (3.26)

|v(r, t) − v−(r, t)| ≤ C‖u‖q
1r

1−m(1 + r)−1Φ1(r, t; 1 + κ2, c2), (3.27)

|∂σ
r,t(v(r, t) − v−(r, t))| ≤ C‖u‖q

1r
1−m−|σ|(1 + r)|σ|−2Φ2(r, t; 1 + κ2, c2) for |σ| = 1, 2, (3.28)

where Φ1(r, t;µ, c) and Φ2(r, t;µ, c) are given by (2.28) and (2.29).

Furthermore there exist uniquely solutions u+(r, t) ∈ X1 ∩C
2(Ω) and v+(r, t) ∈ X2 ∩C

2(Ω)

of the homogeneous wave equation (2.1) with c = c1 and c = c2 respectively such that

E(u(t) − u+(t); c1) ≤ C‖v‖p
2(1 + t)−θ1 for t ≥ 0, (3.29)

E(v(t) − v+(t); c2) ≤ C‖u‖q
1(1 + t)−θ2 for t ≥ 0. (3.30)

In addition, we have for (r, t) ∈ Ω,

|u(r, t) − u+(r, t)| ≤ C‖v‖p
2r

1−m(1 + r)−1Φ1(r,−t; 1 + κ1, c1), (3.31)

|∂σ
r,t(u(r, t) − u+(r, t))| ≤ C‖v‖p

2r
1−m−|σ|(1 + r)|σ|−2Φ2(r,−t; 1 + κ1, c1) for |σ| = 1, 2, (3.32)

|v(r, t) − v+(r, t)| ≤ C‖u‖q
1r

1−m(1 + r)−1Φ1(r,−t; 1 + κ2, c2), (3.33)

|∂σ
r,t(v(r, t) − v+(r, t))| ≤ C‖u‖q

1r
1−m−|σ|(1 + r)|σ|−2Φ2(r,−t; 1 + κ2, c2) for |σ| = 1, 2. (3.34)

Remark 3.1 (1) The existence of positive numbers κ1 and κ2 satisfying (3.10) through

(3.13) is guaranteed by Lemmas 3.1 and 3.2.

(2) The extra assumption (3.4) for m = 1 and m = 2 can be removed when the propagation

speeds c1 and c2 are different from each other. More precisely we have the following

Theorem 3.2 Let m = 1 or m = 2, i.e, n = 5 or n = 7. Assume that conditions

1 < p ≤ q, (3.2), (3.3) and (3.7) hold. Moreover suppose that c1 6= c2. Let κ1 and κ2 be real

numbers satisfying (3.11) through (3.14). Suppose that (fj , gj) ∈ Y1+κj
(ε) for ε > 0, j = 1, 2.

Then the conclusions of the preceding theorem are still valid, if we replace θ1 and θ2 by θ3 and

θ4 respectively, where

θ3 =
1

2
+ κ1, θ4 = min

{
q + qκ1 − 1,

1

2
+ κ2

}
. (3.35)

Remark 3.2 Since (3.3) and (3.13) imply q + qκ1 − 1 > κ2, we see that θ4 is positive.

The rest of the present section will be devoted to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1 First we shall look for a solution (u, v) ∈ X1×X2 of the following

system of integral equations:

u(r, t) = u−(r, t) + Lc1
(|v|p)(r, t) in Ω, (3.36)

v(r, t) = v−(r, t) + Lc2
(|u|q)(r, t) in Ω, (3.37)

where Lc(F ) is the linear operator defined by (2.19). The a priori estimates which will be given

in Lemmas 3.3 and 3.4 below are crucial in solving the system.
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Lemma 3.3 Suppose that p, q, κ1 and κ2 satisfy the hypotheses of Theorem 3.1. Let u ∈ X1

and v ∈ X2. Then Lc1
(|v|p) ∈ X1 ∩ C

2(Ω), Lc2
(|u|q) ∈ X2 ∩ C

2(Ω), and we have

‖Lc1
(|v|p)‖1 ≤ K0‖v‖

p
2, (3.38)

‖Lc2
(|u|q)‖2 ≤ K0‖u‖

q
1, (3.39)

where K0 is a constant depending only on m, c1, c2, p, q, κ1 and κ2.

Proof We shall prove only the assertions concerning Lc1
(|v|p), since the others can be

handled analogously. To this end we want to apply the part (A) of Theorem 2.2 by taking

F (r, t) = |v(r, t)|p, c = c1, a = c2, µ = 1 + κ1, α = (m− 1)p, β = γ = p and δ = pκ2.

