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1 Introduction

It is well known that there exists a unique adapted and square integrable solution to a

Backward Stochastic Differential Equation (BSDE in short) of type

yt = ξ +

∫ T

t

g(s, ys, zs)ds−

∫ T

t

zs · dBs, 0 ≤ t ≤ T, (1.1)

provided that the generator g is Lipschitz in both variables y and z , and that ξ and the process

g( · , 0, 0) are square integrable. We denote the unique adapted and square integrable solution

of the BSDE (1.1) by (Yt(g, T, ξ), Zt(g, T, ξ))t∈[0,T ]. When g also satisfies g(t, y, 0) ≡ 0 for any

(t, y), then, Y0(g, T, ξ), denoted by Eg[ξ], is called g-expectation of ξ; Yt(g, T, ξ), denoted by

Eg[ξ|Ft], is called conditional g-expectation of ξ (see [1] for details).

The notion of g-expectation can be considered as a nonlinear extension of the well-known

Girsanov transformations. The original motivation for studying g-expectation comes from the

theory of expected utility, which is the foundation of modern mathematical economics. Chen

and Epstein [2] gave an application of g-expectation to recursive utility, Rosazza [3] showed

how g-expectations and conditional g-expectations provide examples of static and dynamic risk

measures. Since the notion of g-expectation was introduced, many properties of g-expectation

have been studied in [1, 4–10]. [6] obtained an important result, where the authors proved that

if a filtration consistent (nonlinear) expectation E can be dominated by a kind of g-expectation,

then E must be a g-expectation.
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Some papers, such as [4, 7–9] have been devoted to Jensen’s inequality for g-expectation.

Roughly speaking, the problem of Jensen’s inequality for g-expectation is: For convex function

ϕ : R → R, what conditions should be given to the generator g such that the following inequality

Eg[ϕ(ξ)|Ft] ≥ ϕ[Eg(ξ|Ft)] (1.2)

will hold in general?

[4] gave a counterexample to indicate that even for a linear function ϕ, Jensen’s inequality

for g-expectation usually does not hold. [7, 8] obtained a necessary and sufficient condition for

Jensen’s inequality for g-expectation under three additional assumptions that g is independent

of y, is continuous respect to t and is convex in z. [9] obtained a necessary and sufficient

condition for Jensen’s inequality for g-expectation under two additional assumptions that g is

independent of y and g is continuous respect to t. These results yield a natural question:

Without these additional assumptions on g, can we solve the problem on Jensen’s inequality

for g-expectation generally?

More generally, we want to investigate the following problem of Jensen’s inequality for

BSDEs:

For each 0 ≤ t ≤ r ≤ T , ξ ∈ L2(Ω,Fr, P ) and convex function ϕ : R → R. Suppose

ϕ(ξ) ∈ L2(Ω,Fr, P ). Let (Yt(g, r, ξ), Zt(g, r, ξ))t∈[0,r] and (Yt(g, r, ϕ(ξ)), Zt(g, r, ϕ(ξ)))t∈[0,r]

denote the solutions of the following BSDE (1.3) and BSDE (1.4) respectively:

y1
t = ξ +

∫ r

t

g(s, y1
s , z

1
s)ds−

∫ r

t

z1
s · dBs, 0 ≤ t ≤ r, (1.3)

y2
t = ϕ(ξ) +

∫ r

t

g(s, y2
s , z

2
s)ds−

∫ r

t

z2
s · dBs, 0 ≤ t ≤ r. (1.4)

Then what conditions should be given to the generator g such that the following inequality

Yt(g, r, ϕ(ξ)) ≥ ϕ(Yt(g, r, ξ)) (1.5)

will hold in general?

