
Chin. Ann. Math.

27B(5), 2006, 539–548
DOI: 10.1007/s11401-005-0216-7

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2006

Corrected Nonconservative Schemes

Olivier PIRONNEAU∗

Abstract Derivatives of discontinuities being Dirac singularities, it is usually not possible

to multiply them by discontinuous functions. However in the context of conservation laws

we have shown in a recent paper that it can be done. We shall make use of this new

framework to revisit some upwind methods, mostly characteristic schemes, and show that

they can be corrected to be conservative and to work on difficult problems such as Euler’s

equations for fluids. Numerous numerical results are given.

Keywords Upwinding, Non-conservative, Finite volume method, Compressible Euler

2000 MR Subject Classification 35A25, 65N99

0 Introduction

Non-conservative schemes have been discarded long ago for not giving the proper shock

conditions and positions.

To illustrate this difficulty consider Burgers’ equation

∂tu + ∂x

u2

2
= 0, ∀x ∈ R × (0, T), u(x, 0) = u0(x), ∀x ∈ R. (0.1)

A shock at x(0) in the initial condition u0 propagates at speed ẋ = ū, the mean value of u at

the shock position x(t) at time t.

If everything is smooth away from the shock then, except at (x(t), t), (0.1) is equivalent to

∂tu + u∂xu = 0. (0.2)

But at the shock indeed, u∂xu does not make sense.

Multiplied by up−1 for any p 6= 1 it can be rewritten as

1

p
∂tu

p +
1

p + 1
∂xup+1 = 0. (0.3)

However, denoting by [·] the jump across a shock, the condition at the shock for this equation

(Rankine-Hugoniot condition) is

[up]ẋ =
p

p + 1
[up+1], (0.4)

which, of course, is not the same as ẋ = ū; for instance if u− = 0, u+

2 6= pu+

p+1 if p 6= 1.

Manuscript received May 30, 2005.
∗LJLL, University of Paris VI & IUF, 4 Place Jussieu, 75252 Paris Cedex 05, France.
E-mail: pironneau@ann.jussieu.fr

540 O. Pironneau

In [1] a calculus was given which, for example, allows to expand ∂xu2 in terms of u and ∂xu:

∂xu2 = 2ū∂xu or more generally ∂xf(u) =
(∫ 1

0

f ′(u− + s[u])ds
)
∂xu. (0.5)

These identities apply only to functions which are C1 except on non intersecting lines (shocks)

on which u has left and right traces u±.

Obviously (0.5) is an identity when u is C1; when there is a shock at x∗ then ∂xf(u) has a

Dirac mass at x∗ of weight [f(u)]. On the right in (0.5) there is also a Dirac mass but of weight

[u]
∫ 1

0 f ′(u− + s[u])ds which, by the way, is also [f(u)]. Thus (0.5) is an equality in the sense of

distribution theory.

Notation

For any continuous real valued function g we shall denote

g(u) :=

∫ 1

0

g(u− + s(u+ − u−))ds (0.6)

whenever u : R
d → R is continuous except on a smooth curve γ of R

d but has left and right

traces u± on γ.

Notice that g(u) is defined everywhere, not only on γ and that it is the usual value when

u is continuous. Notice also that ū = u++u−

2 and that if G is a primitive of g and d = 1,

g(u) = [G(u)]/[u].

1 Characteristic Schemes for Burgers’ Equation

Consider again (0.1). It is also

∂tu + ū∂xu = 0, (1.1)

because at a shock x(t) the first term has a Dirac mass equal to −[u]ẋ while the second term

has one of weight ū[u]; the sum must be zero: that is precisely the Rankine Hugoniot condition.

Recall once more that here ū is defined everywhere and is u except at discontinuities where

it is u++u−

2 .

For given τ and z, let t → X(t) be the solution of

Ẋ(t) = ū(X(t), t), ∀ t ∈ (0, τ) ∪ (τ, T), X(τ) = z. (1.2)

Then (1.1) is also, formally at least,

d

dt
u(X(t), t) = 0 at τ = t, z = x. (1.3)

So a possible scheme for (0.1) is

um+1(x) = um(Xm(x)), where Xm(x) = x − ūm(x)δt. (1.4)

Such schemes, which is essentially an extention of Lax’ scheme for arbitrary time step δt, have

been analyzed in [2, 3, 5] etc. They are quite easy to program and are energy preserving when

the integrals are computed exactly.