First we examine conditions (2.20) through (2.23). Since (3.3) with p ≤ q implies

(m− 1)p < m+ 1, (m− 1)q < m+ 1, (3.40)

the condition (2.20) is satisfied. Moreover, (1.2) with n = 2m+ 3 yields

(m+ 1)p = p∗ +m+ 2, (m+ 1)q = q∗ +m+ 2. (3.41)

Hence (2.22) and (2.23) follows from (3.10) and (3.12) respectively. Furthermore we get (2.21)

by (3.12), since p ≥ p∗ according to (3.3) with p ≤ q. Thus all hypotheses of Theorem 2.2 are

fulfilled.

For v ∈ X2 we have |v(r, t)|p ∈ C1(Ω) and

M(|v|p, c2) ≤ (p+ 1)‖v‖p
2, (3.42)

where M(F, a) is defined by (2.25). Indeed, since κ2 > 0, we have from (2.28)

Φ1(r, t; 1 + κ2, c2) = (1 + r + |t|)−1(1 + |r − c2t|)
−κ2 . (3.43)

Hence (3.16) with j = 2 implies (3.42).

Since κ1 > 0, we see from the part (A) of Theorem 2.2 that Lc1
(|v|p) ∈ C2(Ω) and that

|Lc1
(|v|p)(r, t)| ≤ CM(|v|p, c2)r

1−m(1 + r)−1Φ1(r, t; 1 + κ1, c1),

|∂r,tLc1
(|v|p)(r, t)| ≤ CM(|v|p, c2)r

−m(1 + r)−1Φ2(r, t; 1 + κ1, c1)

hold for (r, t) ∈ Ω. Since Φ1(r, t;µ, c) ≤ Φ1(r, |t|;µ, c) and

(1 + r)−1Φ2(r, t;µ, c) ≤ CΦ1(r, t;µ, c) for (r, t) ∈ Ω, µ > 0, (3.44)

we obtain (3.38) by (3.42) and (3.16) with j = 1. The proof is complete.

To show the existence of solutions to the system (3.36)-(3.37), we also need a Lipschitz

continuity of Lc1
(| · |p) and Lc2

(| · |q). To state this we introduce auxiliary norms by

|u|j = sup
(r,t)∈Ω

|u(r, t)|rm{Φ1(r, |t|; 1 + κj , cj)}
−1 for u ∈ Xj , j = 1, 2. (3.45)

Then we have the following
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Lemma 3.4 Let p, q, κ1 and κ2 be as in the preceding lemma. Let u, ū ∈ X1 and v,

v̄ ∈ X2. Then we have

|Lc1
(|v|p) − Lc1

(|v̄|p)|1 ≤ K1|v − v̄|2(‖v‖2 + ‖v̄‖2)
p−1, (3.46)

|Lc2
(|u|q) − Lc2

(|ū|q)|2 ≤ K1|u− ū|1(‖u‖1 + ‖ū‖1)
q−1, (3.47)

‖Lc1
(|v|p) − Lc1

(|v̄|p)‖1 ≤ K2‖v − v̄‖2(‖v‖2 + ‖v̄|2)
p−1 +K3|v − v̄|p−1

2 (‖v‖2 + ‖v̄‖2), (3.48)

‖Lc2
(|u|q) − Lc2

(|ū|q)‖2 ≤ K2‖u− ū‖1(‖u‖1 + ‖ū‖1)
q−1 +K4|u− ū|q−1

1 (‖u‖1 + ‖ū‖1), (3.49)

where Kj (j = 1, 2, 3, 4) are constants depending only on m, c1, c2, p, q, κ1 and κ2 such that

K3 = 0 if p > 2, and K4 = 0 if q > 2.

Proof We shall prove only (3.46) and (3.48), since the others can be treated analogously.

First we prove (3.46). Let α = (m − 1)p, β = γ = p and δ = pκ2. We see from the proof

of the preceding lemma that such α, β, γ and δ satisfy conditions (2.20) through (2.23). For

convenience we set

F (r, t) = |v(r, t)|p − |v̄(r, t)|p, (3.50)

so that

Lc1
(|v|p)(r, t) − Lc1

(|v̄|p)(r, t) = Lc1
(F )(r, t). (3.51)

Besides, we have

M̃(F, c2) ≤ p|v − v̄|2(‖v‖2 + ‖v̄‖2)
p−1, (3.52)

where M̃(F, a) is defined by (2.96). Indeed, we have

|F (λ, s)| ≤ p|v(λ, s) − v̄(λ, s)|(|v(λ, s)| + |v̄(λ, s)|)p−1 for (λ, s) ∈ Ω. (3.53)

Therefore it is easy to see from (3.16), (3.45) with j = 2 and (3.43) that (3.52) holds.

