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Abstract The behavior of a thin curved hyperelastic film bonded to a fixed substrate is de-

scribed by an energy composed of a nonlinearly hyperelastic energy term and a debonding

interfacial energy term. The author computes the Γ-limit of this energy under a nonin-

terpenetration constraint that prohibits penetration of the film into the substrate without

excluding contact between them.
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1 Introduction

The purpose of this article is to describe the debonding of a three-dimensional thin curved

film from a large, rigid substrate when the thickness of the film goes to zero by means of rigorous

convergence analysis.

In [5], A. Braides, I. Fonseca and G. Francfort studied the asymptotic behavior of het-

erogeneous thin films. They generalized the results obtained by H. Le Dret and A. Raoult

in [14] for homogeneous membranes to the heterogeneous case via a compactness result using

Γ-convergence arguments.

In [4], K. Bhattacharya, I. Fonseca and G. Francfort took up the work of A. Braides, I.

Fonseca and G. Francfort and analyzed the asymptotic behavior of flat bonded thin films, one

of them possibly rigid, i.e., a substrate, with a debonding interfacial energy. They studied

the different limit behaviors resulting from different scaling in powers of the thickness of the

films. They showed that when the interfacial energy is very strong, the limit deformations

are continuous across the interface and independent of the thickness variable. In the case of

weak interfacial energy, the limit deformations are not continuous across the interface while

the independence of the thickness variable subsists in each film resulting in two decoupled Le

Dret-Raoult membrane problem. The interfacial energy term explicitly contributes to the limit

energy in only one case when it is of the same order of magnitude as the elastic energy. This

debonding energy then couples two membrane energies.
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In the present work, we study the behavior of a thin curved film bonded to a rigid substrate

with a curved upper surface. We suppose that in the reference configuration, contact between

the film and the substrate takes place everywhere on the lower surface of the film. We impose

a noninterpenetration condition on deformations. Noninterpenetration of matter is a basic

physical requirement in solid mechanics. In the context of three-dimensional nonlinear elasticity,

a first attempt by J. Ball in [3] was to impose the positivity of the determinant of the deformation

gradient almost everywhere. In [8] and [9], P. G. Ciarlet and J. Nečas succeeded in imposing

global injectivity by adding a condition on the deformed volume. The latter condition was

generalized by Q. Tang in [16] to accommodate less regular deformations. For global injectivity

in nonlinear elasticity, see also M. Giaquinta, G. Modica and J. Souček [13].

In our case, we will treat noninterpenetration between the film and the substrate by imposing

that every point of the deformed body stays out of the interior of the substrate while allowing

at the same time contact on the upper surface of the substrate. This condition seems reasonable

from the physical point of view. We thus impose that the film deforms away from the substrate,

without prohibiting contact between the two. Our approach is comparable to that of P. G.

Ciarlet and J. Nečas in [6] and [7] for unilateral problems.

The equilibrium state of the film is described by the minimizers of an energy depending on

the deformation of the film, over a space of admissible deformations which we choose in such

a way that there is no interpenetration between the film and the substrate as explained above.

We are interested in the asymptotic behavior of this energy and its minimizers, when they exist,

when the thickness of the film tends to zero.

We thus consider a hyperelastic curved thin film occupying a domain Ω̃h of thickness h in

contact on its lower surface ω̃ with a rigid substrate occupying a domain S. The behavior of

this film undergoing a deformation φ̃ is described by an energy ẽh composed of an elastic energy

term Ẽh and an interfacial energy term Ĩh. The latter term penalizes the debonding of the film

from the substrate. The interfacial energy term admits a density depending on the jump of the

deformation φ̃ through the film-substrate interface. We are thus considering the energy

ẽh = Ẽh + Ĩh

with

Ẽh(φ̃) =

∫eΩh

W (∇φ̃) dx,

Ĩh(φ̃) = hα
∫eω Φ(|[φ̃]|) dσ,

where W is the elastic energy density of the film, hαΦ is the interfacial energy density where

α is a real number, |[φ̃]| is the norm of the jump of the deformation through the film-substrate

interface and dσ is the surface measure on the interface ω̃.

After setting the problem and rescaling the energy in order to work on a planar domain with

constant thickness, we carry out a second change of variables that flattens the upper surface of

the substrate in order to handle the noninterpenetration condition. Then, we compute the Γ-

limit of the sequence of energies which describes the asymptotic behavior of almost minimizing

sequences. Finally, we rewrite the limit model on the curved surface following [15].
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2 Notations and Geometrical Preliminaries

Let (e1, e2, e3) be the canonical orthonormal basis of the Euclidean space R
3. We denote by

|v| the norm of a vector v in R
3, by u · v the scalar product of two vectors in R

3 and by u ∧ v

their vector product. Let M33 be the space of 3× 3 real matrices endowed with the usual norm

|F | =
√

tr(FTF ). We denote by A = (a1 | a2 | a3) the matrix in M33 whose i th column is ai.

We consider a thin curved film of thickness h > 0 occupying at rest an open domain Ω̃h. The

reference configuration of the film is described as follows. We are thus given a surface ω̃, which

is the lower surface of the film. This surface is a bounded two-dimensional C2-submanifold of

R
3 and we assume for simplicity that it admits an atlas consisting of one chart. Let ψ be this

chart, i.e., a C2-diffeomorphism from a bounded open subset ω of R
2 onto ω̃.

Let aα(x) = ψ,α(x), α = 1, 2, be the vectors of the covariant basis of the tangent plane

Tψ(x)ω̃ associated with the chart ψ, where ψ,α denotes the partial derivative of ψ with respect

to xα. We assume that there exists δ > 0 such that |a1(x) ∧ a2(x)| ≥ δ on ω and we define the

unit normal vector a3(x) = a1(x)∧a2(x)
|a1(x)∧a2(x)|

, which belongs to C1(ω; R3). The vectors a1(x), a2(x)

and a3(x) constitute the covariant basis at the point x. We define the contravariant basis by

the relations ai(x) · aj(x) = δij , so that aα(x) ∈ Tψ(x)ω̃ and a3(x) = a3(x).

Next, we define a mapping Ψ: ω × R → R
3 by

Ψ(x1, x2, x3) = ψ(x1, x2) + x3a3(x1, x2).

It is well known that there exists h∗ > 0 such that for all 0 < h < h∗, the restriction of Ψ to

Ωh = ω×]0, h[ is a C2-diffeomorphism on its image by the tubular neighborhood theorem. For

such values of h, we set Ω̃h = Ψ(Ωh). Alternatively, we can write

Ω̃h = {x̃ ∈ R
3, ∃ π̃(x̃) ∈ ω̃, x̃ = π̃(x̃) + ηa3(ψ

−1(π̃(x̃))) with 0 < η < h},

where π̃ denotes the orthogonal projection from Ω̃h onto ω̃, which is well defined and of class

C1 for h < h∗. Equivalently, every x̃ ∈ Ω̃h can be written as

x̃ = π̃(x̃) + [(x̃− π̃(x̃)) · a3(ψ
−1(π̃(x̃)))] · a3(ψ

−1(π̃(x̃))).