Corrected Nonconservative Schemes 541

Entropy conditions should be satisfied in the limit because the scheme is dissipative. Indeed

by Taylor expansion on (1.4)

um+1 = um − δt∂xūm +
δt2

2
(ūm)2∂xxu + · · ·

so that the PDE equivalent to the scheme is

∂tu + ū∂xu −
ū2δt

2
∂xxu + o(δt) = 0.

A spacial discretization leads to

um+1
i = um

j(i)(1 − αi) + um
j(i)+1αi, (1.5)

where j(i) is the integer part of
xi−ūm

i δt

δx
and αi is the remainder part.

Naturally one can approximate ūi ≈ ui+1+ui−1

2 . One can also use this formula only when

ui+1 − ui−1 ≫ δx and let it be ui otherwise.

The advantages of such a scheme are obvious; as αi ∈ (0, 1) we have

min
j

um
j ≤ um+1

i ≤ max
j

um
j . (1.6)

And at the level of (1.4) the conservation of integrals can be analyzed by formula like

∫

R

um+1 =

∫

R

um(Xm(x))dx =

∫

R

um(y) det(∇Xm)−1(y)dy. (1.7)

The scheme works very well (see Figure 1), despite its non conservative appearance, but this

is because it is, in fact, an approximation of (1.1) which is a conservative expression of (0.1).

Now suppose that we apply the same to (0.3) written in terms of v = up:

∂tv +
p

p + 1
∂xv1+ 1

p = 0. (1.8)

According to (0.5) it is

∂tv + v
1
p ∂xv = 0. (1.9)

So (1.5) applies to v except that the convective velocity which defines j(i) and αi is

v
1
p =

p

p + 1

(v+)
1+ 1

p − (v−)
1+ 1

p

v+ − v−
.

But we can also keep w = (v+)
1
p +(v−)

1
p

2 and have a scheme which integrates correctly (0.1).

Results are shown on Figure 1.

2 The Shallow Water Equations

Consider

∂tu + ∂x

(u2

2
+ p(ρ)

)
= 0, ∂tρ + ∂x(ρu) = 0 (2.1)

542 O. Pironneau

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

"v.txt"
"u.txt"
"w.txt"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

"w.txt"
"v.txt"

(1) (2)

Figure 1 (1) Numerical solution with scheme (1.5) of Burgers’ equation (0.1) with 3
different time steps, u0(x) = a when x < −0.3 and b otherwise, a = 1, b = 0, δx =
1

100 , δt = 0.01, 0.02, 0.03 and the solution is shown at T = 0.4. The scheme is exact
for δt = 0.02. (2) Solution of (1.9) with p = 2, a = 0.75, b = 0.25, with the right
shock speed (dots) and the speed of p = 1 (solid line). In the first case the shock is,
as it ought to be, at 0.34, in the second it is also correctly predicted at 0.3.

with initial conditions u(x, 0) = 0 and ρ(x, 0) = 1 − H(x)
2 where H is the Heaviside function.

Let

Dt = ∂t + ū∂x.

Then (2.1) is also

Dtu + p′(ρ) ∂xρ = 0, Dtρ + ρ̄ ∂xu = 0, (2.2)

because, according to (0.5)

∂x(ρu) = ū∂xρ + ρ̄∂xu. (2.3)

With Xm(x) = x − um(x)δt, a simple implicit scheme is

um+1 + δt p′(ρm) ∂xρm+1 = umoXn, ρm+1 + δt ρm ∂xum+1 = ρmoXn. (2.4)

Then central finite difference in space is applied. To compute ū we use half of the left plus right

values.

On Figure 2, a comparison is shown between the solution with a Riemann solver and the

solution with the scheme above when p = ρ. It is shown also that if ρm and um are not

computed with central differences, an error is observed on the shock speed.

Consider now the case p = log ρ. Then it is tempting to use e = log ρ. The algorithm

becomes

um+1 + δt∂xem+1 = umoXn, em+1 + δt∂xum+1 = emoXn. (2.5)

Corrected Nonconservative Schemes 543

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 2 Comparison between 2 finite difference formulae (centered or upwind for
overlined quantities) with the solution obtained with a scheme based on a Riemann
solver (400 points, T = 0.3, 300 time steps). The position of the shock with the
upwind formula for the overlined quantities is wrong; with centered formulae, the
result coincides with those with the Riemann solver.

It is easy to see that this scheme is unconditionally L2 stable as it conserves energy. However

the scheme is not conservative because

∂xρ

ρ̄
6= ∂x log ρ.

