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Abstract We improve estimates for the distribution of primitive λ-roots of a composite
modulus q yielding an asymptotic formula for the number of primitive λ-roots in any

interval I of length |I | ≫ q
1
2
+ǫ. Similar results are obtained for the distribution of ordered

pairs (x, x−1) with x a primitive λ-root, and for the number of primitive λ-roots satisfying
inequalities such as |x − x−1| ≤ B.
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1 Introduction

Let q be a positive integer with prime factorization q = 2epe1
1 · · · pek

k and G(q) be the

multiplicative group of reduced residue classes (mod q). Let λ(q) be the maximum order of

any element of G(q),

λ(q) = [λ(2e), λ(pe1
1 ), · · · , λ(pek

k )], (1.1)

where

λ(pe) =







φ(pe), if p is odd or p = 2, e ≤ 2,

1

2
φ(pe), if p = 2 and e ≥ 3.

(1.2)

The function λ, introduced by Carmichael [2], is called the Carmichael λ-function. Any element

of order λ(q) is called a primitive λ-root of G(q), and the set of all primitive λ-roots is denoted

by H(q). It is not hard to show that the number of primitive λ-roots satisfies

φ(q)

log log q
≪ φ(φ(q)) ≤ |H(q)| ≪ φ(q) (1.3)

(see for instance [4] or [5]). Li [4] established that lim sup
q→∞

|H(q)|
φ(q) = 1 and lim inf

q→∞

|H(q)| log log(q)
φ(q) =

e−γ with γ Euler’s constant, while Müller and Schlage-Puchta [5] proved that the set of q for

which |H(q)| = φ(φ(q)) has density zero.
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Our interest here is in the distribution of primitive λ-roots for a fixed modulus. In [6] we

established that the primitive λ-roots were uniformly distributed. To be specific, let I ⊂ Z/qZ

be an interval I = {a+1, a+2, · · · , a+M} of size |I| = M ≤ q and let τ(q) denote the number

of divisors of q. We proved that if τ(q) ≪ 1, then for any positive ǫ,

|H(q) ∩ I| =
|I|
q
|H(q)| + Oǫ(q

τ(q)
1+τ(q)

+ǫ). (1.4)

Here, we sharpen the error term and eliminate the restriction on τ(q).

Theorem 1.1 For any positive integer q and interval I,

|H(q) ∩ I| =
|I|
q

· |H(q)| + Oǫ(q
1
2+ǫ). (1.5)

The theorem yields an asymptotic formula for |H(q) ∩ I| for intervals of size |I| ≫ q
1
2+ǫ.

Instead of appealing to the Erdös-Turan inequality for uniform distributions as we did in [6],

our proof here uses elementary properties of finite Fourier series.

We turn next to the joint distribution of the pairs (x, x−1) with x ∈ H(q). Such distributions

were first studied by Beck and Khan [1] for the case of prime moduli. More generally, let a, b, c, d

be integers with (ad− bc, q) = 1 and I, J be any intervals in Z/qZ with characteristic functions

χI , χJ . Our interest is in determining the number of primitive λ-roots x with ax + bx−1 ∈ I

and cx + dx−1 ∈ J .

Theorem 1.2 For any positive q, integers a, b, c, d with (ad − bc, q) = 1 and intervals I, J

we have

∑

x∈H(q)

χI(ax + bx−1)χJ (cx + dx−1) =
|I|
q

|J |
q

· |H(q)| + Oǫ(q
2
3+ǫ). (1.6)

Taking a = 1, b = 0, c = 0, d = 1, we obtain a count on the number of primitive λ-roots x

with x ∈ I and x−1 ∈ J . Taking I = {−B,−B + 1, · · · , B}, J = {1, 2, · · · , q}, a = 1, b =

−1, c = 0, d = 1, we obtain that the number of primitive λ-roots x with |x − x−1| ≤ B

is 2B+1
q

· |H(q)| + Oǫ(q
2
3+ǫ). Theorem 1.1 is just a special case of Theorem 1.2 letting J =

{1, 2, · · · , q}, a = 1, b = 0, c = 0, d = 1, but with a sharper error term.

2 Lemmas

Throughout the paper, big “Oh” and “≪” indicate constants depending on ǫ. The the-

orems follow from estimates of the exponential sums
∑

x∈H(q)

eq(yx),
∑

x∈H(q)

eq(m1x + m2x
−1),

over the set of primitive λ-roots, where eq(x) = e
2πix

q , which in turn follow from estimates

of the Gauss sum G(y, χ) =
pe
∑

x=1
χ(x)epe (yx), and twisted Kloosterman sum K(m1, m2, χ) =

pe
∑

x=1
χ(x)epe (m1x + m2x

−1), where χ is a multiplicative character (mod pe).