Thus, we have a curvilinear coordinate system in Ω̃h naturally associated with the chart ψ by

(x1, x2) = ψ−1(π̃(x̃)) and x3 = (x̃− π̃(x̃)) · a3(ψ
−1(π̃(x̃))).

For all x ∈ ω, we let A(x) = (a1(x) | a2(x) | a3(x)). We note that A(x) is an invertible matrix

on ω, and that its inverse is given by A(x)−1 = (a1(x) | a2(x) | a3(x))
T
. We also note that

detA(x) = | cofA(x) · e3| = |a1(x) ∧ a2(x)| ≥ δ > 0 on ω. We clearly have

∇Ψ(x1, x2, x3) = A(x1, x2) + x3(a3,1(x1, x2) | a3,2(x1, x2) | 0).

The matrix ∇Ψ(x1, x2, x3) is thus everywhere invertible in Ωh and its determinant is strictly

positive, and therefore equal to the Jacobian of the change of variables, for h small enough.

We assume that the substrate is infinite imposing that Ψ is the restriction to Ω1 of a C1-

diffeomorphism Ψ : R
3 → R

3 such that

Sc = Ψ{x ∈ R
3, x3 > 0}.
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In the following, h denotes a generic sequence of real numbers in ]0, h∗[ that tends to zero.

The next convergences are easily established.

Lemma 2.1 We have
{
∇Ψ−1 ◦ Ψ(x1, x2, hx3) → A(x)−1,

det∇Ψ(x1, x2, hx3) → detA(x),

uniformly on Ω1 when h → 0. In particular, inf
Ω1

det∇Ψ(x1, x2, hx3) ≥ δ
2 > 0 for h small

enough.

3 The Three Dimensional and Rescaled Problems

We suppose that the film is made of a homogeneous hyperelastic material with an elastic

internal energy density, W : M33 → [0,+∞[, which is a continuous function verifying the

following assumptions





∃ c > 0, ∃ p ∈]1,+∞[ , ∀F ∈ M33, |W (F )| ≤ c(1 + |F |p),

∃ γ > 0, ∃β ≥ 0, ∀F ∈ M33, W (F ) ≥ γ|F |p − β,

∀F, F ′ ∈ M33, |W (F ) −W (F ′)| ≤ c(1 + |F |p−1 + |F ′|p−1)|F − F ′|.

(3.1)

The behavior of the film undergoing a deformation φ̃ is described by the energy

ẽh = Ẽh + Ĩh,

where

Ẽh(φ̃) =

∫eΩh

W (∇φ̃) dx̃, Ĩh(φ̃) = hα
∫eω Φ

(
|[φ̃]|

)
dσ̃

with

[φ̃] = φ̃(x̃) − x̃ for almost all x̃ ∈ ω̃.

The jump [φ̃] is well defined for φ̃ ∈ W 1,p(Ω̃h; R3) and belongs to W 1− 1
p
,p(ω̃; R3). It is zero if

and only if the film remains bonded to the substrate. Note that if p > 3, then [φ̃] ∈ C0(ω̃; R3).

In the sequel, we will assume that p > 3. In this case φ̃ ∈ C0(Ω̃h; R3) and its image φ̃(Ω̃h)

is unambiguously defined in the classical sense. The function Φ : R+ → R+ appearing in the

interface energy term is supposed to be continuous, nondecreasing and verifying

Φ(0) = 0 and Φ(t) > 0 for t 6= 0. (3.2)

Since we make no quasiconvexity assumption on the density of the elastic energy, which would

exclude some interesting examples from our study such as the Saint Venant-Kirchhoff material,

we are not assured of the existence of solutions to the minimization problem: Find ϕ̃(h) ∈ Ṽ h

such that

ẽh(ϕ̃(h)) = inf
φ̃∈eV h

ẽh(φ̃)

with

Ṽ h = {φ̃ ∈ W 1,p(Ω̃h,R3), φ̃(Ω̃h) ⊂ Sc and φ̃(x) = x on Γ̃}, p > 3,
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where Sc represents the closure of the complement of the domain occupied by the substrate

and Γ̃ is the side surface of Ω̃h. The noninterpenetration condition imposed on elements of Ṽ h

means that such deformations cannot map a point in Ω̃h into the interior of the substrate. On

the other hand, such points may be mapped onto the boundary of the subset. Of course, points

in ω̃ can be mapped onto ω̃, in which case there is contact between the film and the substrate.

If [φ̃] = 0, the film remains bonded, if [φ̃] 6= 0 it is debonded, either by sliding on ω̃ or by

moving into Sc. So, this condition prevents the penetration of the film into the substrate. We

thus consider a diagonal minimizing sequence ϕ̃h for the sequence of energies ẽh, which always

exists, satisfying

ϕ̃h ∈ Ṽ h, ẽh(ϕ̃h) = inf
φ̃∈eV h

ẽh(φ̃) + hε(h) (3.3)

with ε(h) → 0 when h → 0. We start by flattening and rescaling the minimizing problem

through a change of variables which enables us to work on a set that is independent of the

thickness h. We proceed in two steps.

Let x̃ ∈ Ω̃h, there exists an x ∈ Ωh such that x̃ = Ψ(x), where

Ωh = {x ∈ R
3, ∃x′ ∈ ω, x = x′ + ηe3, 0 < η < h

}
.

If φ̃h is a deformation of the curved film in its reference configuration, we define for every

x ∈ Ωh, φh : Ωh → R
3 by

φh(x) = φ̃h(Ψ(x)).

Knowing that for a deformation φ̃ : Ω̃h → R
3 in membrane mode, the elastic energy is of the

order of h when h tends to zero, we are interested in the limiting behavior of the energy per

unit thickness, 1
h
ẽh(φ̃). For a deformation φh : Ωh → R

3 we thus consider the rescaled energy

eh(φh) =
1

h
ẽh(φ̃) =

1

h

∫

Ωh

W (∇φh(x)(∇Ψ)−1(x)) det∇Ψ(x) dx

+ hα−1

∫

ω

Φ(|[φh]|)| cof∇Ψ(x)e3|dσ

with

|[φh]| = |φh(x1, x2, 0) − Ψ(x1, x2, 0)|.

We define the map zh : Ωh → R
3 by setting

zh(x1, x2, x3) =
(
x1, x2,

x3

h

)
.

The map zh sends Ωh on

Ω1 = {x ∈ R
3, (x1, x2) ∈ ω and 0 < x3 < 1}.
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Figure 1

With every deformation φ of Ωh, we associate a deformation φh : Ω1 → R
3 defined by

φh(x) = φ(z−1
h (x)).

We set e(h)(φh) = eh(φ). Thus, we have

e(h)(φ) = E(h)(φ) + I(h)(φ)

with

E(h)(φ) =

∫

Ω1

W
[(
φ,1(x)

∣∣∣ φ,2(x)
∣∣∣ 1

h
φ,3(x)

)
Ah(x)

]
dh(x) dx,

I(h)(φ) = hα−1

∫

ω

Φ(|[φ]|) | cof∇Ψ(x1, x2, hx3)e3|dσ,

where [φ] is defined as above, dh(x) = det∇Ψ(x1, x2, hx3) and Ah(x) = ∇Ψ−1 ◦Ψ(x1, x2, hx3).