To our surprise very little difference can be observed numerically from the two schemes.

Nevertheless one can make the scheme conservative by replacing (2.5) by

um+1 + δtwm∂xem+1 = umoXn, em+1 +
δt

wm
∂xum+1 = emoXn

with w = [exp em+1](exp em+1 [em+1])
−1

. (2.6)

Even though w = 1 when e is continuous, w is defined everywhere, not only at the shock, so it

is easy to implement numerically.

Remark 2.1 Notice the extreme simplicity of a scheme like (2.2) which, if programmed in

C++, is only half a page (see Appendix A).

3 Isentropic 2D Flows

Isentropic inviscid flow is given by

∂tρ + ∇ · (ρu) = 0, ∂t(ρu) + ∇ · (ρu ⊗ u + ργ) = 0 (3.1)

with ρ and u given at time zero.

544 O. Pironneau

Let us assume that the flow is quasi-stationary near the boundaries. Then, on a bounded

domain Ω, u ·n must be prescribed on Γ := ∂Ω, (n is its normal vector), and u, ρ also at points

of Γ where u · n < 0.

Consider the following time-discretization and weak formulation

1

ρmδt
(ρm+1 − ρmoXm) + ∇ · um+1 = 0,

(ρm)2−γ

γδt
(um+1 − umoX̃m) + ∇ρm+1 = 0,

(3.2)

where X̃ is computed with the velocity ρu
ρ̄

.

Let Vh be the finite element space of piecewise affine continuous functions which are equal

to zero on the boundaries ΓD where u ·n < 0. Then denoting by ΓN = Γ−ΓD, we approximate

(3.2) by searching (um+1
h , ρm+1

h) such that

um+1
h − uΓD

∈ Vh

and
∫

Ω

ρm+1
h wh

ρm
h

− δt
(∫

Ω

um+1
h · ∇wh −

∫

ΓM

um+1
h · nwh

)
=

∫

Ω

ρm
h oXmwh

ρm
h

,

1

γ

∫

Ω

(ρm
h)

2−γ
um+1

h vh + δt

∫

Ω

∇ · ρm+1
h vh =

1

γ

∫

Ω

(ρm
h)

2−γ
um

h oXmvh

(3.3)

for all wh, vhi in Vh, j = 1, 2. Here ΓM is the part of ΓN which is transparent to incoming

waves (non reflecting boundary). By contrast on ΓN\ΓM the formulation imposes u ·n = 0 and

shocks will be reflected. The leading idea in constructing such scheme is to keep the symmetry

between the grad and div terms in the two equations so as to obtain an energy-like conservation

property when wh = ρh and vh = uh.

Figures 3 shows the flow around a disk at various Mach numbers. Symmetry is exploited

and computation is performed on half of the domain only.

Then the same method is applied for the computation of flows around a NACA0012 airfoil

(see Figure 3).

Remark 3.1 Here again the program (in freefem script) of Appendix B shows the simplicity

of the algorithm.

Finally when γ = 1 we make the transformation e = log ρ and write (3.2) as

1

δt
(em+1 − emoXm) +

1

ηm
∇ · um+1 = 0,

1

δt
(um+1 − umoX̃m) + ηm∇em+1 = 0.

(3.4)

We made two computations, one with η = 1 because the scheme is fast and conserves energy

and one with the correct value η = [exp e]
exp e [e] . The results show that the computation is wrong

with η = 1 everywhere and the shock is not at the correct place while with the correct η the

results are the same as with (3.3), thought admittedly not as good. In this case conservativity

is important!

Corrected Nonconservative Schemes 545

IsoValue
0.0391917
0.114907
0.190623
0.266339
0.342055
0.41777
0.493486
0.569202
0.644918
0.720634
0.796349
0.872065
0.947781
1.0235
1.09921
1.17493
1.25064
1.32636
1.40208
1.47779

IsoValue
0.0714186
0.212634
0.35385
0.495066
0.636282
0.777498
0.918714
1.05993
1.20115
1.34236
1.48358
1.62479
1.76601
1.90722
2.04844
2.18966
2.33087
2.47209
2.6133
2.75452

(1) (2)
IsoValue
0.0812991
0.241964
0.402629
0.563294
0.723959
0.884624
1.04529
1.20595
1.36662
1.52728
1.68795
1.84861
2.00928
2.16994
2.33061
2.49127
2.65194
2.8126
2.97327
3.13393