Applying the part (A) of Theorem 2.3 as c = c1, a = c2, µ = 1 + κ1 to (3.51), we get (3.46)

by (3.52), (3.45) with j = 1.

Next we consider (3.48). The procedure is similar to the proof of (3.38). We let p ≤ 2, since

one can more easily prove the estimate for p > 2. We keep the notation (3.50). Let α = mp−1,

β = 1, γ = p and δ = pκ2. Then (3.3) with p ≤ q implies (2.20) for α = mp − 1. In addition,

we see from the proof of the preceding lemma that such α, β, γ and δ satisfy conditions (2.21)

through (2.23). Therefore it follows from the part (A) of Theorem 2.2 with c = c1, a = c2,

µ = 1 + κ1, (3.44) and (3.16) with j = 1 that

‖Lc1
(F )‖1 ≤ CM(F, c2). (3.54)

Thus, by (3.51), it suffices to show

M(F, c2) ≤ 2p{‖v − v̄‖2(‖v‖2 + ‖v̄‖2)
p−1 + |v − v̄|p−1

2 (‖v‖2 + ‖v̄‖2)}. (3.55)

Since 1 < p ≤ 2, we have from (3.50)

|∂λF (λ, s)| ≤ p|∂λ(v(λ, s) − v̄(λ, s))||v(λ, s)|p−1 + 2p|v(λ, s) − v̄(λ, s)|p−1|∂λv̄(λ, s)|.
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Hence, recalling (3.53), we see from (3.16), (3.45) with j = 2 and (3.43) that (3.55) holds for

α = mp− 1, β = 1, γ = p and δ = pκ2. Thus we get (3.48) by (3.54). The proof is complete.

We are now in a position to solve (3.36)–(3.37).

Proposition 3.1 Suppose that the hypotheses of Theorem 3.1 are fulfilled. Then there

is a positive constant ε0 (depending only on m, c1, c2, p, q, κ1 and κ2) such that for any ε with

0 < ε ≤ ε0, there exists uniquely a solution (u, v) of the system (3.36)–(3.37) satisfying (3.20)

and (3.21). Moreover we have (3.22) through (3.28) and (3.1).

Proof Using (3.18), (3.19) and Lemmas 3.3 and 3.4, one can find a positive number ε0,

depending only on C0, K0, K1 and K2, such that there exists a unique solution (u, v) of the

system (3.36)–(3.37) satisfying (3.20) and (3.21) for 0 < ε ≤ ε0 (for the detail, see e.g. [13,

Section 7]. Applying the part (A) of Theorem 2.2 to Lc1
(|v|p), we see from (3.42) that (3.25)

and (3.26) hold. Analogously we have (3.27) and (3.28). Moreover we find from (2.72) that

(u, v) is a solution of (3.1).

Therefore it remains to show the estimates (3.22) and (3.23). First we deal with (3.22). We

see from [13, Proposition 8.1] that

E(u(t) − u−(t); c1) ≤ C

∫ t

−∞

( ∫ ∞

0

|v(r, s)|2pr2m+2dr
) 1

2

ds, (3.56)

where C is a constant depending only on m and c1. It follows from (3.16) with j = 2, (3.43),

(3.40) and (3.41) that the inner integral in the above is estimated by ‖v‖2p
2 times

∫ ∞

0

(1 + r)2p−2p∗−2(1 + r + |s|)−2p(1 + |r − c2|s||)
−2pκ2dr

≤ C(1 + |s|)−2p−2pκ2

∫ c2|s|
2

0

(1 + r)2p−2p∗−2dr

+ C(1 + |s|)−2p∗−2

∫ 2c2|s|

c2|s|
2

(1 + |r − c2|s||)
−2pκ2dr + C

∫ ∞

2c2|s|

(1 + r)−2p∗−2pκ2−2dr

≤ C(1 + |s|)−2p−2pκ2(1 + |s|)[2p−2p∗−1]+ + C(1 + |s|)−2p∗−2(1 + |s|)[1−2pκ2]+ .