We now let

ϕ(h) = ϕ̃h(Ψ(z−1
h )).
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Relation (3.3) becomes

ϕ(h) ∈ V (h), e(h)(ϕ(h)) = inf
φ∈V h

e(h)(φ) + ε(h) (3.4)

with ε(h) → 0 when h→ 0 and

V (h) = {φ ∈ W 1,p(Ω1; R
3), φ(Ω1) ⊂ Sc and φ(x) = Ψ(x1, x2, hx3) on ∂ω × (0, 1)}.

The above change of variables enables us to work on a flat domain independent of the thickness

of the curved film.

We now carry out another change of variables in the target space, which will enable us to

flatten the upper surface of the substrate. This change of variables makes it possible to simplify

the noninterpenetration condition and facilitates the computation of the upper bound of the

Γ-limit. The noninterpenetration condition states that the deformed film stays outside of S.

For all x ∈ Ω1 we set

φ̄(x) = Ψ
−1

(φ(x)).

Su

ϕ(Ω1)

ϕ

ϕ̄

Su

1

Ω1

Ψ
−1

Ψ
−1

(Su)

ϕ̄(Ω1) = Ψ
−1

(ϕ(Ω1))

Figure 2
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In terms of φ̄, the noninterpenetration condition simplifies as

φ̄3 ≥ 0.

The operator that associates the mapping Ψ
−1

(φ) with φ : R
3 → R

3 is a Nemytsky operator.

In particular, since Ψ
−1

is C1, if φ ∈ W 1,p(Ω1; R
3) then φ̄ ∈W 1,p(Ω1; R

3). Moreover we have

∇φ(x) = ∇Ψ(φ̄(x))∇φ̄(x),

which is equivalent to

∂iφ(x) = ∇Ψ(φ̄(x))∂iφ̄(x).

Finally, we obtain (
∂αφ

∣∣∣ 1

h
∂3φ

)
= ∇Ψ(φ̄)

(
∂αφ̄(x)

∣∣∣ 1

h
∂3φ̄

)
.

Let us define

ē(h)(φ̄) = E(h)(φ̄) + I(h)(φ̄) = e(h)(φ)

with

E(h)(φ̄) = E(h)(φ) =

∫

Ω1

W
[
∇Ψ(φ̄(x))

(
φ̄,1(x)

∣∣∣ φ̄,2(x)
∣∣∣ 1

h
φ̄,3(x)

)
Ah(x)

]
dh(x) dx,

I(h)(φ̄) = I(h)(φ) = hα−1

∫

ω

Φ(|[Ψ(φ̄)]|) | cof∇Ψ(x1, x2, hx3)e3|dσ,

where

[Ψ(φ̄)] = Ψ(φ̄(x1, x2, 0)) − Ψ(x1, x2, 0).

Setting

ϕ̄(h)(x) = Ψ
−1

(ϕ(h)(x)),

relation (3.4) becomes

ϕ̄(h) ∈ V (h), ē(h)(ϕ̄(h)) = inf
φ̄∈V (h)

ē(φ̄) + ε(h)

with ε(h) → 0 when h→ 0 and

V (h) = {φ̄ ∈W 1,p(Ω1; R
3), φ̄(Ω1) ⊂ {x3 ≥ 0} and φ̄(x) = (x1, x2, hx3) on ∂ω × (0, 1)}.

4 Computation of the Γ-Limit

Before starting the computation of the Γ-limit of the sequence of energies ē(h), we begin by

extending this energy to Lp(Ω1; R
3) by setting

for every φ̄ ∈ Lp(Ω1; R
3), ē∗(h)(φ̄) =

{
ē(h)(φ̄), if φ̄ ∈ V (h),

+∞, otherwise.

The limit energy that we obtain by Γ-convergence is relaxed, i.e., the internal energy density

is quasiconvexified. We cannot avoid this even if the three dimensional density is quasiconvex,
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since quasiconvexity is not retained by the density W0 which will appear in the limit models

(see [14]). We recall that the quasiconvex envelope of a function W : Ω × R
3 × M32 → R is

given by

QW = sup{Z : M32 → R, Z quasiconvex and Z ≤W},

and that a function Z : Ω × R
3 × M32 → R is quasiconvex if and only if

Z(x, y, A) ≤
1

measD

∫

D

Z(x, y, A+ ∇θ(x))dx

for every bounded open set D ⊂ R
3, every A ∈ M32 and every θ ∈ W

1,∞
0 (D; R3). The

quasiconvex envelope of W may also be computed by the following representation formula (see

[10])

QW (x, y, A) = inf
θ∈W 1,∞

0 (D;R3)

( 1

measD

∫

D

W (x, y, A+ ∇θ(x))dx
)
.

For every F = (z1 | z2 | z3) ∈ M33 we denote by F the matrix in M32 defined by F = (z1 | z2).

We introduce, in a similar fashion as in Acerbi, Buttazzo and Percivale [1] for nonlinearly elastic

strings and Le Dret and Raoult [14] for membranes, the function W0 : ω×R
3×M32 → R defined

by

W0(x, y, F ) = inf
z∈R3

W (∇Ψ(y)(F | z)A0(x))

with A0(x) = ∇Ψ
−1(

Ψ(x1, x2, 0)
)
. This function is well defined thanks to the continuity of W

and its growth and coercivity properties (3.1).

Proposition 4.1 The function W0 is continuous and verifies the following growth and

coercivity properties

{
∃ c′ > 0, ∀F ∈ M32, ∀ y ∈ R

3, ∀x ∈ ω, |W0(x, y, F )| ≤ c′(1 + |F |p),

∃ γ′ > 0, ∃β′ ≥ 0, ∀F ∈ M32, ∀ y ∈ R
3, ∀x ∈ ω, W0(x, y, F ) ≥ γ′|F |p − β′.

Proof The function W0 is upper semicontinuous as an infimum of continuous functions.

To obtain the continuity of W0, it is thus enough to show that it is lower semicontinuous. We

consider a sequence (xn, yn, Fn) ∈ ω×R
3×M32 converging to (x, y, F ) when n→ +∞. Thanks

to the coercivity of W , for all z ∈ R
3 we have

α|z|p = α|∇Ψ(y)(∇Ψ(y))−1(0 | z)A0(x)(A0(x))
−1|p

≤ α‖(∇Ψ)−1‖L∞(R3)‖(A0)
−1‖L∞(ω)|∇Ψ(y)(0 | z)A0(x)|

p

≤ ‖(∇Ψ)−1‖L∞(R3)‖(A0)
−1‖L∞(ω)W (∇Ψ(y)(0 | z)A0(x)) + β.