IsoValue
0.168362
0.472922
0.777483
1.08204
1.3866
1.69117
1.99573
2.30029
2.60485
2.90941
3.21397
3.51853
3.82309
4.12765
4.43221
4.73677
5.04133
5.34589
5.65045
5.95502

(3) (4)
IsoValue
0.16368
0.466394
0.769108
1.07182
1.37454
1.67725
1.97997
2.28268
2.58539
2.88811
3.19082
3.49354
3.79625
4.09897
4.40168
4.7044
5.00711
5.30982
5.61254
5.91525

(5) (6)

546 O. Pironneau

Figure 3 Flow around a disk computed with scheme (3.3) and γ = 1.4. From top

to bottom, left to right we have the Mach lines at inflow Mach =0.7, then 2 and

then 3. At Mach 3 we display also the density ρ. Each computation is performed

with mesh adaptivity. The first 20 iterations are done with coarse meshes, then

from iterations 20 to 30 we use between 12000 to 20000 vertices. Already with

1200 vertices at iteration 8 the results are very good: the last 2 pictures (bottom)

display the mesh and the density at inflow Mach=3 at iteration 8. To obtain the

last picture (8 iterations) takes less than a minute on a Pentium M PC at 2 MHz

using freefem++[4], starting from u0 = 0, ρ0 = 1.

IsoValue
0.119319
0.179626
0.239934
0.300241
0.360549
0.420857
0.481164
0.541472
0.601779
0.662087
0.722395
0.782702
0.84301
0.903317
0.963625
1.02393
1.08424
1.14455
1.20486
1.26516

IsoValue
0.661629
0.714102
0.766576
0.81905
0.871524
0.923998
0.976471
1.02895
1.08142
1.13389
1.18637
1.23884
1.29131
1.34379
1.39626
1.44874
1.50121
1.55368
1.60616
1.65863

(1) (2)

Figure 4 Flow around a NACA0012 airfoil showing the density computed with
scheme (3.3) and γ = 1.4 at inflow Mach of 0.9 and 1.2 with 2 degree of incidence
angle.

IsoValue
0.0717565
0.183378
0.294999
0.406621
0.518242
0.629863
0.741485
0.853106
0.964728
1.07635
1.18797
1.29959
1.41121
1.52283
1.63446
1.74608
1.8577
1.96932
2.08094
2.19256

IsoValue
-0.291285
-0.161144
-0.0310026
0.0991385
0.22928
0.359421
0.489562
0.619703
0.749844
0.879985
1.01013
1.14027
1.27041
1.40055
1.53069
1.66083
1.79097
1.92111
2.05125
2.1814

(1) (2)

Corrected Nonconservative Schemes 547

Figure 5 Flow around a disk at Mach 2 with γ = 1.4 computed with (3.4). (1)

η = 1 and the shock is not at the right place. (2) η is what it should be for correct

Rankine-Hugoniot conditions and the results are similar to those of Figure 3.

4 Extension to the Full Euler Equations for Fluids

There are naturally several ways to extend the scheme to the Euler equations for Fluids:

∂tρ + ū∇ρ + ρ̄∇ · u = 0,

ρ̄
(
∂tu +

ρu

ρ̄
∇u

)
+ ∇p = 0,

∂tp + ū∇p + (γ − 1)p̄∇ · u = 0.

(4.1)

One possibility is to couple u, p and then update ρ, i.e.,

1

(γ − 1)δtp̄m
(pm+1 − pmoXm) + ∇ · um+1 = 0,

ρ̄m

δt
(um+1 − umoX̃m) + ∇pm+1 = 0,

ρm+1 = ρmoXm +
ρ̄m

(γ − 1)p̄m
(pm+1 − pmoXm).

(4.2)

A numerical result is given on Figure 4.
IsoValue
0.162185
0.486552
0.81092
1.13529
1.45966
1.78402
2.10839
2.43276
2.75713
3.08149
3.40586
3.73023
4.0546
4.37897
4.70333
5.0277
5.35207
5.67644
6.0008
6.32517

Figure 6 Pressure for a Euler flow around a disk at Mach 2 computed by (4.2)

5 Conclusion

It is true that expanding the products by the chain rule for derivatives leads to a loss of

conservativity. By using explicitly the jumps of the discontinuous functions one can recover the

correct Rankine-Hugoniot conditions and this does not require shock tracking. This procedure is

powerful to generate new schemes and we have shown in this paper that Characteristic-Galerkin

schemes can be extended in this fashion to conservation laws; the final scheme is robust and

quite simple to implement. The details of the generalization to the full Euler equations will be

presented later.