The objective of this paper is to investigate these problems. The remainder of this paper is

organized as follows: In Section 2, we introduce some notations, assumptions, definitions and

lemmas which will be useful in this paper; in Section 3, we introduce the main result of this

paper, we prove that Jensen’s inequality holds for BSDEs with generator g if and only if g

is independent of y, g(t, 0) ≡ 0 and g is super homogeneous in z. This result generalizes the

known results on Jensen’s inequality for g-expectation in [4, 7–9].

2 Preliminaries

Let (Ω,F ,P) be a probability space and (Bt)t≥0 be a d-dimensional standard Brownian

motion on this space such that B0 = 0; let (Ft)t≥0 be the filtration generated by this Brownian

motion, i.e., Ft := σ{Bs, s ∈ [0, t]} ∨ N , t ∈ [0, T ], where N is the set of all P -null subsets.

Let T >0 be a given real number. In this paper, we always consider processes indexed by

t ∈ [0, T ]. For any positive integer n and z ∈ R
n, |z| denotes its Euclidean norm.

We define the following usual spaces of processes:
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S2
F (0,T ; R) :=

{

ψ continuous and progressively measurable;E
[

sup
0≤t≤T

|ψt|2
]

<∞
}

;

H2
F (0, T ; Rn) :=

{

ψ progressively measurable; ||ψ||22 = E
[

∫ T

0

|ψt|
2dt

]

<∞
}

.

The generator g of a BSDE is a function

g : Ω× [0,T ] × R × R
d −→ R

such that the process (g(t, y, z))t∈[0,T ] is progressively measurable for each pair (y, z) in R × R
d ,

and furthermore, g satisfies the following assumptions (A1) and (A2):

(A1) There exists a constant K ≥ 0 , such that dP × dt -a.s., we have

∀ y1, y2 ∈ R, z1, z2 ∈ R
d, |g(t, y1, z1) − g(t, y2, z2)| ≤ K(|y1 − y2| + |z1 − z2|).

(A2) The process (g(t, 0, 0))t∈[0,T ] ∈ H2
F (0, T ; R).

(A3) dP × dt -a.s., ∀ y ∈ R, g(t, y, 0) ≡ 0.

Let g satisfy (A1) and (A2). Then for each ξ ∈ L2(Ω,FT , P ), there exists a unique pair

of adapted processes in S2
F (0, T ; R) ×H2

F (0, T ; Rd), denoted by (Yt(g, T, ξ), Zt(g, T, ξ))t∈[0,T ],

solving the BSDE (1.1) (see [11]).

For the convenience of the reader, we recall the notion of g-expectation and conditional

g-expectation defined in [1]. We also list some basic properties of BSDEs and g-expectation.

In the following Definitions 2.1 and 2.2, we always assume that g satisfies (A1) and (A3).

Definition 2.1 The g-expectation Eg[ · ] : L2(Ω,FT , P ) → R is defined by

Eg[ξ] := Y0(g, T, ξ).

Definition 2.2 The conditional g-expectation of ξ with respect to Ft is defined by

Eg[ξ|Ft] := Yt(g, T, ξ).

Lemmas 2.1–2.4 come from [1], where g is assumed to satisfy (A1) and (A3).

Lemma 2.1 (1) (Preserving of Constants) For each constant c, Eg[c] = c;

(2) (Monotonicity) If X1 ≥ X2, a.s., then Eg[X1] ≥ Eg[X2];

(3) (Strict Monotonicity) If X1 ≥ X2, a.s., and P (X1 > X2) > 0, then Eg[X1] > Eg[X2].

Lemma 2.2 (1) If X is Ft-measurable, then Eg[X |Ft]=X ;

(2) For each t ∈ [0, T ], Eg[Eg[X |Ft]] = Eg[X ].

Lemma 2.3 Eg[X |Ft] is the unique random variable η in L2(Ω,Ft, P ), such that

Eg[X1A] = Eg[η1A] for all A ∈ Ft.

A generator g of a BSDE is said to be independent of y if g is defined on Ω × [0, T ] × R
d.

We often denote this kind of generator g by g(t, z).