Consequently, there exists a compact set K such that for all N , the infimum W on z ∈ R
3 is

reached at a point zn ∈ K. We proceed then as in [14]. We extract a subsequence still noted n

such that W0(xn, yn, Fn) converges when n→ +∞, from which we extract another subsequence

such that zn → Z ∈ K. Thanks to the continuity of W , we have

W0(xn, yn, Fn) = W (∇Ψ(yn)(F n | zn)A0(xn)) −→W (∇Ψ(y)(F | z)A0(x)) ≥W0(x, y, F ).
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As this is true for any subsequence such that W0(xn, yn, Fn) converges, we deduce that

lim inf W0(xn, yn, Fn) ≥W0(x, y, F ).

Consequently W0 is lower semicontinuous and thus continuous. Let us consider (x, y, F ) ∈

ω × R
3 × M32 and z0 ∈ R

3 that achieves the minimum in the definition of W0. We have

W0(x, y, F ) = W (∇Ψ(y)(F | z0)A0(x)) ≥ α|∇Ψ(y)(F | z0)A0(x)|
p − β

≥ α|∇Ψ(y)(F | 0)A0(x)|
p − β.

On the other hand, we have

|F |p = |∇Ψ(y)(∇Ψ(y))−1(F | 0)A0(x)(A0(x))
−1|p

≤ ‖(∇Ψ)−1‖L∞ ||(A0)
−1‖L∞ |∇Ψ(y)(F | 0)A0(x)|

p,

which gives us the coercivity. Lastly, W0 is nonnegative apart from a compact set on which it

is bounded thanks to its continuity. For all (x, y, F ) apart from this compact set, we have

|W0(x, y, F )| = W0(x, y, F ) = W (∇Ψ(y)(F | z0)A0(x)) ≤W (∇Ψ(y)(F | 0)A0(x))

≤ c(1 + |∇Ψ(y)(F | 0)A0(x)|
p) ≤ c(1 + ‖∇Ψ ‖L∞‖A0‖L∞|F |p) ≤ c

(
1 + |F |p).

Thus the growth property holds true.

Next is a lemma that gives the behavior of deformations with bounded energy.

Lemma 4.1 Let φ̄(h) ∈ Lp(Ω1; R
3) be a sequence verifying

ē∗(h)(φ̄(h)) ≤ c,

where c is a strictly positive constant independent of h. Then φ̄(h) is uniformly bounded in

W 1,p(ω; R3) and its limit points for the weak topology of W 1,p(ω; R3) belong to

VM = {φ̄ ∈ W 1,p(Ω1; R
3), φ̄(Ω1) ⊂ {x3 ≥ 0}, φ̄,3 = 0 and φ̄(x) = (x1, x2, 0) on ∂ω × (0, 1)}.

Moreover, in the case α < 1, there is only one limit point,

φ̄(0)(x) = (x1, x2, 0) in Ω1.

Proof Let us consider φ̄(h) ∈ Lp(Ω1; R
3) verifying

ē∗(h)(φ̄(h)) ≤ c < +∞.

This implies that φ̄(h) ∈ V (h) and that

ē∗(h)(φ̄(h)) = ē(h)(φ̄(h)).

Thus, we have the following estimates

E(h)(φ̄(h)) ≤ c and I(h)(φ̄(h)) ≤ c. (4.1)
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The first estimate can also be written as
∫

Ω1

W
(
∇Ψ(φ̄(x))

(
φ̄,α(h)

∣∣∣ 1

h
φ̄,3(h)

)
Ah(x)

)
dh(x)dx ≤ c,

where φ̄,α(h) = (φ̄,1(h) | φ̄,2(h)) ∈ M32. Properties (3.1) of W imply that

∥∥∥∇Ψ(φ̄)
(
φ̄,α(h)

∣∣∣ 1

h
φ̄,3(h)

)
Ah

∥∥∥
Lp(Ω1;R3)

≤ c.

On the other hand, we have

∥∥∥
(
φ̄,α(h)

∣∣∣ 1

h
φ̄,3(h)

)∥∥∥
Lp(Ω1;R3)

=
∥∥∥(∇Ψ(φ̄))−1(∇Ψ(φ̄))

(
φ̄,α(h)

∣∣∣ 1

h
φ̄,3(h)

)
A−1
h Ah

∥∥∥
Lp(Ω1;R3)

≤ ‖(∇Ψ)−1‖L∞(Ω1;M33)‖A
−1
h ‖L∞(Ω1;M33)

∥∥∥∇Ψ(φ̄)
(
φ̄,α(h)

∣∣∣ 1

h
φ̄,3(h)

)
Ah

∥∥∥
Lp(Ω1;R3)

≤ c.

Thus, we have for h small enough

‖∇φ̄(h)‖Lp(Ω1;R3) ≤ c

and the Poincaré inequality implies that φ̄(h) is uniformly bounded in W 1,p(ω; R3). This implies

that, for a subsequence h, there exists a φ̄(0) ∈ W 1,p(Ω1; R
3) such that

φ̄(h) ⇀ φ̄(0) in W 1,p(Ω1; R
3).

Thus

φ̄(h) → φ̄(0) in Lp(Ω1; R
3). (4.2)

In addition, since

1

h
‖φ̄,3(h)‖Lp(Ω1;R3) ≤

∥∥∥
(
φ̄,α(h)

∣∣∣ 1

h
φ̄,3(h)

)∥∥∥
Lp(Ω1;R3)

≤ c,

we have

φ̄,3(0) = 0.

Since p > 3, W 1,p(Ω1; R
3) is compactly embedded in C0(Ω1; R

3). Hence,

φ̄(h) → φ̄(0) uniformly on Ω1.

The noninterpenetration condition thus passes to the limit and

φ̄(0)(Ω1) ⊂ {x3 ≥ 0}.

Thanks to the continuity of the trace operator, we have

φ̄(0) ∈ V
0
.
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For α < 1, since I(h)(φ̄(h)) ≤ c, we have

lim
h→0

∫

ω

Φ(|[Ψ(φ̄(h))]|) | cof∇Ψ(x1, x2, hx3) e3| dx = 0.

Fatou’s lemma and the continuity of Φ imply that

0 = lim inf
h→0

∫

ω

Φ(|[Ψ(φ̄(h))]|) | cof∇Ψ(x1, x2, hx3) e3| dx

≥

∫

ω

lim inf
h→0

Φ(|[Ψ(φ̄(h))]|) d0(x)dx ≥

∫

ω

Φ
(

lim inf
h→0

|[Ψ(φ̄(h))]|
)
d0(x)dx,

from which it follows that, by (3.2)

lim inf
h→0

|[Ψ(φ̄(h))]| = 0,

almost everywhere in ω. But we have seen that φ̄(h) → φ̄(0) uniformly. Therefore

Ψ(φ̄(0)(x1, x2, 0)) = Ψ(x1, x2, 0) on ω.

The injectivity of Ψ implies that

φ̄(0)(x1, x2, 0) = (x1, x2, 0) in ω.

Since φ̄,3(0) = 0, we finally obtain

φ̄(0)(x) = (x1, x2, 0) in Ω1,

which completes the study in the case α < 1.

We can now, compute the Γ-limit of our energy which is given by the following theorem.

