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Abstract By using the dimension-free Harnack inequality, the coupling method, and
Bakry-Emery’s argument, some explicit lower bounds are presented for the constant of the
Beckner type inequality on compact manifolds. As applications, the Beckner inequality and
the transportation cost inequality are established for a class of continuous spin systems.
In particular, some results in [1, 2] are generalized.
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1 Introduction

In 1989, W. Beckner [3] proved the following functional inequality for the standard Gaussian

measure v on R%:
V) =) < @=p(VIP), e CRRY, peL2). (1.1)

In this paper, we aim to study this type inequality on finite- and infinite-dimensional Rieman-
nian manifolds.

Let M be a connected compact Riemannian manifold with diameter D and dimension d.
Consider the operator L := A + VV for some V € C°°(M) and let A(dz) be the normalized
Riemannian volume measure. It is well known that (L, C°°(M)) is essentially self-adjoint op-
erator on L?(p), where p(dz) := Z(V)~teV@\(dz), Z(V) = [,, €V @ A(dz) < co. Let | - || be
the Hilbert-Schmitt norm. If
(Lf)?, feC*(M) (1.2)

1
(Ric — Hessy ) (Vf, Vf) + |[Hessz||> > RV > + -

holds for some R > 0 and n € (2, 00|, then [4, Theorem 3.1] says that

) — wlsn) < 2

p(Vf?) (1.3)

holds for any p € [1,-2%] and any f € C*>°(M).
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In this paper, we allow the curvature to be negative. For any p € [1,2), let C,(V) > 0 be

the largest positive constant such that

2—p

c VIR, S e o) (14)

p(f?) = u(fIP)F <

In particular, C; (V') coincides with the spectral gap of L, i.e.,

Ci(V) = inf{ u(|Vf1?) s p(f*) = p(f)* =1, f € CF(M)}.
Moreover, since

o B2 — (1)
p—2 2—-p

1 1 2
= §Entu(f2) = §u(f2 log M(fo)),

we may regard Ca(V') as the log-Sobolev constant, i.e.,
Ca(V) = inf{ 2u(|Vf[?) : Ent,,(f?) =1, f € OF(M)}.

It is well known that C1(V) > C3(V) (see [5, 6]). Moreover, since according to [7], for any
]

o\ Pl =R(fM)P] L - ,
[ € L*(n), =——5—,— is increasing in p € [1,2), therefore, one has Cy,(V) > £Co (V). We

remark that our estimates of Cp(V') which will be stated below are stronger than those implied
by Cp(V) > £C2(V) and known estimates of Cy(V') included in [1, 2].

To estimate C,(V'), we first follow the line of Wang [1] where C5(V') was estimated by using
the Harnack inequality and the coupling method. Let K (V) € R be such that

(Ric — Hessy )(X, X) > —~K(V)|X|?, X €TM. (1.5)

We have (see Theorem 2.2 below)

C,(V) > sup VA +mK(V)T)? +4amCi(V)/p — (1 +mK(V)*)
: S a>p 2am/p

_ VUH DIEWV)F? +4D%C,(V) — (14 D*K(V)*)

o 2D2 )

p € (1,2], (1.6)

where m := %. If in particular K(V) <0, then (see Corollary 3.1 below)

2¢0
4D?’

3

Cy(V) > (1.7)

where c¢g > 0 solves ¢? = 32(11);;76). These two estimates generalize Theorem 3.1 and Corollary
4.2 in [1] respectively.

To establish the Beckner type inequality for continuous spin systems, we follow the line
of [2] to estimate C,(V) by using Bakry-Emery’s argument (see Section 4 for details). As
applications, we present explicit lower bound of C,, (V') for the stochastic Ising models on M o

Similarly to [8, Theorem 1.1], this implies the transportation cost inequality for the Gibbs state.
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2 Estimates of Cp,(V') by Using the Harnack Inequality

In this section we modify the argument in [1] where C5(V) was estimated by using the
dimension-free Harnack inequality established in [9]. To this end, we consider the non-linear
equation

T
o, T Em

p

Lf, f=z0, u(ff)=1, (2.1)

where € > 0, p € [1,2) and

2—p)u(VF?)
[1(f?) =1 —(2—p)e]
According to [10, 11] (see also [4, 12]), there exists a nontrivial solution to (2.1) which attains
the infimum in the definition of Cj (V). Obviously, Cj (V) — C,(V') as € | 0. Since when & = 0
the solution to (2.1) might be constant which does not provide any information of C,(V'), we
first consider the case that € > 0 and then let € | 0.