Lemma 2.4 Let g satisfy (A1) and (A3). If g is independent of y, then Eg[X + η|Ft] =

Eg[X |Ft] + η, ∀ η ∈ L2(Ω,Ft, P ), X ∈ L2(Ω,FT , P ).
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The following Lemma 2.5 is [12, Theorem 1.3.5]. It will play a key role in this paper.

Lemma 2.5 (Representation Lemma) Let (A1) and (A2) hold for g; let 1 ≤ p < 2. Then

for each pair (y, z) ∈ R × R
d, the following equality

g(t, y, z) = Lp- lim
ε→0+

1

ε
[Yt(g, t+ ε, y + z · (Bt+ε −Bt)) − y]

holds for almost every t ∈ [0, T [ .

Definition 2.3 Let g be independent of y. g is said to be super homogeneous with respect

to z if g also satisfies

dP × dt -a.s., ∀ a ∈ R, z ∈ R
d, g(t, az) ≥ ag(t, z).

Lemma 2.6 (See [9]) Let g be independent of y and satisfy (A1), (A3) and the following

assumption

(A4) : P -a.s., ∀ (y, z) ∈ R × R
d, t→ g(t, y, z) is continuous.

Then the following two conditions are equivalent:

( i ) g is super homogeneous in z;

(ii) Jensen’s inequality for g-expectation holds in general, i.e., for each ξ ∈ L2(Ω,FT , P )

and convex function ϕ : R → R , if ϕ(ξ) ∈ L2(Ω,FT , P ), then for each t ∈ [0, T ], P -a.s.,

Eg[ϕ(ξ)|Ft] ≥ ϕ[Eg(ξ|Ft)].

Remark 2.1 When the authors of [9] proved that (i) implies (ii), they did not need (A4).

(See the proof of Theorem 3.1 and Remark 3.1 of [9]).

3 Jensen’s Inequality for BSDEs

In this Section, we study Jensen’s inequality for BSDEs. Let us first introduce two notations.

Let (A1) and (A2) hold for g; let (y, z) ∈ R × R
d. We set

Sz
y(g) :=

{

t
∣

∣

∣
t ∈ [0, T [ and g(t, y, z) = L1- lim

ε→0+

1

ε
[Yt(g, t+ ε, y + z · (Bt+ε −Bt)) − y]

}

.

If g is independent of y, then g is often denoted by g(t, z) for simplicity of notation. For this

kind generator g, we set

Sz(g) :=
{

t
∣

∣

∣
t ∈ [0, T [ and g(t, z) = L1- lim

ε→0+

1

ε
Yt(g, t+ ε, z · (Bt+ε −Bt))

}

.

We often denote Sz
y(g) by Sz

y , denote Sz(g) by Sz for simplicity of notations.

By Lemma 2.5 we understand that λ
(

[0, T ] \ Sz
y

)

= 0 (or λ ([0, T ] \ Sz) = 0, respectively),

where λ denotes the Lebesgue measure.

For any a, b ∈ R, we define a corresponding linear function ϕb
a : R → R, such that ϕb

a(x) =

ax+ b, ∀x ∈ R. Now let us state and prove our main result on Jensen’s inequality for BSDEs.

Theorem 3.1 Let (A1) and (A2) hold for g.

( i ) If for any 0 ≤ t < T, 0 < ε ≤ T − t, and any a, b, y ∈ R, z ∈ R
d, we have P -a.s.,

Yt(g, t+ ε, ϕb
a(y + z · (Bt+ε −Bt))) ≥ ϕb

a(Yt(g, t+ ε, y + z · (Bt+ε −Bt))). (3.1)
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Then g is independent of y, is super homogeneous in z and g(t, 0) ≡ 0, dP × dt-a.s..