Theorem 4.1 The sequence of energies ē∗(h) Γ-converges for the strong topology of

Lp(Ω1; R
3) when h→ 0 to a functional ē∗(0), defined by

ē∗(0)(φ̄) =





∫

ω

QW0(x, φ̄(x), (φ̄,1(x) | φ̄,2(x)))d0(x) dx, if φ̄ ∈ VM ,

+∞, otherwise,

for α > 1,

ē∗(0)(φ̄) =





∫

ω

QW0(x, φ̄(x), (φ̄,1(x) | φ̄,2(x)))d0(x) dx

+

∫

ω

Φ(|[Ψ(φ̄)]|)d0(x)dx, if φ̄ ∈ VM ,

+∞, otherwise,

for α = 1 and

ē∗(0)(φ̄) =





∫

ω

QW0(x, id(x), (e1 | e2))d0(x) dx, if φ̄ = id,

+∞, otherwise,

for α < 1, with d0(x) = detA(x), where A(x) = ∇Ψ(x1, x2, 0) = (a1(x) | a2(x) | a3(x)).

The proof of the theorem is a consequence of the following two propositions.
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Proposition 4.2 We have

ē∗(0) ≤ Γ − lim inf ē∗(h).

Proof To obtain this, we have to show that for every φ̄0 ∈ Lp(Ω1; R
3) and φ̄(h) ∈ Lp(Ω1; R

3)

verifying

φ̄(h) → φ̄0 in Lp(Ω1; R
3),

we have

lim inf ē∗(h)(φ̄(h)) ≥ ē∗(0)(φ̄0).

The case when we have

ē∗(h)(φ̄(h)) = +∞

is obvious. Let us thus consider φ̄0 ∈ VM for α ≥ 1 and φ̄0 = id for α < 1, with

ē∗(h)(φ̄(h)) < +∞.

Thus, φ̄(h) ∈ V (h) and

φ̄(h) ⇀ φ̄0 in W 1,p(Ω1; R
3). (4.3)

We propose to show that

lim inf ē(h)(φ̄(h)) ≥ ē(0)(φ̄0),

where

ē(0)(φ̄0) =

∫

ω

QW0(x, φ̄
0(x), (φ̄0

,1(x) | φ̄
0
,2(x)))d0(x) dx + δ(α)

∫

ω

Φ(|[Ψ(φ0 )]|)d0(x)dx

with δ(α) = 1 if α = 1 and δ(α) = 0 otherwise. We have

E(h)(φ̄(h)) =

∫

Ω1

W
[
∇Ψ(φ̄(h))

(
φ̄,1(h)

∣∣∣ φ̄,2(h)
∣∣∣ 1

h
φ̄,3(h)

)
Ah

]
dh dx

=

∫

Ω1

{
W

[
∇Ψ(φ̄(h))

(
φ̄,1(h)

∣∣∣ φ̄,2(h)
∣∣∣ 1

h
φ̄,3(h)

)
A0

]
+R(x, h, φ̄(h))

}
dh dx,

where

R(x, h, φ̄(h)) = W
[
∇Ψ(φ̄(h))(x)

(
φ̄,1(h)(x)

∣∣∣ φ̄,2(h)(x)
∣∣∣ 1

h
φ̄,3(h)(x)

)
Ah(x)

]

−W
[
∇Ψ(φ̄(h))(x)

(
φ̄,1(h)(x)

∣∣∣ φ̄,2(h)(x)
∣∣∣ 1

h
φ̄,3(h)(x)

)
A0(x)

]
.

Since

Ah → A0 in C0(Ω1)

and due to the third property of W in (3.1), we obtain that

∫

Ω1

R(x, h, φ̄(h))dh(x) dx→ 0 when h→ 0. (4.4)
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Then, we have

E(h)(φ̄(h)) ≥

∫

Ω1

{W0(x, φ̄(h)(x), (φ̄,1(h)(x) | φ̄,2(h)(x))) +R(x, h, φ̄(h))}dh(x)dx

≥

∫

Ω1

{QW0(x, φ̄(h)(x), (φ̄,1(h)(x) | φ̄,2(h)(x))) +R(x, h, φ̄(h))}dh(x)dx,

using the definition of W0 and the quasiconvex envelop. Passing to the lim inf when h goes to

zero, we obtain using (4.4)

lim inf E(h)(φ̄(h)) ≥ lim inf

∫

Ω1

QW0(x, φ̄(h)(x), (φ̄,1(h)(x) | φ̄,2(h)(x)))dh(x)dx.

The convergence of dh to d0 in C0(Ω1) implies that

lim inf

∫

Ω1

QW0(x, φ̄(h)(x), (φ̄,1(h)(x) | φ̄,2(h)(x)))dh(x)dx

= lim inf

∫

Ω1

QW0(x, φ̄(h)(x), (φ̄,1(h)(x) | φ̄,2(h)(x)))d0(x)dx.

Let us consider the function G : W 1,p(Ω1; R
3) → R defined by

G(φ̄) =

∫

Ω1

QW0(x, φ̄(x), (φ̄,1(x) | φ̄,2(x)))d0(x)dx.

This function is lower semicontinuous for the weak topology of W 1,p(Ω1; R
3) thanks to the

quasiconvexity of QW0 and the fact that

0 ≤ QW0(x, y, F ) ≤ c(1 + |F |p)

(see [2, 10]). Since

φ̄(h) ⇀ φ̄0 in W 1,p(Ω1; R
3),

we have

lim inf E(h)(φ̄(h)) ≥ lim inf G(φ̄(h)) ≥ G(φ̄0)

=

∫

ω

QW0(x, φ̄
0(x), (φ̄0

,1(x) | φ̄
0
,2(x)))d0(x)dx. (4.5)

Next, we treat the interfacial energy term. We have

I(h)(φ̄(h)) = hα−1

∫

ω

Φ(|[Ψ(φ̄(h))]|) d0(x)dx.

There are three cases. Since the interfacial energy term is positive and δ(α) = 0 for α 6= 1, the

case α 6= 1 is obvious in the sense that

lim inf I(h)(φ̄(h)) ≥ 0 = δ(α)

∫

ω

Φ(|[Ψ(φ̄0)]|)d0(x)dx.

If α = 1, we have

I(h)(φ̄(h)) =

∫

ω

Φ(|[Ψ(φ̄(h))]|) d0(x)dx.
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By (4.3) and the compact embedding, we have that φ̄(h)) → φ̄0 uniformly in Ω1. Thus, Fatou’s

lemma and the continuity of Φ imply that

lim inf I(h)(φ̄(h)) ≥

∫

ω

lim inf
h→0

Φ(|[Ψ(φ̄(h))]| d0(x)dx ≥

∫

ω

Φ(|[Ψ(φ̄0)]|)d0(x)dx.

Finally, by (4.5) and the above estimates

lim inf ē(h)(φ̄(h)) ≥ lim inf I(h)(φ̄(h)) + lim inf E(h)(φ̄(h)) ≥ ē(0)(φ̄0),

which implies that

lim inf ē∗(h)(φ̄(h)) ≥ ē∗(0)(φ̄0),

and thus

Γ − lim inf ē∗(h) ≥ ē∗(0). (4.6)

We pass to the computation of the upper bound of the Γ-limit. We will use the following

lemma (see [14]).