CE(V) = inf{ 20, p(f7) = 1}.

Theorem 2.1 Suppose that V € C?(M) and OM is either convex or empty. Let p € (1,2).
If f > 0 solves (2.1) then

aK(V)D?
2@~ 1)(1 — e 2KV

(sup f)P~* (V) < exp ( — eat(sup f)p_Q), a>p. (2.2)

Proof Let xy and yg be respectively the maximum point and the minimum point of f, by
(2.1) we obtain

flxy) = P (24)
2-p

P.f (z0) — P.f(x0) = / B L (ra)du = —C5(V) / t B ( —efr ) ) du

p—2 ) — € t
> ((f ( (;)_ pl)cp(v) + €fp72(x0)) /S Pof(zo)du, t>s>0.
This implies
Ptf(ffo) > f(ffo) exp ((f;n— (if(;)__pl)cg(v)t + 6fp72($0)t)~ (23)

On the other hand, we have (see [9])

aK (V)p(x,y)?
2(a — 1)(1 — 2K

P @) < PilfI () exp ( ) a1 (2.4)

Combining (2.3) with (2.4), we get

p—2 T0) — €
f%(wo) exp ((f ( (;)_ pl)Cp(V) at + 6chp72(xo)t)
aK(V)D?
< RIS ep (2(a - 1)(1(—)e2K<V>t))' (2:3)

Since f(zg) > 1, there exists r € [p — 2,0] such that

1 — fP2(x)

5—p ["(20)log f(x0) < log f(xo).
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Then for any « > p,

[ (o) exp(—atCy (V) log f(x0))

< PP ) e (5 s s a)t).

Since p(fP) = 1, we finish the proof by taking integral over y w.r.t. p.

Next, it is easy to check that

K(V) 1

e N — +
R S5 TR0V >0,

By taking t = #;(V)’ we obtain from (2.2) that

a>p. (2.6)

aCE(V)) _efP (o)

aD?
lo xo) < )

o) (K(V)+ +

Theorem 2.2 Under the assumption of Theorem 2.1. For any p € (1,2) we have

VA +mKV)T)2 +4amCi(V)/p— (1 +mK(V)T)

C,(V) > su , 2.7
V) 2 s S (27)
where m = (ppz;):)‘l?z . Especially, (2.7) with o = p implies
1+ D2K(V)H)2 +4D2C (V) — (1 + D?K(V)*
¢ () > YIT DR IDP07) - (14 DAK(V)Y) )
2D?
Proof Let f > 0 solves (2.1). By the spectral representation we have

p((Lf)?) = CL(V)p(IV£1?). (2.9)

Next, by (2.1) we have

2 (V) 1 1
u(207) = Py o ey
C;(V) p—1
=32 W(=fLf)+ A +e2—p))u(f"Lf)]
= UV - (- 1)1+ < DtV
< P o= )0+ <2~ p) i £272) + 019 1P,
Then
1) < P p = 101+ £(2 - p)omin 172
=) (1+ -0 etz - ) I - 1))

<C(V)A+(p -1 +e(2—p))f(z0) log f(zo) — (p—1)e) (Frelp—2,0])

<G (V) +(p—1)(1 +e(2—p))log f(x0) — (p—1)2).
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Combining this with (2.6), we arrive at

aD? aCe(V
() < G0 1+ 0= 11+ @ =) (22 (e + 220
~ ey ) — (o 1],
By letting € | 0, we obtain
(p — 1)aD? aCp(V)
CL(V) < Cy(V) [1 + m(K(V)+ = )} (2.10)

Therefore, the desired assertion follows by solving (2.10).

3 Estimates of C,(V') by Using Coupling

The coupling method has been used successfully to estimate C1(V) and Ca(V), see e.g.
[1, 13] (refer to [14] for more details about coupling). By the approximation procedure as in
Section 2, we may assume that a nonconstant solution to (2.1) for ¢ = 0 exists. The coupling

method then works as follows.