Suppose furthermore that (A3) also holds for g. Then the following three statements are

equivalent:

( ii ) g is independent of y and g is super homogeneous in z;

(iii) For each a, b ∈ R, ξ ∈ L2(Ω,FT , P ), we have Eg[aξ + b] ≥ aEg[ξ] + b;

(iv) Jensen’s inequality for g-expectation holds in general, i.e., for each ξ ∈ L2(Ω,FT , P )

and convex function ϕ : R → R, if ϕ(ξ) ∈ L2(Ω,FT , P ), then

P -a.s., ∀ t ∈ [0, T ], Eg[ϕ(ξ)|Ft] ≥ ϕ[Eg(ξ|Ft)].

Proof (i) For any t ∈ [0, T [ , y ∈ R, z ∈ R
d, since (3.1) holds, for any large enough positive

integer n such that n ≥ 1
T−t

, we have, P -a.s.,

Yt

(

g, t+
1

n
, ϕ

y
1(z · (Bt+ 1

n

−Bt))
)

≥ ϕ
y
1

(

Yt

(

g, t+
1

n
, z · (Bt+ 1

n

−Bt)
))

.

Therefore we have

Yt

(

g, t+
1

n
, y + (z · (Bt+ 1

n

− Bt))
)

− y ≥ Yt

(

g, t+
1

n
, z · (Bt+ 1

n

−Bt)
)

. (3.2)

Suppose t ∈ Sz
y ∩ Sz

0 . Then

L1- lim
n→∞

n
[

Yt

(

g, t+
1

n
, y + z · (Bt+ 1

n

−Bt)
)

− y
]

= g(t, y, z), (3.3)

L1- lim
n→∞

nYt

(

g, t+
1

n
, z · (Bt+ 1

n

−Bt)
)

= g(t, 0, z). (3.4)

Then there exists a subsequence {nk}∞k=1 of {n}∞n=1 such that

P -a.s., lim
k→∞

nk

[

Yt

(

g, t+
1

nk
, y + z · (Bt+ 1

n
k

−Bt)
)

− y
]

= g(t, y, z), (3.5)

P -a.s., lim
k→∞

nkYt

(

g, t+
1

nk

, z · (Bt+ 1
n

k

−Bt)
)

= g(t, 0, z). (3.6)

Thus for each t ∈ Sz
y ∩ Sz

0 , it follows from (3.5)–(3.6) and (3.2) that

P -a.s., g(t, y, z) ≥ g(t, 0, z).

By Lemma 2.5 we know that λ([0, T ] \ Sz
y ∩ Sz

0 ) = 0. Thus for each y ∈ R, z ∈ R
d, we have

dP × dt -a.s., g(t, y, z) ≥ g(t, 0, z). (3.7)

By (i) we also know that

Yt

(

g, t+
1

n
, ϕ

−y
1 (y + z · (Bt+ 1

n

−Bt))
)

≥ ϕ
−y
1

(

Yt

(

g, t+
1

n
, y + z · (Bt+ 1

n

−Bt)
))

.

Thus we have

Yt

(

g, t+
1

n
, z · (Bt+ 1

n

−Bt)
)

≥ Yt

(

g, t+
1

n
, y + z · (Bt+ 1

n

− Bt)
)

− y.

Then for any y, z, in a similar manner, we can prove that

dP × dt -a.s., g(t, 0, z) ≥ g(t, y, z). (3.8)
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Thus for any z ∈ R
d, y ∈ R,

dP × dt -a.s., g(t, 0, z) = g(t, y, z). (3.9)

In view of that g is Lipschitz with respect to y, we know that for each z ∈ R
d,

dP × dt -a.s., ∀ y ∈ R, g(t, 0, z) = g(t, y, z).

Therefore g is independent of y indeed.