Here we have used the follwing notation:

[a]+ = max{a, 0}, A[0]+ = 1 + logA (3.57)

for a ∈ R with a 6= 0 and A ≥ 1. Therefore we see from (3.56) that (3.22) follows from the

following two inequalities:

∫ t

−∞

(1 + |s|)−p−pκ2((1 + |s|)[2p−2p∗−1]+)
1
2 ds ≤ C(1 + |t|)−min{p+pκ2−1, 1

2
+κ1},

∫ t

−∞

(1 + |s|)−p∗−1((1 + |s|)[1−2pκ2]+)
1
2 ds ≤ C(1 + |t|)−min{p∗, 1

2
+κ1}

for t ≤ 0. By virtue of (3.12), those inequalities are the consequence of the following elementary

lemma.
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Lemma 3.5 Let α > 1 if β < 0 and α > 1 + β
2 if β ≥ 0, and let a ≥ 0. Then we have

∫ ∞

a

(1 + s)−α((1 + s)[β]+)
1
2 ds ≤ C(1 + a)−α+1((1 + a)[β]+)

1
2 . (3.58)

Thus we get (3.22). Since we can prove (3.23) analogously to (3.22), we omit the details.

This completes the proof.

End of Proof of Theorem 3.1 The assertions concerning (u, v) follow from Proposition

3.1 except for the uniqueness. Besides, we find from [13, the proof of Theorem 5.1] that a

solution (u, v) of (3.1) satisfying (3.20) through (3.23) is unique.

Next we define u+(r, t) and v+(r, t) by

u+(r, t) = u(r, t) − Lc1
(F )(r,−t), v+(r, t) = v(r, t) − Lc2

(G)(r,−t) for (r, t) ∈ Ω, (3.59)

where F (r, t) = |v(r,−t)|p, G(r, t) = |u(r,−t)|q and Lc is the operator defined by (2.19). Note

that v(r,−t) ∈ X2 if v(r, t) ∈ X2 and that M(|v(r,−t)|p, c2) = M(|v(r, t)|p, c2). Besides, the

analogue for u(r, t) is also valid. Therefore, by repeating exactly the procedure in the proof of

Proposition 3.1, we obatin the assertions for (u+, v+) except for the uniqueness. In addition,

we see from (3.29) and (3.30) that such solutions u+ and v+ of (2.1) are unique. Thus we finish

the proof of the theorem.

Proof of Theorem 3.2 The procedure is analogous to the proof of preceding theorem.

Hence we shall point out only the difference.

First we derive (3.38) and (3.39) under the hypotheses of Theorem 3.2. Since 1
2 < 1+κ1 < 1

according to (3.14), it follows from (2.28) that

Φ1(r, t; 1 + κ1, c1) = (1 + r + |t|)−1−κ1 . (3.60)

Thanks to the assumption that c1 6= c2, it is possible to apply the part (A) of Theorem 2.2 to

Lc1
(|v|p). Since (3.43) is still valid, we see that (3.38) can be shown as before.

To prove (3.39), we want to apply the part (A) of Theorem 2.2 to Lc2
(|u|q), by taking a = c1,

µ = 1 + κ2 > 1, α = (m − 1)q, β = q, γ = q + qκ1 and δ = 0. Using (3.40), (3.3), (3.41) and

(3.13), one can show that (2.20) through (2.23) are fulfilled. Moreover, it follows from (3.60)

and (3.16) with j = 1 that

M(|u|q, c1) ≤ (1 + q)‖u‖q
1.

Therefore, by (3.44), we obtain (3.39).

Next we prove (3.46) through (3.49) under the hypotheses of Theorem 3.2. We have (3.46)

and (3.48) as before. Applying the part (A) of Theorem 2.3 with the same numbers α, β, γ and

δ as above, we get (3.47). The proof of (3.49) is similar to that of (3.39), if we take α = mq−1,

β = 1, γ = q + qκ1 and δ = 0.

Finally we show that (3.22) and (3.23) with θ1 and θ2 replaced by θ3 and θ4 respectively.

Fisrt we deal with the former. Since 1
2 < 1 + κ1 < 1, it follows from (2.29) that

Φ2(r, t; 1 + κ1, c1) = (1 + r + c1|t|)
−1−κ1 for t ≤ 0. (3.61)
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Therefore we see from (3.24) and (3.26) with |σ| = 1 that

E(u(t) − u−(t); c1) ≤ C‖v‖p
2

(∫ ∞

0

r2(1 + r)−2(1 + r + |t|)−2−2κ1dr
) 1

2

for t ≤ 0.

Since −2 − 2κ1 < −1 according to (3.14), we get the desired estimate due to (3.35).