Theorem 3.1 Let f > 0 be a nonconstant solution to (2.1) with € = 0. Define 31 := sup f
and By = sup|l — (p — 1)fP=2|. Let (x¢,y:) be a coupling for the L-diffusion process with
coupling time T := inf{t > 0: 2y =y:}. Then we have

2— -1
vy > —2 DBy (3.1)
(B — By ) sup E*YT
x,yeM
Furthermore, if there exists p € C(M x M) with p > cp for some ¢ > 0 such that
E¥Vp(we,ye) < pla,y)e” " (3.2)

for some o >0 and all t > 0, then Cp(V') > (QE—Z)”, p e (1,2).

Proof Let xg and yy be respectively the maximum point and the minimum point of f. Set
0(f) :=sup f —inf f. We have

t

1 Z0,Y0 _ I Z0,Y0 —
1= m{E YLf (@) — f(ye)] +/0 ETON[Lf(2s) Lf(ys)]ds}
Z0,Y0 5(f — fp—l)cp(v) ! Z0,Y0
< P ) G e =t Jy T )
By a simple calculation, it is easy to see that the function u(z) := z — 2P~! reaches the

minimum at ¢ := (p — 1)ﬁ in z € (0,00). Since ¢ < 1, we have
(f = f771) = [f(z0) — fzo)" '] = [f (o) Ve = (f(yo) V )" ]

f(=o)
[ - v
!

(yo)Ve

(F o) = Fla0) V &) 5=

< () - Foo) L (3.4

IA

B1
[ 0= v
1
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Here we have used the fact that f(yo) <1 and 57— fﬁl 1 — (p — 1)tP~2]dt is increasing in r.
Combining (3.3) and (3.4) we obtain
2 —p) (B = HPT(T < t)

Cp(V) > —
V= G =g T

This implies (3.1) by letting ¢ T oo.
To prove (3.2), let x. # y. be such that

fa) = ) o o J@-TW) s, .

plocys) wy PY)
By the mean-value theorem we have
(@) = £@P™) = Uw) = FP _  [F@) = F)] _
p(x,y) p(z,y)

Combining this with (3.2) and (2.1) with ¢ = 0 we obtain
(C —e)p(we,ye) < f(we) — f(ye)

< BV | f(m) — fye)| + M/ E%eve|(f — P (@) — (f — 77 1) (ys)|ds

CﬂgC

< CE™ Y= p(we, yr) + / BV p(zs, ys)ds

ﬁg(]. — e Ut (V))
(2- p)
The proof is then completed by letting ¢ T co and & | 0.

< Cﬁ(xe,yg)(e*‘” +

2

Corollary 3.1 If K(V) <0, we have C,(V) > 558, where ¢o > 0 solves ¢* = 320-e9).

Proof For the coupling by reflection, we have (see [1, 9, 15])

D2
Taking a = 2 and € = 0 in (2.6), we have
4D2C, (V)
< —— P\
B1 < exp ( o ), (3.6)
Theorem 3.1 yields that
(2-p)(B—1) pr—1
C,(V) > > . 3.7
p(V) 2 (Br—BY7Y) sup BT ~ (Bilogfr) sup E®YT (31)
z,yeEM z,yeM

Combining (3.5), (3.6) and (3.7) we have

o) > o (1o

= DIC,(V)
Let ¢ = M Then ¢ > 0 and
32(1 —e ¢
2> ( _ )
p
Since 1+§w is increasing in ¢ > 0, we conclude that ¢ > ¢g.
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4 Estimates of Cp(V') by Using Bakry-Emery’s Argument

In order to establish the log-Sobolev inequality for continuous spin systems, Deuschel and
Stroock [2] presented explicit estimates of Cy(V') by using Bakry-Emery’s argument. In this

section we intend to extend their results for C, (V).

Theorem 4.1 Let §(V):=supV —inf V. We have

O, (V) > ﬁ (301(0)e*5<v> - dK((d + 2)%) 901 - e*5<V>)K(0)+).