For each a ∈ R, z ∈ R
d, t ∈ [0, T [ , we choose a large enough positive integer n such that

n ≥ 1
T−t

. By (3.1) we have, P -a.s.,

Yt

(

g, t+
1

n
, ϕ0

a(z · (Bt+ 1
n

−Bt))
)

≥ ϕ0
a

(

Yt

(

g, t+
1

n
, z · (Bt+ 1

n

−Bt)
))

;

that is, P -a.s.,

Yt

(

g, t+
1

n
, az · (Bt+ 1

n

−Bt)
)

≥ a
[

Yt

(

g, t+
1

n
, z · (Bt+ 1

n

−Bt)
)]

. (3.10)

Since g is independent of y, for each t ∈ Sz ∩ Saz we have

L1- lim
n→∞

nYt

(

g, t+
1

n
, z · (Bt+ 1

n

−Bt)
)

= g(t, z),

L1- lim
n→∞

nYt

(

g, t+
1

n
, az · (Bt+ 1

n

−Bt)
)

= g(t, az).

Therefore there exists a subsequence {nk}∞k=1 of {n}∞n=1 such that

P -a.s., lim
k→∞

ank

[

Yt

(

g, t+
1

nk

, z · (Bt+ 1
n

k

−Bt)
)]

= ag(t, z), (3.11)

P -a.s., lim
k→∞

nk

[

Yt

(

g, t+
1

nk

, az · (Bt+ 1
n

k

−Bt)
)]

= g(t, az). (3.12)

Thus for each given a ∈ R, z ∈ R
d, if t ∈ Sz ∩Saz, then it follows from (3.11)–(3.12) and (3.10)

that

P -a.s., g(t, az) ≥ ag(t, z). (3.13)

By Lemma 2.5 we know that λ([0, T ] \ Sz ∩ Saz) = 0. Thus

dP × dt -a.s., g(t, az) ≥ ag(t, z).

Thus for each a ∈ R, it follows from the Lipschitz assumption (A1) and the above inequality

that

dP × dt -a.s., ∀ z ∈ R
d, g(t, az) ≥ ag(t, z). (3.14)

Also by (A1) we understand that

dP × dt -a.s., ∀ z ∈ R
d, a→ g(t, az) is continuous.

Obviously ag is continuous with respect to a. Thus

dP × dt -a.s., ∀ a ∈ R, z ∈ R
d, g(t, az) ≥ ag(t, z). (3.15)
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Therefore g is super-homogeneous in z.

By (3.14) we understand that

dP × dt -a.s., g(t, 0) ≥ −g(t, 0); (3.16)

dP × dt -a.s., g(t, 0) ≥ 2g(t, 0). (3.17)

It follows from (3.16) and (3.17) that

dP × dt -a.s., g(t, 0) = 0.

The proof of (i) is complete.

Now let us prove the second part of Theorem 3.1.

Suppose (A3) also holds for g. By Lemma 2.6 and Remark 2.1 we know that (ii) implies

(iv). It is obvious that (iv) implies (iii), so for completing the proof of Theorem 3.1, we only

need to prove that (iii) implies (ii). Suppose (iii) holds. Then we have

Eg[X + c] ≥ Eg[X ] + c, ∀ c ∈ R, X ∈ L2(Ω,FT , P ). (3.18)

Thus we have

Eg[X ] = Eg[X + c− c] ≥ Eg[X + c] − c, ∀ c ∈ R, X ∈ L2(Ω,FT , P ).

Therefore

Eg[X ] + c ≥ Eg[X + c], ∀ c ∈ R, X ∈ L2(Ω,FT , P ). (3.19)

It follows from (3.18) and (3.19) that

Eg[X + c] = Eg[X ] + c, ∀ c ∈ R, X ∈ L2(Ω,FT , P ). (3.20)

Then we have

Proposition 3.1 Suppose Eg satisfies (3.20). Then g is independent of y.

Proof For any c ∈ R, we define a new generator

gc(t, y, z) := g(t, y − c, z), ∀ t ∈ [0, T ], y ∈ R, z ∈ R
d.

Then gc satisfies (A1), (A2) and (A3).