Lemma 4.2 Let X →֒ Y be two Banach spaces such that X is reflexive and compactly

embedded in Y . Consider a function G : X → R such that ∀ v ∈ X, G(v) ≥ g(‖v‖X) where g

verifies g(t) → +∞ when t→ +∞. Let G∗ be defined by G∗(v) = G(v) if v ∈ X, G∗(v) = +∞

otherwise. Let Γ − G denote the sequential lower semicontinuous envelope of G for the weak

topology of X and let Γ − G∗ denote the lower semicontinuous envelope of G∗ for the strong

topology of Y . Then

Γ −G∗ = (Γ −G)∗.

Proposition 4.3 We have

Γ − lim sup ē∗(h) ≤ ē∗(0).

Proof To show this result, we have to find, for all φ̄0 ∈ Lp(Ω1; R
3), a sequence of test-

functions φ(h) converging to φ̄0 in Lp strong, and verifying

lim e∗(h)(φ(h)) ≤ e∗(0)(φ̄0).

If e∗(0)(φ̄0) = +∞, there is nothing to prove. Hence, we need only to consider the cases

φ̄0 ∈ VM for α ≥ 1 and φ̄0 = id for α < 1. Let φ̄0 be such a deformation. We consider the

function h : ω × R
3 → R defined by

h(x, z) = W [∇Ψ(φ̄0(x))(φ̄0
,1(x) | φ̄

0
,2(x) | z + e3)A0(x)].

It is a Carathéodory function. Thus, the measurable selection lemma (see [12]), implies the

existence of a measurable function ξ0 such that

W0(x, φ̄
0(x), (φ̄0

,1(x) | φ̄
0
,2(x))) = W [∇Ψ(φ̄0(x))(φ̄0

,1(x) | φ̄
0
,2(x) | ξ

0(x) + e3) A0(x)]
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and using (3.1), we see that ξ0 ∈ Lp(ω; R3). The density of C∞
c (ω; R3) in Lp(ω; R3) implies the

existence of ξ0ε ∈ C∞
c (ω; R3) verifying

ξ0ε → ξ0 in Lp(ω; R3) when ε→ 0. (4.7)

In order to deal with the noninterpenetration constraint, we consider the sequence φ̄0
ε defined

for every x ∈ ω by

φ̄0
ε(x) = φ̄0(x) + ε dist(x, ∂ω)e3.

This sequence belongs to VM since the distance to the boundary is Lipschitz, verifying φ̄0
ε(Ω1) ⊂

{x3 > 0} and φ̄0
ε → φ̄0 in W 1,p(ω; R3) when ε → 0. Thus, using the Lebesgue convergence

theorem and (4.7), we have that for a subsequence still denoted by ε:
∫

ω

W [∇Ψ(φ̄0
ε(x))(φ̄

0
ε,1(x) | φ̄

0
ε,2(x) | ξ

0
ε (x) + e3)A0(x)]d0(x)dx

−→
ε→0

∫

ω

W [∇Ψ(φ̄0(x))(φ̄0
,1(x) | φ̄

0
,2(x) | ξ

0(x) + e3)A0(x)]d0(x)dx.

In particular, for every η > 0, there exists an ε(η) > 0 such that for all ε ≤ ε(η), we have
∫

ω

W [∇Ψ(φ̄0
ε(x))(φ̄

0
ε,1(x) | φ̄

0
ε,2(x) | ξ

0
ε (x) + e3)A0(x)]d0(x)dx

≤

∫

ω

W [∇Ψ(φ̄0(x))(φ̄0
,1(x) | φ̄

0
,2(x) | ξ

0(x) + e3)A0(x)]d0(x)dx + η

and thus ∫

ω

W [∇Ψ(φ̄0
ε(x))(φ̄

0
ε,1(x) | φ̄

0
ε,2(x) | ξ

0
ε(x) + e3)A0(x)]d0(x)dx

≤

∫

ω

W0(x, φ̄
0(x), (φ̄0

,1(x) | φ̄
0
,2(x)))d0(x)dx + η.

Let us now set

φ̄ε(h) = φ̄0
ε + hx3ξ

0
ε + hx3e3.

We fix ε > 0. Since φ̄0
ε ∈ W 1,p(ω; R3) with p > 3 and is thus continuous, for every compact

subset K ⊂ ω there exists cK(ε) > 0 such that (φ̄0
ε)3 ≥ cK(ε) on K. For h < cK(ε)

(1+‖ξ0ε‖L∞) we

have that (φ̄ε(h))3 > 0 on K× ]0, 1[ and (φ̄ε(h))3 = (φ̄0
ε)3 + hx3 > 0 also on (ω \ K)× ]0, 1[.

Thus, φ̄ε(h) ∈ V
h

and

φ̄ε(h) −→
h→0

φ̄0
ε strongly in Lp(Ω1; R

3).

Let us first study the interfacial energy term. By construction we have

|[Ψ(φ̄ε(h))]| = |[Ψ(φ̄0
ε)]|.

There are again three cases. The case α < 1 is obvious.

Second case, α = 1. We have

I(h)(φ̄ε(h)) =

∫

ω

Φ(|[Ψ(φ̄ε(h))]|) | cof∇Ψ(x1, x2, hx3)e3|dx

=

∫

ω

Φ(|[Ψ(φ̄0
ε)]|) | cof∇Ψ(x1, x2, hx3)e3|dx

−→
h→0

∫

ω

Φ(|[Ψ(φ̄0
ε)]|) d0(x)dx = δ(α)

∫

ω

Φ(|[Ψ(φ̄0
ε)]|) d0(x)dx.
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Third case, α > 1. We have

I(h)(φ̄ε(h)) = hα−1

∫

ω

Φ(|[Ψ(φ̄ε(h))]|) | cof∇Ψ(x1, x2, hx3)e3|dx

= hα−1

∫

ω

Φ(|[Ψ(φ̄0
ε)]|) | cof∇Ψ(x1, x2, hx3)e3|dx

−→
h→0

0 = δ(α)

∫

ω

Φ(|[Ψ(φ̄0
ε)]|)d0(x)dx.

Thus, in all three cases

I(h)(φ̄ε(h)) −→ I(0)(φ̄0
ε), (4.8)

where

I(0)(φ̄) = δ(α)

∫

ω

Φ(|[Ψ ◦ φ̄]|)d0(x)dx.