Next, Theorem 4.1 makes sense only if 3C; (0)e°(V) —dK ((d+2) %) —2(1—e V) K(0)* >
0, but it will be better than the previous ones for small K(0) and big D. Most importantly, if
K(0) <0 and K(V) <0, then this estimate is nontrivial even when d — oo, so that it works
also for the infinite dimensional case. This feature is crucial for the study of continuous spin
systems.

As mentioned above, we shall adopt Bakry-Emery’s argument to prove Theorem 4.1, so
that we need to estimate the so called I'; operator. To this end, we first present the following

lemma.

Lemma 4.1 For any strictly positive f € C>(M),

(20D |[Hess pamn ) > %A@(AW —2Ric(Vf, V) + (p — 1)(3p — 5) 'Vfé'4)~ (4.1)
Proof Since
Hessyooy = (2 p)fPHessy + (2 p)(1 —p)f 7V @ VI,
one has
P s o 2 = (2= ) (s + 201 - p) PV 4 g e T

Noting that
2Hess(Vf,Vf) = (V, VIVf]?),
2 ZA 4

f f f?
we obtain
A(f*P7V | Hess 2 ||)
QA 4
= 2 pa(Hess 2 + (0 - DI 4 -y ) [TI0), (4.2
f f
Moreover,

APPETALTR) = NP2 = p) fPAS + (2= p) (L =) IV F1P)?)

2 4
— 2-p2a((an? - 2p - RS s}

,f +(p_]') f2
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Combining this with (Af?77)? < d||Hess2-»||?, we arrive at

ALY = S (AR + = AT -

- ﬁ(M(AM +(p = D22V

o d
(2-p)?
Since A(A|Vf]?) = 0, the proof is finished by combining this with (4.2) and the Bochner-

Weitzenbock formulas:

AP (Af27P)2)

A(f2=D) |[Hess f2-» ||2)) .

%(A|Vf|2 _9(Vf,VAS)) = [Hessy |2 + Ric(V . V).

Proof of Theorem 4.1 Assume that f is strictly positive and pu(f?) = 1. Let f; := P, fP,

hp(t) == M Then

= (G - 1)en) = (oo (G )

= —2u(VSP VP)) = ~2u(V I P). (43)
Thus,
h(0)
hp(0) < — 20,7 (4.4)
Since hy(t) — 0 and hy,(t) — 0 as t — oo, (4.4) is implied by
hy(t) > =2C,(V)hy,(t), t>0. (4.5)

Next, by the second equality in (4.3) and the integration by parts formula, we obtain
d? 2 d

()= —=
dt2 plt) = (2 P) at”

M < » e ZLff,Vft>+<vft%aVLft>)

(Vi V)

p2

(
u(<V( - wﬁ%%ﬁ?)ﬁf& VAT VLE))
(-°

2 2 2-2 29 2
o CONEE ) + gLV T).

Since
n(V(f 1’5|fo’1|2>,Vft>>
= w2V EET VA + (Y E T PV, V)

= S VIV T BT + v T V),

we arrive at
d? 4 2-2 2.1 29 4(p—1)

Lohylt) = IV T ENAR, )
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where by the Bochner-Weitzenbock formula,
1 .
Tao(f, f) = SILIVF* = 2((VF, VL)) = [Hess||* + (Ric — Hessv)(VS, V). (4.7)

Without loss of generality, we assume that inf V' = 0, otherwise just replace V by V —inf V.
Combining (4.7) with Lemma 4.1, we obtain

(D) = G A (R~ Hessy (VA7 VAF) ! Hess 2 12)
+ 2T VAR
> dp((Ric — Hessy ) (VS V7)) + WABZ(V))\[?)(A £ — 2Rie(Vf7, VP
+(p—1)(3p —5) |V£|4 LA _Zl()‘g _p)A(|V£§|4)
> 4p((Ric — Hessy ) (V17 V1) + ATz S 707 NB(AFF)? — 2Ric(Vf7 V7).

It is well known by the spectral representation that
1 1
M(AFF)?) = CLOAV ).