For any X ∈ L2(Ω,FT , P ), let (yt, zt)t∈[0,T ] denote the solution of the following BSDE

(3.21):

yt = X +

∫ T

t

g(s, ys, zs)ds−

∫ T

t

zs · dBs, 0 ≤ t ≤ T. (3.21)

Then we have

yt + c = X + c+

∫ T

t

g(s, ys, zs)ds−

∫ T

t

zs · dBs, 0 ≤ t ≤ T.

We set ȳt = yt + c, z̄t = zt, ∀ t ∈ [0, T ]. Then we have

ȳt = X + c+

∫ T

t

gc(s, ȳs, z̄s)ds−

∫ T

t

z̄sdBs, 0 ≤ t ≤ T. (3.22)
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By the uniqueness of the solution of the BSDE (3.22) we have

Egc [X + c|Ft] = ȳt = yt + c = Eg[X |Ft] + c, ∀ t ∈ [0, T ]. (3.23)

Combining (3.23) with (3.20) we have

Egc [X + c] = Eg[X + c], ∀X ∈ L2(Ω,FT , P ).

Thus ∀ c ∈ R, we have

Egc [ξ] = Eg[ξ], ∀ ξ ∈ L2(Ω,FT , P ). (3.24)

Hence for any c ∈ R, ξ ∈ L2(Ω,FT , P ), it follows from (3.24) and [10, Proposition 3.1] that

P -a.s., Egc [ξ|Ft] = Eg[ξ|Ft], ∀ t ∈ [0, T ]. (3.25)

For any c ∈ R, z ∈ R
d, t ∈ [0, T [ , for any large enough positive integer n such that n ≥ 1

T−t
, by

(3.25) we have P -a.s.,

Egc [z · (Bt+ 1
n

−Bt)|Ft] = Eg[z · (Bt+ 1
n

−Bt)|Ft]; (3.26)

that is,

Yt

(

gc, t+
1

n
, z · (Bt+ 1

n

−Bt)
)

= Yt

(

g, t+
1

n
, z · (Bt+ 1

n

−Bt)
)

. (3.27)

For any t ∈ Sz
0 (gc) ∩ Sz

0 (g), it is obvious that

L1- lim
n→∞

n
[

Yt

(

gc, t+
1

n
, z · (Bt+ 1

n

−Bt)
)]

= gc(t, 0, z), (3.28)

L1- lim
n→∞

nYt

(

g, t+
1

n
, z · (Bt+ 1

n

−Bt)
)

= g(t, 0, z). (3.29)

Thus there exists a subsequence {nk}∞k=1 of {n}∞n=1 such that

P -a.s., lim
k→∞

nkYt

(

gc, t+
1

nk

, z · (Bt+ 1
n

k

−Bt)
)

= gc(t, 0, z), (3.30)

P -a.s., lim
k→∞

nkYt

(

g, t+
1

nk

, z · (Bt+ 1
n

k

−Bt)
)

= g(t, 0, z). (3.31)

Thus for each given t ∈ Sz
y(gc) ∩ Sz

0 (g), it follows from (3.30)–(3.31) and (3.27) that

P -a.s., gc(t, 0, z) = g(t, 0, z),

that is,

P -a.s., g(t,−c, z) = g(t, 0, z).

Hence for each c ∈ R, z ∈ R
d, by Lemma 2.5 we have

dP × dt -a.s., g(t,−c, z) = g(t, 0, z). (3.32)

For each z ∈ R
d, since g is Lipschitz with respect to y, it follows that

dP × dt -a.s., ∀ y ∈ R, g(t, y, z) = g(t, 0, z). (3.33)
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Therefore g is independent of y. The proof of Proposition 3.1 is complete.