Next we handle the latter. Analogously to (3.56) we have

E(v(t) − v−(t); c2) ≤ C

∫ t

−∞

(∫ ∞

0

|u(r, s)|2qr2m+2dr
) 1

2

ds, (3.62)

where C is a constant depending only on m and c2. It follows from (3.16) with j = 1, (3.60),

(3.40) and (3.41) that the inner integral in the above is estimated by ‖u‖2q
1 times

∫ ∞

0

(1 + r)2q−2q∗−2(1 + r + |s|)−2q(1+κ1)dr

≤ C(1 + |s|)−2q(1+κ1)

∫ |s|

0

(1 + r)2q−2q∗−2dr + C

∫ ∞

|s|

(1 + r + |s|)−2q∗−2qκ1−2dr

≤ C(1 + |s|)−2q(1+κ1)(1 + |s|)[2q−2q∗−1]+ ,

since −q∗ − qκ1 < −1 according to (3.13). Here we have used the notation (3.57). By (3.13)

and (3.3), we can apply Lemma 3.5. Hence (3.62) yields

E(v(t) − v−(t); c2) ≤ C‖u‖q
1(1 + |t|)−q(1+κ1)+1((1 + |t|)[2q−2q∗−1]+)

1
2 for t ≤ 0. (3.63)

In view of (3.13) and (3.35), we see that (3.23) with θ2 replaced by θ4 holds. This completes

the proof of the theorem.

4 Initial Value Problems

This section is concerned with the initial value problems in Ω+ = {(r, t) ∈ Ω; t ≥ 0} for the

system (3.1) with initial conditions

{
u(r, 0) = f1(r), ut(r, 0) = g1(r),

v(r, 0) = f2(r), vt(r, 0) = g2(r)
(4.1)

for r > 0. Here (fj , gj) ∈ Y1+κj
(ε), Yµ(ε) is defined by (2.10), and κj will be specified later.

To state the main results in the present section, we shall modify the Banach spaces X1 and

X2 defined by (3.15) as follows. We set

X+
j = {u(r, t) ∈ C1(Ω+) ; ‖u‖+

j <∞}, j = 1, 2,

where

‖u‖+
j = sup

(r,t)∈Ω+

(|u(r, t)|rm−1(1 + r) + |∂r,tu(r, t)|r
m){Φ1(r, t; 1 + κj , cj)}

−1. (4.2)

First we consider the case where (3.4) holds. Analogously to Theorem 3.1 we have the

following
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Theorem 4.1 Let the hypotheses of Theorem 3.1 be fulfilled. Then there is a positive

constant ε0 such that for any ε with 0 < ε ≤ ε0, there exists uniquely a solution (u, v) of the

Cauchy problem (3.1)-(4.1) in Ω+ satisfying

u ∈ X+
1 ∩ C2(Ω+), v ∈ X+

2 ∩C2(Ω+), (4.3)

‖u‖+
1 + ‖v‖+

2 ≤ 2(‖u−‖+
1 + ‖v−‖+

2 ), (4.4)

where u− and v− are defined by (3.17).

Remark 4.1 For the solutions u(r, t) and v(r, t) obtained in the above theorem, we can

show the existence of free profiles of them. Indeed, if we define u+(r, t) and v+(r, t) as in

(3.59) for (r, t) ∈ Ω+, then we see that u+ ∈ X+
1 ∩ C2(Ω+), v+ ∈ X+

2 ∩ C2(Ω+) and that u+

(resp. v+) is the solution of the homogeneous wave equation (2.1) with c = c1 (resp. c = c2).

Moreover, they satisfy (3.29) through (3.34) with ‖u‖1, ‖v‖2 and Ω replaced by ‖u‖+
1 , ‖v‖+

2

and Ω+ respectively. These assertions can be also proven analogously to the proof of Theorem

3.1.

Next we consider the case where (3.4) does not hold. Then we have the following

Theorem 4.2 Let m = 1 or m = 2, i.e, n = 5 or n = 7. Assume that conditions

1 < p ≤ q, (3.2), (3.3) and (3.7) hold. Let κ1 and κ2 be real numbers satisfying (3.11) through

(3.14). Suppose that (fj , gj) ∈ Y1+κj
(ε) for ε > 0, j = 1, 2. Then the conclusions of the

preceding theorem are still valid.

Proof The following lemma is essential for the proof of the theorem.