Since
—2\(Ric(V £, V) > —2X(e"Ric(Vf, V)T + 2A(Ric(Vf, Vf)7)
> Z(V)(=2u(Ric(V £,V ) = 2(1 — e V)u(Ric(V £,V )7)),

we have

R(E) 2 Ap((Ric — Hessy ) (V17 VA7) + 5 BO10)e (V77 2)

d+2
—Ou(Ric(V 7, Vf7)) — 201 — eV ) u(Ric(VF7, V7))
> 4u((1 —2)Ric - Hessv)(Vft%,Vft%)
+ B V(Y7 ) - 201 = eV )u(Rie(V 7, V7))
> ﬁ [301(0)e= ) — 201 — =) K(0)* — dxc ((d + 2)%)}”(%@% )
_ d+22 (301 (0)e=") — 2(1 — = V) K (0)* — dic((d + 2)V)}h'( 0.

Since Cp (V') is the largest constant such that (4.5) holds, this implies the desired result.

5 Applications to Continuous Spin Systems

Let Z™ be the m-dimensional integer lattice with the metric |i]| :=  ax lig]. For A CZ™
m

we denote by |A] the cardinality of A, and if |A| < oo we write A CC Z™. Let M be a compact
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connected Riemannian manifold and let E := M%" be equipped with the product topology.
Given z,y € E and A C Z™, define xp X ype € E by
( ) xi, ifi€eA,
TA X YAe )i =
yi, 1f 1€ A°.
Moreover, we let 25 be the projection of  onto M™.
Let FC>® := {f € C™(E) : there exists A CC Z™ and f € C°°(M™) such that f(z) =
f (xa)}. For simplicity, we identify a function f € FC> and the corresponding function f on
M.
Let f = {Jp : @ # A CC Z™} be a shift-invariant, finite range potential on E. That is,
Jr € C®°(M™) and Jp(z) = Jasw(Opx) for any A CC Z™, z € E, k € Z™ and Opx = x._p,
and there exists R > 0 such that Jy = 0 if sup |i — j| > R. Given k € Z™, let

i,jEA

w w exp (—Hj/(z))

HE(2) =Y Jalwk X wgye),  pf (de) = ka H AMdzi), =, weE,
Ak iezm

where Z{ is the normalization. A probability measure p on E is called a Gibbs state with

potential 4 (denoted by p € G(Y)), if

[ tan= [ ([ f@nxommin)uas). fecwm), kezn.

Next, we introduce the diffusion operator on E which is symmetric w.r.t. p. To this end,
first choose a family of vector field X!,--- X" on M such that X!(z),--- , X"(x) spans T, M
for any x € M. For k € Z™, s :== (s1, -+ ,s,) € N", set

Xi= (X" (XD and o= s
i=1

where X/ is the vector field X* acting on the k-th component. Next introduce the space &(E)
of f € C*°(F) with the property that

[flln = 11fllee + > D IXEflloe <00, n>1.
keZm 1<|s|<n
Obviously, &(E) D FC°.
We then define the operator L on &(E) by

L¥f =) (Av—ViHy)f, [e®(E),

kezm

where Hy, := Y Ja, Ay and Vy, are the Laplacian and gradient operators on the i-th manifold
Ak

MPF respectively.
It is classical that a probability measure p on E is a Gibbs state with potential & if and
only if (cf. [2])
- [t = 3 [ Vit Vigdu. faeo()

kezm
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In other words, for every u € G(U), LY is symmetric in L? ().
According to [2, Theorem 2.2], L* generates a unique Markov semigroup P on C(E)
preserving &(E). Now, let C, (L) be the largest positive constant such that

27D VIR, feB(E), pell2). (5.1)

wI?) =) < o

~—

To follow the argument in the last section, we first study the following I's operator:

T4(f, f) = (Z LYVRSR) =2 Y (VKL VRS)), FEBE).  (52)

kezm kezm

Let Ricy, be the Ricci curvature tensor on M*. For any X € TE, let X}, be its projection
on TM*. For any f € C°(FE) and X,Y € TE, define

Hess (. xa o) (Xk: Y0) (2), i k=1,

Kl .:
Hessf (X,Y)(z) : {in;lf(x)a if k#£1,

where Y] is a smooth vector field on M! such that Y;(z;) = Yj(z). Finally, set

Hessu = Z Hesskl for k,l e Z™.