Let us return to the proof of Theorem 3.1. We now prove that g is super homogeneous with

respect to z. For each a ∈ R, a 6= 0, by (iii) we know

Eg[aX ] ≥ aEg[X ], ∀X ∈ L2(Ω,FT , P ). (3.34)

We define a new generator

g̃a(t, z) := ag
(

t,
z

a

)

, ∀ t ∈ [0, T ], z ∈ R
d.

Then g̃a satisfies (A1), (A2) and (A3).

For any X ∈ L2(Ω,FT , P ), let (yt, zt)t∈[0,T ] denote the solution of the following BSDE

(3.35):

yt = X +

∫ T

t

g(s, zs)ds−

∫ T

t

zs · dBs, 0 ≤ t ≤ T. (3.35)

Then we have

ayt = aX +

∫ T

t

ag(s, zs)ds−

∫ T

t

azs · dBs, 0 ≤ t ≤ T.

We set ỹt = ayt, z̃t = azt, ∀ t ∈ [0, T ]. Then we have

ỹt = aX +

∫ T

t

g̃a(s, z̃s)ds−

∫ T

t

z̃s · dBs, 0 ≤ t ≤ T. (3.36)

Then by the uniqueness of solution of BSDE we have

Eg̃a [aX |Ft] = ỹt = ayt = aEg[X |Ft], ∀ t ∈ [0, T ]. (3.37)

Thus we have

Eg̃a [aX ] = aEg[X ].

Combining this with (3.34) we have

Eg[ξ] ≥ Eg̃a [ξ], ∀ ξ ∈ L2(Ω,FT , P ). (3.38)

Now let us prove that ∀ ξ ∈ L2(Ω,FT , P ), t ∈ [0, T ],

Eg[ξ|Ft] ≥ Eg̃a [ξ|Ft]. (3.39)

The argument of (3.39) is derived from [1, 4].

We set A := {Eg[ξ|Ft] < Eg̃a [ξ|Ft]}. Then A is Ft-measurable. Since g and g̃a satisfy (A3),

we can deduce that

P -a.s., Eg[1Aξ|Fs] = 1AEg[ξ|Fs], Eg̃a [1Aξ|Fs] = 1AEg̃a [ξ|Fs], ∀ s ∈ [t, T ].

If P (A) > 0, then

1AEg[ξ|Ft] − 1AEg̃a [ξ|Ft] ≤ 0 and P ({1AEg[ξ|Ft] − 1AEg̃a [ξ|Ft] < 0}) > 0. (3.40)
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In view of that g and g̃a are both independent of y, by Lemma 2.2 and Lemma 2.4, we have

Eg̃a [1Aξ − 1AEg̃a [ξ|Ft]]

= Eg̃a [Eg̃a [1Aξ − 1AEg̃a [ξ|Ft]|Ft]] = Eg̃a [Eg̃a [1Aξ|Ft] − 1AEg̃a [ξ|Ft]]

= Eg̃a [1AEg̃a [ξ|Ft] − 1AEg̃a [ξ|Ft]] = 0.

On the other hand, by Lemma 2.2, Lemma 2.4, (3.40) and Lemma 2.1 we can get that

Eg[1Aξ − 1AEg̃a [ξ|Ft]]

= Eg[Eg[1Aξ − 1AEg̃a [ξ|Ft]|Ft]] = Eg[Eg[1Aξ|Ft] − 1AEg̃a [ξ|Ft]]

= Eg[1AEg[ξ|Ft] − 1AEg̃a [ξ|Ft]] < 0 = Eg̃a [1Aξ − 1AEg̃a [ξ|Ft]],

which is a contradiction to (3.38). Therefore P (A) = 0. Thus (3.39) does hold.

For each z ∈ R
d, if t ∈ Sz(g) ∩ Sz(g̃a), we have

L1- lim
n→∞

nEg[z · (Bt+ 1
n

−Bt)|Ft] = g(t, z),

L1- lim
n→∞

nEg̃a [z · (Bt+ 1
n

−Bt)|Ft] = g̃a(t, z).