Lemma 4.1 Suppose that p, q, κ1 and κ2 satisfy the hypotheses of Theorem 4.2. Let

u ∈ X+
1 and v ∈ X+

2 . Then we have

‖L+
c1

(|v|p)‖+
1 ≤ K0(‖v‖

+
2 )p, ‖L+

c2
(|u|q)‖+

2 ≤ K0(‖u‖
+
1 )q, (4.5)

where K0 is a constant depending only on m, c1, c2, p, q, κ1 and κ2, and L+
c is the operator

defined by (2.18).

Proof Note that Φ3(r, t;µ, c) = Φ2(r, t;µ, c) for µ > 1 and t ≥ 0. In view of Theorem 2.2

and the proof of Theorem 3.2, one can show the second estimate of (4.5).

Next we consider the first one. When c1 6= c2, one can prove it analogously to (3.38). Hence

we suppose from now on that c1 = c2.

By (3.14) we have (3.60) for (r, t) ∈ Ω+, hence it suffices to show that

|L+
c1

(|v|p)(r, t)|rm−1(1 + r)(1 + r + t)1+κ1 ≤ C(‖v‖+
2 )p, (4.6)

|∂r,tL
+
c1

(|v|p)(r, t)|rm(1 + r + t)1+κ1 ≤ C(‖v‖+
2 )p (4.7)

for (r, t) ∈ Ω+. Applying the part (B) of Theorem 2.2 with the same choice of the parameters

as in the proof of (3.38), we get (4.6) and

|∂r,tL
+
c1

(|v|p)(r, t)| ≤ C(‖v‖+
2 )pr−m(1 + r)−1Φ3(r, t; 1 + κ1, c1) for (r, t) ∈ Ω+, (4.8)
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because analogously to (3.42) we have

M+(|v|p, c2) ≤ (p+ 1)(‖v‖+
2 )p.

Note that (3.7) implies (2.93), for α+ β + γ = (m+ 1)p. Since 1
2 < 1 + κ1 < 1 and c1 = c2,

we have from (2.32)

(1 + r)−1Φ3(r, t; 1 + κ1, c1) = (1 + r)−1(1 + |r − c1t|)
−1(1 + r + c1t)

−κ1

≤ C(1 + r + t)−1−κ1 for (r, t) ∈ Ω+. (4.9)

Thus we obtain (4.7). The proof is complete.

End of Proof of Theorem 4.2 Seeing the proof of Lemma 4.1, one can establish a priori

estimates analogous to Lemma 3.4. Repeating a part of the proof of Theorem 3.1, we complete

the proof.

5 Three Space Dimensional Case

In this section we deal with the following initial value problem:

{
∂2

t u1 − c21∆u1 = F (u2) in R
3 × (0,∞),

∂2
t u2 − c22∆u2 = G(u1) in R

3 × (0,∞),
(5.1)

uj(x, 0) = fj(x), ∂tuj(x, 0) = gj(x) for x ∈ R
3, j = 1, 2, (5.2)

where c1, c2, F and G are as in (1.1). The aim here is to show the global existence of a small

solution to the Cauchy problem by assuming only the condition (3.2), i.e., Γ > 0, where Γ is

defined by (1.3) with p∗ = p − 2 and q∗ = q − 2. This condition is optimal for the global

existence, since if Γ ≤ 0, then solutions of the Cauchy problem generically blow up in finite

time even though the initial data are small (see [1, 3–6, 15] for the case c1 = c2 and [16] for the

case c1 6= c2).

Since one can not expect that uj(x, t) ∈ C2(R3 × [0,∞)) in the case p∗ ≤ 0, we say in what

follows that (u1, u2) is a solution of the Cauchy problem (5.1)–(5.2), if uj(x, t) ∈ C1(R3×[0,∞))

for j = 1, 2, (5.2) holds, and (u1, u2) satisfies (5.1) in the sense of distributions on R
3 × (0,∞).

(See e.g. [12, Lemma 5.1]). As for the initial data, we suppose that fj ∈ C3(R3) and gj ∈ C2(R3)

for j = 1, 2. Then we have the following

Theorem 5.1 Assume that the condition (3.2) as well as 1 < p ≤ q holds. Then there

exists a small solution (u1, u2) of the Cauchy problem (5.1)–(5.2), provided the initial data are

sufficiently small and decay rapidly as |x| → ∞.

The theorem was proven in [3, 4] when c1 = c2 and the initial data are of compact support.