Next, we study the elastic energy term. We have

(
(φ̄ε(h)),1

∣∣∣ (φ̄ε(h)),2

∣∣∣ 1

h
(φ̄ε(h)),3

)
→ (φ̄0

ε,1 | φ̄0
ε,2 | ξ0ε + e3) in Lp(Ω1; R

3) (4.9)

and uniformly in Ω1. The continuity of W and the convergence (4.9) imply that

W
[
∇Ψ(φ̄ε(h)(x))

(
(φ̄ε(h)),1

∣∣∣ (φ̄ε(h)),2
∣∣∣ 1

h
(φ̄ε(h)),3

)
Ah(x)

]

→W [∇Ψ(φ̄0
ε(x))(φ̄

0
ε,1(x) | φ̄

0
ε,2(x) | ξ

0
ε (x) + e3) A0(x)] uniformly in Ω1. (4.10)

Thus, we obtain that

E(h)(φ̄ε(h)) →

∫

ω

W [∇Ψ(φ̄0
ε(x))(φ̄

0
ε,1(x) | φ̄

0
ε,2(x) | ξ

0
ε(x) + e3)A0(x)]d0(x)dx.

Consequently, using (4.8) we obtain

ē(h)(φ̄ε(h)) →

∫

ω

W [∇Ψ(φ̄0
ε(x))(φ̄

0
ε,1(x) | φ̄

0
ε,2(x) | ξ

0
ε(x) + e3)A0(x)]d0(x)dx

+ δ(α)

∫

ω

Φ(|[Ψ(φ̄0
ε)]|)d0(x)dx

≤

∫

ω

W0(x, φ̄
0(x), (φ̄0

,1(x) | φ̄
0
,2(x)))d0(x)dx + δ(α)

∫

ω

Φ(|[Ψ(φ̄0
ε)]|)d0(x)dx + η.

Let G : W 1,p(ω; R3) → R be defined by

G(φ̄) =

∫

ω

W0(x, φ̄(x), (φ̄,1(x) | φ̄,2(x)))d0(x)dx.

We have just seen that

Γ − lim sup
h→0

ē∗(h)(φ̄0
ε) ≤ lim

h→0
ē∗(h)(φ̄ε(h)) ≤ G(φ̄0) + δ(α)

∫

ω

Φ(|[Ψ(φ̄0
ε)]|)d0(x)dx + η.

Since φ̄0
ε → φ̄0 in W 1,p(ω; R3) and the Γ- lim sup is lower semicontinuous on Lp(ω; R3), it follows

that

Γ − lim sup
h→0

ē∗(h)(φ̄0) ≤ G(φ̄0) + δ(α)lim inf
ε→0

∫

ω

Φ(|[Ψ(φ̄0
ε)]|)d0(x)dx + η.
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By construction, φ̄0
ε → φ̄0 uniformly on ω and since Φ is continuous, it follows that

∫

ω

Φ(|[Ψ(φ̄0
ε)]|)d0(x)dx→

∫

ω

Φ(|[Ψ(φ̄0)]|)d0(x)dx.

Thus, we have proved that

Γ − lim sup
h→0

ē∗(h)(φ̄0) ≤ H∗(φ̄0) + η,

where H∗ : Lp(ω; R3) → R is defined by

H∗(φ̄) =

{
H(φ̄) := G(φ̄) + δ(α)

∫
ω

Φ(|[Ψ(φ̄)]|)d0(x)dx, if φ̄ ∈ VM ,

+∞, otherwise

(recall that VM = id and δ(α) = 0 for α < 1). Since this is true for every η > 0, we obtain that

Γ − lim sup ē∗(h) ≤ H∗. (4.11)

In addition, the function I defined onW 1,p(ω; R3) by I(φ) =
∫
ω

Φ(|[Ψ(φ)]|)d0(x)dx is continuous

for the weak topology of W 1,p(ω; R3). Indeed, let φn ⇀ φ weakly in W 1,p(ω; R3). Since p > 3,

we have that φn → φ uniformly in ω, and thus, [Ψ(φn)] → [Ψ(φ)] uniformly in ω. Thus, the

continuity of Φ implies the continuity of I. Finally, the lower semicontinuous envelop of H is

the function ē(0) defined on W 1,p(ω; R3) by

ē(0)(φ̄) =

∫

ω

QW0(x, φ̄(x), (φ̄,1(x) | φ̄,2(x))) detA(x) dx + δ(α)

∫

ω

Φ(|[Ψ(φ̄)]|)d0(x)dx

(see [2, 11]). Applying the lower semicontinuous envelop in both sides of (4.11), using Lemma

4.2 and the lower semicontinuity of the Γ- lim sup we obtain that

Γ − lim sup ē∗(h) ≤ ē∗(0),

which completes the proof.

Proof of Theorem 4.1 The proof of the theorem is a direct consequence of the last two

propositions.

Remark 4.1 It should be noted that, as opposed to the minimization problem for the

energy ē(h) where existence of solutions was not guaranteed, the minimization problem for

the limit energy admits a solution thanks to the weak lower semicontinuity of the limit elastic

energy term and to the coercivity.

As a consequence of the last theorem, we have the next corollary on the limit points of the

diagonal minimizing sequence ϕ̄(h).

Corollary 4.1 The diagonal minimizing sequence ϕ̄(h) of ē(h) is bounded in V
h

and its

limit points for the weak topology of W 1,p(Ω1; R
3) minimizes the energy ē(0) on φ̄ ∈ VM when

α ≥ 1.

Proof The proof of the corollary follows from Lemma 4.1 and the standard Γ-convergence

argument.
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5 The Curved Two-Dimensional Limit Model

Since the case α < 1 is trivial, we will only consider the case α ≥ 1 in the sequel. Let us

consider another chart ψ′ : ω′ ∈ R
2 → ω̃. Working with this new chart, we obtain the same

convergence results as previously, but this time it is written through the diffeomorphism Ψ′.

Let us thus rewrite the limit model on the curved surface. As in [15], we consider for every unit

vector e of S2, a bounded open domain Oe ⊂ e⊥ and we denote by πe the orthogonal projection

on this domain. We denote by u ⊗ v the tensor product of two vectors in R
3. We extend any

function χ ∈W
1,∞
0 (Oe; R

3) by setting

χe(y) = χ(πe(y))

and we define for every y ∈ Oe,

De⊥χ(y) = ∇χe(y).

By associating to each deformation φ̄, first a deformation φ defined by

φ(x) = Ψ(φ̄(x)),

then a deformation φ̃ defined on ω̃, setting

x̃ = Ψ(x) and φ̃(x̃) = φ(x),

we get the following theorem.

Theorem 5.1 Any deformation φ̃ associated to a minimizer φ̄ of the energy ē(0), minimizes

the energy ẽ(0) defined by

ẽ(0)(φ̃) =

∫eω W̃ (a3(x̃),∇φ̃(x̃)) dx̃+ δ(α)

∫eω Φ(|[φ̃]|)dx̃

on

Ṽ = {φ̃ ∈W 1,p(ω̃; R3), φ̃(ω̃) ⊂ Sc and φ̃(x̃) = x̃ on ∂ω̃},

where a3(x̃) is the normal unit vector to ω̃ passing through x̃, |[φ̃]| = |φ̃(x̃) − x̃|, and W̃ :

S2 × M33 → R denotes the membrane elastic energy density defined by

W̃ (e, F ) = inf
χ∈W 1,∞

0 (Oe;R3)

[ 1

measOe

∫

Oe

[
inf
z∈R3

W (F + z ⊗ e+De⊥χ(y))
]
dy

]
.