As{k,l}
Then T (f, f) satisfies
T3(f, /)= > TR ) + R f), (5.3)
kezm
where
DS, f) == |[Hessp ™| + (Rick + Hessy 1 (8) (Vi f, Vi f), (5.4)
R(f, f) := > Hess{?' (Vi f, Vi ). (5.5)
kezm lezZm\{k}
Let
B i=sup {BERR(f, 1) > 8 3" [VafP? forall € 6(E)}.
kezm™
Define

() :==sup{d(HY) :w € E} and K(Y):=sup{K(H):w € E}.

Furthermore denote

1

o) =73

30(0)e~*W) — dK((cH— 2)%‘) — (1 e—6<ﬂ>)K(0)+]

Then we have the following extension of Theorem 4.1.

Theorem 5.1 If a(ih) + B(L) > 0 then there exists a unique p € GY) and Cp(Lh) >
a(i) +8) >0
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Proof Let p € G(U) and hy(t) =

suffice to prove that

. According to the proof of Theorem 4.1, it

hy(t) = Cp(80) (=2h, (1)),

where hy,(t) is defined as in the proof of Theorem 4.1 for positive f € &(FE) and P*. Since
P!®(E) C B(E), the derivatives w.r.t. ¢ is exchangeable with the integration of y. Thus, by
(5.2)—(5.5) and repeating the proof of Theorem 4.1, we conclude that for any extreme Gibbs
state p,

Cy(t) > a(dt) + B(8) > 0.
In particular, the log-Sobolev inequality holds and hence p is unique according to [16].

In applications, it is convenient to replace (i) by the more explicit quantity (i) =
> y(k), where
}#£0

~(k) := sup{||Hessy;" (X0, Yi)lloo : X, Y € TE, |X|,|Y| <1}, k#0.
Due to the shift-invariance and Young’s inequality, we have
B) = =y ().
Therefore, the following is a direct consequence of Theorem 5.1.

Corollary 5.1 If a(th) > y(U) then Cp(Hh) > a(Hh) — y(Lh).

Finally, we consider the transportation cost inequality for the Gibbs measure p. Let p be

the Riemannian distance on M and

ﬁ(xvy) = Z p(xiayi)27 z,y cr. (56)
1EL™
Let
1
WP(Fu,p) = inf / o(x,y)Pr(de, dy) ", p>1, 5.7
PEwp) = nt A G yate g} p (5.7)

where C(Fu,v) is the set of all couplings of Fu and p.

As an application of the Theorem 5.1, we have the following result on transportation cost.

Corollary 5.2 If a(ih) > ~v(L), then the unique Gibbs state p satisfies

Wf(Fu,u)<p\/(a(u)M£F ! F>0, u(F)=1,pe[l,2.  (58)

7)
Y2 -p)’ -

Proof It suffices to prove for cylindrical function F'. Let

Ay ={ieZ™:|i| <n}
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and i, be the projection of y onto M*™» n > 1. Then there exists ng > 1 such that F(z)
depends only on z4,, . Since Corollary 5.1 implies that

Mo  2-D
pn(F%) = pn([E )7 < —p =5

it follows from [8, Theorem 1.1] that

pn(|Va, FI?), FeC®M), n>1,

W;fn (F'iny pin) < p\/

where

N

Pn(TA,,YA,) = ( p(x;, yi)Q)
ieA7l

Let m, € C(F up, ty) such that
P dm v 'M(F%) —1 n>n
(/o) Sp\/@—p)(a(u) @) "

Tn(dz, dy) := T (dza,,, dya, )pu(dosg oo, ) u(dya;
Then 7, € C(Fu, ) and

Define

YA, )-

1 2
_\7» uw(Fr)—1
pﬁdﬂ'n) "< p\/ ,  m > ng. (5.10)
(/ (2 = p)(a(th) =~ (W)
On the other hand, since {Fu, u} is tight as F is a Polish space under the product topology, so

is C(F ', ). Thus, there exists 7 € P(E x E) such that 7, — 7 weakly for some subsequence
ng — oo. It is trivial that m € C(Fu, 1) and (5.10) implies

b \F (F7) —
(f shan) S#@—zﬁt)(ﬁw) @y "

Therefore, the proof is finished by letting n T co.
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