Lemma 2.1 For any integer y and positive ǫ,
∣

∣

∣

∑

x∈H(q)

eq(yx)
∣

∣

∣
≪ (q, y)

1
2 q

1
2+ǫ.
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Proof By Lemma 3 and equation (22) of [6], we have for any y and χ,

|G(y, χ)| ≤ (y, pe)
1
2 p

e
2 . (2.1)

Also, from equation (16) of [6] we have

∑

x∈H(q)

eq(yx) =
∑

di|λ(p
ei
i

)

0≤i≤k

∗
k

∏

i=0

(

∑

δi|di

diµ(δi)

δiλ(pei

i )

∑

exp(χi)=
δiλ(p

ei
i

)

di

G(yi, χi)

)

,

where
∑∗

means the sum over all di such that [d0, d1 · · · , dk] = λ(q) and yi = yni with the ni

defined by
k
∑

i=0

ni
q

p
ei
i

= 1. Using τ(n) ≪ nǫ we obtain from (2.1) that

∑

x∈H(q)

eq(yx) ≤
∑

di|λ(p
ei
i

)

0≤i≤k

∗
k

∏

i=0

τ(di)(y, pei

i )
1
2 p

ei
2

i ≪ (y, q)
1
2 q

1
2+ǫ. (2.2)

Lemma 2.2 For any integers m1, m2,
∣

∣

∣

∑

x∈H(q)

eq(m1x + m2x
−1)

∣

∣

∣
≪ (m1, m2, q)

1
3 q

2
3+ǫ.

Proof For any prime power pe and multiplicative character χ (mod pe), by [6, Lemma 5]

we have |K(m1, m2, χ)| ≤ cp(m1, m2, p
e)

1
3 p

2e
3 , where c2 = 4

√
2 and cp = 2 for p > 2. This is a

generalization of the classical Estermann-Weil bound (see [3]) to arbitrary characters χ. Also,

by equation (17) of [6],

∣

∣

∣

∑

x∈H(q)

eq(m1x + m2x
−1)

∣

∣

∣
=

∑

di|λ(p
ei
i

)

0≤i≤k

∗
k

∏

i=0

(

∑

δi|di

diµ(δi)

δiλ(pei

i )

∑

exp(χi)=
δiλ(p

ei
i

)

di

K(m′
i, m

′′
i , χi)

)

,

where
∑∗ is as defined above, χi runs through the set of multiplicative characters (mod pei

i )

and m′
i = nim1, m′′

i = nim2 with the ni as above. Thus

∣

∣

∣

∑

x∈H(q)

eq(m1x + m2x
−1)

∣

∣

∣
≪

∑

di|λ(p
ei
i

)

0≤i≤k

∗
k

∏

i=0

τ(di)cpi
(m1, m2, p

ei

i )
1
3 p

2ei
3

i ≪ (m1, m2, q)
1
3 q

2
3+ǫ.

3 Proof of Theorem 1.1

Let I = {a+1, · · · , a+M} be an interval of residue classes (mod q) and χI its characteristic

function with finite Fourier expansion

χI(x) =

q−1
∑

y=0

a(y)eq(yx), (3.1)

where eq(yx) = e
2πiyx

q , a(0) = M
q

and

a(y) = q−1eq

(

−
(

a +
M

2
+

1

2

)

y
)sin(πMy/q)

sin(πy/q)
for y = 1, · · · , q − 1. (3.2)
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Using | sin(πx)| ≥ 2x for 0 ≤ x ≤ 1
2 we have

|a(y)| = |a(q − y)| ≤ 1

2y
for y = 1, 2, · · · ,

[q

2

]

. (3.3)

Then
∑

x∈H(q)

χI(x) =
∑

x∈H(q)

q−1
∑

y=0

a(y)eq(yx) =
M

q
|H(q)| + Error (3.4)

with Error =
q−1
∑

y=1
a(y)

∑

x∈H(q)

eq(yx).

By Lemma 2.1 we have |Error| ≤
q−1
∑

y=1
|a(y)|

∣

∣

∣

∑

x∈H(q)

eq(yx)
∣

∣

∣
≪ q

1
2+ǫ

∑

d|q,d 6=q

d
1
2

∑

(y,q)=d

|a(y)|.

Next, using (3.3) and τ(q) ≪ qǫ, we obtain |Error| ≪ q
1
2+ǫ

∑

d|q,d 6=q

d
1
2

q
2d
∑

k=1

1
dk

≪ q
1
2+ǫ

∑

d|q,d 6=q

d−
1
2

≪ q
1
2+ǫ.

4 Proof of Theorem 1.2

Let a, b, c, d be integers with (ad− bc, q) = 1 and I, J be intervals of size |I| = M ≤ q, |J | =

N ≤ q in Z/qZ with characteristic functions χI(x) =
q−1
∑

y=0
a(y)eq(yx), χJ (x) =

q−1
∑

z=0
b(z)eq(zx).

Then
∑

x∈H(q)

χI(ax + bx−1)χJ (cx + dx−1) =
MN

q2
|H(q)| + Error (4.1)

with

Error =
∑

(y,z) 6=(0,0)

a(y)b(z)
∑

x∈H(q)

eq((ay + cz)x + (by + dz)x−1)). (4.2)

Now, since (ad − bc, q) = 1, the mapping (y, z) → (ay + cz, by + dz) is invertible modulo q and

so (ay + cz, by + dz, q) = (y, z, q) for any integers y, z. By Lemma 2.2 we then have

|Error| ≪ q
2
3 +ǫ

∑

d|q,d 6=q

d
1
3

∑

(y,z,q)=d

|a(y)||b(z)| ≪ q
2
3+ǫ

∑

d|q,d 6=q

d
1
3

q
d

∑

k=1

q
d

∑

l=1

1

dk

1

dl

≪ q
2
3 +ǫ

∑

d|q,d 6=q

d−
4
3 ≪ q

2
3+ǫ.
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