Proof Let us recall that in Corollary 4.1, we obtained that φ̄ minimizes the energy

ē(0)(φ̄) =

∫

ω

QW0(x, φ̄(x), (φ̄,1(x) | φ̄,2(x))) detA(x) dx+ δ(α)

∫

ω

Φ(|[Ψ(φ̄)]|
)
d0(x)dx on VM .

We use the change of variables to go back to the initial target space by setting for x ∈ ω,

φ(x) = Ψ
(
φ̄(x)

)
and e(0)(φ) = ē(0)(φ̄).
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We obtain that

e(0)(φ) =

∫

ω

QW0(x,Ψ
−1

(φ(x)),∇Ψ
−1

(φ(x))(φ,1(x) | φ,2(x))) detA(x) dx

+ δ(α)

∫

ω

Φ(|[φ]|)d0(x)dx

with

φ ∈ V = {φ ∈ W 1,p(ω; R3), φ(ω) ⊂ Sc and φ(x) = Ψ(x) on ∂ω},

[φ] = φ(x1, x2, 0) − Ψ(x1, x2, 0).

Then, we use a second change of variables in order to go back to the curved surface by setting

for x ∈ ω,

x̃ = Ψ(x) and φ̃(x̃) = φ(x).

Setting

ẽ(0)(φ̃) = e(0)(φ),

we get

ẽ(0)(φ̃) =

∫eω QW0(Ψ
−1
,Ψ

−1
(φ̃),∇Ψ

−1
(φ̃)∇φ̃(Ψ,1(Ψ

−1
) | Ψ,2(Ψ

−1
))) dx̃ + δ(α)

∫eω Φ(|[φ̃]|)dx̃,

with

φ ∈ Ṽ = {φ̃ ∈W 1,p(ω̃; R3), φ̃(ω̃) ⊂ Sc and φ̃(x̃) = x̃ on ∂ω̃},

[φ̃] = φ̃(x̃) − x̃.

Then, we use the Dacorogna’s integral representation for quasiconvex envelopes (see [10])

QW0(x0, x1, F ) = inf
χ∈W 1,∞

0 (O;R3)

{ 1

measO

∫

O

W0(x0, x1, F + ∇χ(ȳ))dȳ
}
,

so that

QW0(Ψ
−1

(x̃),Ψ
−1

(φ̃(x̃)),∇Ψ
−1

(φ̃(x̃))∇φ̃(x̃)(Ψ,1(Ψ
−1

(x̃)) | Ψ,2(Ψ
−1

(x̃))))

= inf
χ∈W 1,∞

0 (O;R3)

{ 1

measO

∫

O

W0(Ψ
−1

(x̃),Ψ
−1

(φ̃(x̃)),∇Ψ
−1

(φ̃(x̃))∇φ̃(x̃)

· (Ψ,1(Ψ
−1

(x̃)) | Ψ,2(Ψ
−1

(x̃))) + ∇χ(y))dȳ
}
.

On the other hand, we have

W0(x, y, F ) = inf
z∈R3

W (∇Ψ(y)(F | z)A0(x)),

which gives

QW0(Ψ
−1

(x̃),Ψ
−1

(φ̃(x̃)),∇Ψ
−1

(φ̃(x̃))∇φ̃(x̃)(Ψ,1(Ψ
−1

(x̃)) | Ψ,2(Ψ
−1

(x̃))))

= inf
χ∈W 1,∞

0 (O;R3)

{ 1

measO

∫

O

inf
z∈R3

W (∇Ψ(Ψ
−1

(φ̃(x̃)))(∇Ψ
−1

(φ̃(x̃))∇φ̃(x̃)

· (Ψ,1(Ψ
−1

(x̃)) | Ψ,2(Ψ
−1

(x̃))) + ∇χ(ȳ) | z)A0(Ψ
−1

(x̃)))dȳ
}
.
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We also have that

(∇Ψ
−1

(φ̃(x̃))∇φ̃(x̃)(Ψ,1(Ψ
−1

(x̃)) | Ψ,2(Ψ
−1

(x̃))) + ∇χ(ȳ) | z)

= (∇Ψ
−1

(φ̃(x̃))∇φ̃(x̃)(Ψ,1(Ψ
−1

(x̃)) | Ψ,2(Ψ
−1

(x̃))) | 0) + (∇χ(ȳ) | 0) + (0 | z)

and

∇Ψ(Ψ
−1

(φ̃))(∇Ψ
−1

(φ̃)∇φ̃(Ψ,1(Ψ
−1

) | Ψ,2(Ψ
−1

)) | 0)A0(Ψ
−1

) = ∇φ̃.

As the matrix ∇Ψ(Ψ
−1

(φ̃(x̃))) is invertible and independent of ȳ, the mapping

χ 7→ (∇Ψ(Ψ
−1

(φ̃(x̃))))−1χ

is a bijection between W
1,∞
0 (O; R3) and W

1,∞
0 (O; R3). This allows us to replace the term

∇Ψ(Ψ
−1

(φ̃(x̃)))∇χ by ∇χ in the infimum. Similarly, we replace ∇Ψ(Ψ
−1

(φ̃(x̃)))z by z. In

addition we have

∇Ψ(Ψ
−1

(φ̃(x̃)))(∇Ψ
−1

(φ̃(x̃))∇φ̃(x̃)(Ψ,1(Ψ
−1

(x̃)) | Ψ,2(Ψ
−1

(x̃))) + ∇χ(ȳ) | z)A0(Ψ
−1

(x̃))

= ∇φ̃(x̃) + (∇Ψ(Ψ
−1

(φ̃(x̃)))∇χ(ȳ) | 0)A0(Ψ
−1

(x̃)) + (0 | ∇Ψ(Ψ
−1

(φ̃(x̃)))z)A0(Ψ
−1

(x̃)).

Using the change of variables

y = Dψ(Ψ
−1

(x̃))ȳ,

we obtain that

(∇χ(ȳ) | 0)A0(Ψ
−1

(x̃)) = Da3(x̃)⊥χ(y)

and that χ ∈ W
1,∞
0 (Oa3(x̃); R

3). Choosing O = Oa3(x̃) and noting that

(0 | z)A0(Ψ
−1

(x̃)) = z ⊗ a3(x̃),

we get that

QW0(Ψ
−1

(x̃),Ψ
−1

(φ̃(x̃)),∇Ψ
−1

(φ̃(x̃))∇φ̃(x̃)(Ψ,1(Ψ
−1

(x̃)) | Ψ,2(Ψ
−1

(x̃))))

= inf
χ∈W 1,∞

0 (Oa3(x̃))

{ 1

meas(Oa3(x̃))

∫

Oa3(x̃)

inf
z∈R3

W (∇φ̃(x̃) +Da3(x̃)⊥χ(y) + z ⊗ a3(x̃))dȳ
}
,

which gives us the result.

Remark 5.1 We note that the obtained limit energy does not depend on the coordi-

nate system in which we write the energy. This underlines the intrinsic character of the limit

minimization problem.
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