As for the case of general speeds of propagation c1, c2, we proved it in [14] when p∗ > 0, i.e.,

(3.4) holds. More precisely, we showed in [14, Theorem 3.1] the following: Let κ1 and κ2 be

positive numbers satisfying (3.10) through (3.13). Suppose that the initial data fj and gj ,
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j = 1, 2 satisfy the following condition

sup
x∈R3

[
(1 + |x|)1+κj |fj(x)| +

∑

1≤|α|≤3

(1 + |x|)2+κj |∂α
x fj(x)|

+
∑

0≤|α|≤2

(1 + |x|)2+κj |∂α
x gj(x)|

]
≤ ε for ε > 0, j = 1, 2. (5.3)

Then there is a positive constant ε0 such that for any ε with 0 < ε ≤ ε0, there exists uniquely

a solution (u1, u2) of (5.1)–(5.2) satisfying uj(x, t) ∈ C2(R3 × [0,∞)) ∩ Yj for j = 1, 2, and

[u1]1 + [u2]2 ≤ 2([u−1 ]1 + [u−2 ]2), where Yj , [u]j and u−j are defined for j = 1, 2 as follows:

[u]j = sup
(x,t)∈R3×[0,∞)

|u(x, t)|{Φ1(|x|, t; 1 + κj , cj)}
−1, (5.4)

where Φ1(r, t;µ, c) is given by (2.28),

Yj = {u(x, t) ∈ C1(R3 × [0,∞)); [∂α
x,tu]j <∞ for |α| ≤ 1}. (5.5)

Besides, we set

u−j (x, t) = Kcj
[fj , gj](x, t) for (x, t) ∈ R

3 × [0,∞), (5.6)

where

Kc[f, g](x, t) =
t

4π

∫

|ω|=1

g(x+ ctω)dSω +
∂

∂t

( t

4π

∫

|ω|=1

f(x+ ctω)dSω

)
. (5.7)

Note that (5.7) coincides with (2.3) if f(x) and g(x) are radially symmetric, sinceK(λ, r, t) = λ
2r

for m = 0. (For the proof see e.g. [18, Lemma 1] or [14, Lemma 2.1]). Thus it remains to

handle the case where p∗ ≤ 0, i.e., (3.7) holds.

Proof of Theorem 5.1 In what follows we suppose that conditions (3.2) and (3.7) as well

as 1 < p ≤ q hold. Then, since −1 < p∗ ≤ 0, one can take a negative number κ1 and a positive

number κ2 satisfying (3.11) through (3.13) together with

−1 < κ1 ≤ p∗ and κ1 < 0, (5.8)

analogously to the proof of the part (B) in Lemma 3.2. We also keep using the notations (5.4)

and (5.5) for such κ1 and κ2. Note that the functions given by (5.6) are classical solutions

of the homogeneous wave equations (1.4) in R
3 × [0,∞) satisfying the initial conditions (5.2).

Moreover analogously to [18, Lemma 2] we see from (5.3) that

[∂α
x,tu

−
j ]j ≤ C0ε for ε > 0, |α| ≤ 2, j = 1, 2, (5.9)

where C0 is a constant depending only on cj and κj .

To show the existence of solutions to the Cauchy probelm (5.1)–(5.2), we shall look for a

solution (u1, u2) ∈ Y1 × Y2 to the following system of integral equations:

{
u1(x, t) = u−1 (x, t) + L+

c1
(F (u2))(x, t) in R

3 × [0,∞),

u2(x, t) = u−2 (x, t) + L+
c2

(G(u1))(x, t) in R
3 × [0,∞),

(5.10)
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where we have set

L+
c (F )(x, t) =

1

4π

∫ t

0

(t− s)ds

∫

|ω|=1

F (x+ c(t− s)ω, s)dSω (5.11)

for (x, t) ∈ R
3 × [0,∞) and F (x, t) ∈ C(R3 × [0,∞)). Then we have the following

Proposition 5.1 Assume that conditions 1 < p ≤ q, (3.2) and (3.7) are fulfilled. Let

κ1 and κ2 be real numbers satisfying (3.11) through (3.13) together with (5.8). Suppose that

(5.3) holds for ε > 0, j = 1, 2. Then there is a positive constant ε0 such that for any ε with

0 < ε ≤ ε0, there exists uniquely a solution (u1, u2) of the system (5.10) satisfying

uj ∈ Yj for j = 1, 2, (5.12)

[u1]1 + [u2]2 ≤ 2([u−1 ]1 + [u−2 ]2). (5.13)

This proposition can be proven as usual (see for instance [13, the proof of Theorem 5.1]), if

we make use of Lemma 5.1 below. Hence we omit the details.