548 O. Pironneau

Appendix A

Implementation in C++ of Algorithm (1.5)

int main(){ // p =r^gamma
const double T=0.3, dt=0.001, gamma = 2;
const int N=400, M=int(T/dt);
const double dx = 1./N, dtdx2=dt/dx/2;
double r[N],u[N],r1[N],u1[N],x[N];

for(int i=0;i<N;i++){ // initial condition
x[i] = double(i)/N-0.5;
if(i<N/2) {r[i] =1;} else { r[i]=0.5;}
u[i]=0; r1[i]=r[i]; u1[i]=u[i];

}
for(int m=0;m<M;m++){ // time iterations

for(int k=0;k<10;k++) //Gauss-Seidel iter. for linear syst.
for(int i=1;i<N-1;i++){

double uk = (u[i+1]+u[i-1])/2;
double xk = 0.5+x[i]-uk*dt;
int j = xk*N;
if(j==xk*N) j=j-1;
if(j>=N-1)j=N-2; else if(j<=0) j = 0;

double xjn = xk*N-j;
double r1oX = r1[j]*(1-xjn) + r1[j+1]*xjn ;
double u1oX = u1[j]*(1-xjn) + u1[j+1]*xjn ;
double rro=(r1[i-1]+r1[i+1])/2,

uro = gamma*pow(rro,gamma-2);
u[i] = u1oX -dtdx2*uro*(r[i+1]-r[i-1]);
r[i] = r1oX -dtdx2*rro*(u[i+1]-u[i-1]);

}
for(int i=1;i<N-1;i++){ u1[i]=u[i];r1[i]=r[i];}

}
} // print results here

Appendix B

Implementation in the freefem++ language of Algorithm (3.3).

real pi2 = atan(1.0)*2, R=0.3, x1=-3,x2=1.0,y2=1.5; border
a1(t=x1,-2-R){x=t; y=0;} border a2(t=-2+R,x2){x=t; y=0;} border
a3(t=0,y2){x=x2;y=t;} border a4(t=x2,x1){x=t;y=y2;} border
a5(t=y2,0){x=x1;y=t;} border bb(t=pi2*2,0) { x=-2+R*cos(t);
y=R*sin(t); }

mesh Th = buildmesh(a1(30)+a2(40)+a3(20)+a4(60)+a5(20)+bb(30));
plot(Th,wait=1); real dt=0.02, u0= 2*sqrt(1.4), v0=0,
visc=0.00125;

fespace Vh(Th,P1); Vh u,v,r,r1,u1,v1,rh,uh,vh,fro;

problem eul(u,v,r,uh,vh,rh) = int2d(Th)(
(fro*(u*uh+v*vh)+r*rh/r1)/dt

+ (dx(r)*uh+ dy(r)*vh - dx(rh)*u - dy(rh)*v)
) + int2d(Th)(-(rh*convect([u1,v1],-dt,r1)/r1

+ fro*(uh*convect([u1,v1],-dt,u1)
+ vh*convect([u1,v1],-dt,v1)))/dt)

+ int1d(Th,3)(rh*u) + int1d(Th,4)(rh*v) + on(5,r=1) + on(5,u=u0) +
on(1,2,5,v=0);

u1= u0; v1= v0; r1 = 1;

for(int k=0;k<200;k++){ // the time loop
fro = pow(r1,0.6)/1.4; eul;
u1=u;r1=abs(r);
v1=v*(y<1.4)+abs(v)*(y>=1.4); // to avoid reflexion from top
plot(r,wait=0,value=1);}

References

[1] Bardos, C. and Pironneau, O., A formalism for the differentiation of conservation laws, C. R. Acad. Sci.

Paris, Série I, 335(10), 2002, 839–845.

[2] Pironneau, O., Finite Element Methods for Fluids, Wiley, 1989.

[3] Douglas, J. and Russell, T. F., Numerical methods for convection dominated diffusion problems based
on combining the method of characteristics with finite element or finite difference procedures, SIAM J.

Numer. Anal., 19(5), 1982, 871–885.

[4] Hecht, F., Freefem++ Manual. http://www.freefem.org

[5] Yabe, T., Ishikawa, T., Wang, P. Y., et al., A universal solver for hyperbolic equations by cubic-polynomial
interpolation, II, Two- and three-dimensional solvers, Comput. Phys. Comm., 66(2-3), 1991, 233–242.