Therefore there exists a subsequence {nk}
∞
k=1 of {n}∞n=1 such that

P -a.s., lim
k→∞

nkEg[z · (Bt+ 1
n

k

−Bt)|Ft] = g(t, z), (3.41)

P -a.s., lim
k→∞

nkEg̃a [z · (Bt+ 1
n

k

−Bt)|Ft] = g̃a(t, z). (3.42)

Thus for any z ∈ R
d, t ∈ Sz(g) ∩ Sz(g̃a), it follows from (3.39) and (3.41)–(3.42) that

P -a.s., g(t, z) ≥ g̃a(t, z).

Since for any z ∈ R
d, by Lemma 2.5 we know that λ([0, T ] \ Sz(g) ∩ Sz(g̃a)) = 0. Thus

dP × dt -a.s., g(t, z) ≥ g̃a(t, z).

Since g and g̃a are both Lipschitz with respect to z, we have

dP × dt -a.s., ∀ z ∈ R
d, g(t, z) ≥ g̃a(t, z);

that is,

dP × dt -a.s., ∀ z ∈ R
d, g(t, z) ≥ ag

(

t,
z

a

)

.

In view of g(t, 0) = 0 we understand that for each a ∈ R, we have

dP × dt -a.s., ∀ z ∈ R
d, g(t, az) ≥ ag(t, z).

Since g(t, az) and ag are both continuous with respect to a, we have

dP × dt -a.s., ∀ a ∈ R, z ∈ R
d, g(t, az) ≥ ag(t, z).

Therefore g is super homogeneous in z. The proof of Theorem 3.1 is complete.



Jensen’s Inequality for BSDEs 563

Remark 3.1 Suppose a generator g is independent of y. Then the super homogeneity of

g is equivalent to the following condition: dP × dt -a.s.,

g(t, az) = ag(t, z) and g(t, z) + g(t,−z) ≥ 0, ∀ 0 ≤ a ∈ R, z ∈ R
d.

Corollary 3.1 Let (A1) and (A3) hold for g. Let d = 1, i.e., the dimension of the Brownian

motion (Bt) is one. Then the following three statements are equivalent:

( i ) g is independent of y and g is super homogeneous in z.

( ii ) There exist two bounded and progressively measurable processes (α(t))t∈[0,T ] and

(β(t))t∈[0,T ] such that α( · ) ≥ 0 and

g(t, z) = α(t)|z| + β(t)z, ∀ t ∈ [0, T ], z ∈ R.

In particular, g is convex with respect to z.

(iii) Jensen’s inequality for g-expectation holds in general.

Proof It suffices to prove that (i) is equivalent to (ii). It is obvious that (ii) implies (i), so

we only need to prove that (i) implies (ii). Suppose (i) holds, by Remark 3.1 we know that g is

positively homogeneous with respect to z. Hence for any z ∈ R, we have

g(t, z) =
(g(t, 1) + g(t,−1)

2

)

|z| +
(g(t, 1) − g(t,−1)

2

)

z = α(t)|z| + β(t)z,

where α(t) := g(t,1)+g(t,−1)
2 , β(t) := g(t,1)−g(t,−1)

2 , t ∈ [0, T ]. Due to (A1) and (A3) we conclude

that α( · ) and β( · ) are both progressively measurable and bounded by the Lipschitz constant

K.

It follows from the super homogeneity of g that

α(t)|− z| + β(t)(−z) = g(t,−z) ≥ −g(t, z) = −α(t)|z| − β(t)z.

Hence

α(t) ≥ 0, dP × dt -a.s.

The proof of Corollary 3.1 is complete.

Remark 3.2 It is worth pointing out that if d ≥ 2, a super homogeneous generator is not

necessarily convex with respect to z. For more results on Jensen’s inequality for g-expectation

and on Jensen’s inequality for g-(sub)martingale, we refer the reader to [12].
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