Lemma 5.1 Suppose that p, q, κ1 and κ2 satisfy the assumptions of Proposition 5.1. Then

we have

[L+
c1

(|u2|
p)]1 ≤ K0[u2]

p
2, [L+

c2
(|u1|

q)]2 ≤ K0[u1]
q
1 (5.14)

for uj(x, t) ∈ C(R3 × [0,∞)) with [uj ]j < ∞, j = 1, 2, where K0 is a constant depending only

on c1, c2, p, q, κ1 and κ2.

To prove this we shall extend [14, Theorem 1.1] as follows:

Proposition 5.2 Let µ and a be positive numbers with µ 6= 1. Let F (x, t) ∈ C(R3× [0,∞))

and

N(F, a, µ, ρ) := sup
(y,s)∈R3×[0,∞)

|y|(1 + |y| + s)µ(1 + ||y| − as|)1+ρ|F (y, s)| <∞ (5.15)

for some ρ > 0. Then we have

|L+
c (F )(x, t)| ≤ CN(F, a, µ, ρ)Φ1(|x|, t;µ, c) for (x, t) ∈ R

3 × [0,∞), (5.16)

where C is a constant depending only on µ, ρ, c, a.

Proof When µ > 1, the estimate (5.16) coincides with the case n = 3 of [14, Theorem 1.1].

The proof of the estimate for 0 < µ < 1 is analogous to the case µ > 1, hence we omit the

details.

Proof of Lemma 5.1 By (3.11) and (5.8) we have κ2 > 0 and −1 < κ1 < 0. Hence (5.4)

yields
{
|u2(y, s)| ≤ [u2]2(1 + |y| + s)−1(1 + ||y| − c2s|)

−κ2 ,

|u1(y, s)| ≤ [u1]1(1 + |y| + s)−1−κ1

(5.17)

for (y, s) ∈ R
3 × [0,∞). Taking

ρ1 = p∗ + pκ2 − 1 − κ1, ρ2 = q∗ + qκ1 − 1 − κ2,
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we see from (3.12) and (3.13) that ρj > 0 for j = 1, 2. Moreover, by (5.15) and (5.17) we get

{
N(|u2|

p, c2, 1 + κ1, ρ1) ≤ C[u2]
p
2,

N(|u1|
q, c1, 1 + κ2, ρ2) ≤ C[u1]

q
1,

where C is a constant depending only on c1, c2, p, q, κ1 and κ2, because (5.8) and (3.13) imply

{
(1 + |y| + s)κ1−p∗

≤ C(1 + ||y| − c2s|)
κ1−p∗

,

(1 + |y| + s)κ2−q∗−qκ1 ≤ C(1 + ||y| − c1s|)
κ2−q∗−qκ1

for (y, s) ∈ R
3 × [0,∞). Thus we obtain (5.14) from (5.16). The proof is complete.

End of Proof of Theorem 5.1 Let ε0 and (u1, u2) be as in Proposition 5.1, and let

0 < ε ≤ ε0. Then we see that (u1, u2) is a solution of the Cauchy problem (5.1)–(5.2) by means

of the following fact: If F (x, t) ∈ C(R3 × [0,∞)), then L+
1 (F )(x, t) ∈ C(R3 × [0,∞)) and we

have ∫ ∞

0

dt

∫

R3

L+
1 (F )(x, t)(∂2

t − ∆)φ(x, t)dx =

∫ ∞

0

dt

∫

R3

F (x, t)φ(x, t)dx

for any φ ∈ C∞
0 (R3 × (0,∞)). Thus we complete the proof.

Remark 5.1 One can show that a solution of the Cauchy problem (5.1)–(5.2) which satisfies

(5.12) and (5.13) is unique, provided ε > 0 is sufficiently small. To see this, it suffices to prove

that such a solution (u1, u2) satisfies the system (5.10) in view of Proposition 5.1. If we set

{
v1(x, t) = u1(x, t) − u−1 (x, t) − L+

c1
(F (u2))(x, t),

v2(x, t) = u2(x, t) − u−2 (x, t) − L+
c2

(G(u1))(x, t)

for (x, t) ∈ R
3 × [0,∞), then we see from the proof of Theorem 5.1 that vj(x, t) belongs to

C1(R3 × [0,∞)) and satisfies the homogeneous wave equations (1.4) in R
3 × (0,∞). Moreover,

we have vj(x, 0) = ∂tvj(x, 0) = 0 for x ∈ R
3, j = 1, 2. These informations imply vj(x, t) = 0

for (x, t) ∈ R
3 × [0,∞) (see e.g. [12, Lemma 5.1]), namely, (u1, u2) satisfy (5.10).
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