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0 Introduction

The Schauder estimate for the Laplace equation was traditionally built upon the Newton

potential theory. Different proofs were found later by Campanato [5], in which he introduced

the Campanato space; Peetre [12], who used the convolution of functions; Trudinger [16], who

used the mollification of functions; and Simon [15], who used a blow-up argument. Also a

perturbation argument was found by Safonov [13, 14] and Caffarelli [2, 4] for fully nonlinear

uniformly elliptic equations, which also applies to the Laplace equation.

In this note we give an elementary and simple proof for the Schauder estimates for elliptic

and parabolic equations. Our proof allows the right-hand side to be Dini continuous and also

give a sharp estimate for the modulus of continuity of the second derivatives. It also yields the

log-Lipschitz continuity of the gradient for equations with bounded right-hand side. Moreover,

it also applies to nonlinear equations.

1 The Laplace Equation

Consider the Laplace equation

∆u = f in B1(0), (1.1)

where B1(0) is the unit ball in the Euclidean space R
n. Suppose f is Dini continuous, namely

∫ 1

0
ω(r)

r
dr < ∞, where ω(r) = sup

|x−y|<r

|f(x) − f(y)|. Then we have the following estimate for

the modulus of continuity of D2u.

Theorem 1.1 Let u ∈ C2 be a solution of (1.1). Then ∀x, y ∈ B 1
2
(0),

|D2u(x) − D2u(y)| ≤ Cn

[

d sup
B1

|u| +

∫ d

0

ω(r)

r
+ d

∫ 1

d

ω(r)

r2

]

, (1.2)
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where d = |x − y|, Cn > 0 depends only on n. It follows that if f ∈ Cα(B1), then

‖u‖C2,α(B 1
2

) ≤ Cn

[

sup
B1

|u| +
‖f‖Cα(B1)

α(1 − α)

]

, if α ∈ (0, 1), (1.3)

|D2u(x) − D2u(y)| ≤ Cnd
(

sup
B1

|u| + ‖f‖C0,1| log d|
)

, if α = 1. (1.4)

Proof We will use the following elementary estimates for harmonic functions,

|Dkw(0)| ≤ Cn,kr−|k| sup
Br

|w|, (1.5)

where Cn,k depends only on n and k. Simple proofs of (1.5) can be found in [7].

Denote Bk = Bρk(0) (ρ = 1
2 ). For k = 0, 1, · · · , let uk be the solution of

∆uk = f(0) in Bk, uk = u on ∂Bk.

Then ∆(uk − u) = f(0) − f . By the maximum principle,

‖uk − u‖L∞(Bk) ≤ Cρ2kω(ρk). (1.6)

Hence

‖uk − uk+1‖L∞(Bk+1) ≤ Cρ2kω(ρk). (1.7)

Since uk+1 − uk is harmonic, by (1.5) we have

‖D(uk − uk+1)‖L∞(Bk+2) ≤ Cρkω(ρk), ‖D2(uk − uk+1)‖L∞(Bk+2) ≤ Cω(ρk). (1.8)

Since u ∈ C2, by (1.6), uk minus the quadratic part of u is harmonic and is equal to o(ρ2k) in

Bk. Hence by (1.5),

Du(0) = lim
k→∞

Duk(0), D2u(0) = lim
k→∞

D2uk(0). (1.9)

For any given point z near the origin, we have

|D2u(z) − D2u(0)| ≤ I1 + I2 + I3

=: |D2uk(z) − D2uk(0)| + |D2uk(0) − D2u(0)| + |D2u(z) − D2uk(z)|. (1.10)

Let k ≥ 1 such that ρk+4 ≤ |z| ≤ ρk+3. Then by (1.8), we have

I2 ≤ C

∞
∑

j=k

ω(ρk) ≤ C

∫ |z|

0

ω(r)

r
. (1.11)

Similarly we can estimate I3, through the solutions of ∆v = f(z) in Bj(z) and v = u on ∂Bj(z)

for j = k, k + 1, · · · . To estimate I1, denote hj = uj − uj−1. By (1.5) and (1.7) we have

|D2hj(z) − D2hj(0)| ≤ Cρ−jω(ρj)|z|. (1.12)

Hence

I1 ≤ |D2uk−1(z) − D2uk−1(0)| + |D2hk(z) − D2hk(0)|

≤ |D2u0(z) − D2u0(0)| +
k

∑

j=1

|D2hj(z) − D2hj(0)|

≤ C|z|
(

‖u0‖L∞ + C
∑

ρ−jω(ρj)
)

≤ C|z|
(

‖u‖L∞ + C

∫ 1

|z|

ω(r)

r2

)

. (1.13)
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Combining (1.10), (1.11), and (1.13) we obtain (1.2). This completes the proof.

Similarly we have the estimate at the boundary.

Theorem 1.1′ Let u ∈ C2(B1∩{xn ≥ 0}) be a solution of ∆u = f and u = 0 on {xn = 0}.

Suppose f is Dini continuous. Then ∀x, y ∈ B 1
2
∩ {xn ≥ 0}, the estimate (1.2) holds.

The proof is the same as that of Theorem 1.1, provided we replace Bk by Bk ∩ {xn ≥ 0}

and note that if w is a harmonic function in B1∩{xn ≥ 0} and w = 0 on T , then w is harmonic

in B1 after odd extension in xn.

Replacing the second derivatives in the proof of (1.4) by the first derivatives, and letting uk

be the solution of ∆uk = 0 in Bk, uk = u on ∂Bk, we also obtain the following log-Lipschitz

continuity for Du, which was used in [17] to establish the global existence of smooth solutions

to the 2-d Euler equation.

Corollary 1.1 Let u ∈ C1 be a solution of (1.1). Then ∀x, y ∈ B 1
2
(0),

|Du(x) − Du(y)| ≤ Cnd
(

sup
B1

|u| + ‖f‖L∞| log d|
)

. (1.14)

2 Linear Parabolic Equations

The above proof also applies to equations with variable coefficients. Let us consider the

linear parabolic equation

∑

aij(x, t)uxixj − ut = f(x, t) in Q1. (2.1)

We denote Qr = {(x, t) ∈ R
n × R

1 : |x| < r, −r2 < t ≤ 0}.

Theorem 2.1 Let u ∈ C2,1
x,t be a solution of (2.1). Suppose f and aij are Dini continuous.

Then for any points p1 = (x1, t1), p2 = (x2, t2) ∈ Q 1
2
,

|∂2
xu(p1) − ∂2

xu(p2)| ≤ Cn

[

d sup
Q1

|u| +

∫ d

0

ωf(r)

r
+ d

∫ 1

d

ωf (r)

r2

]

+ Cn sup
Q1

|∂2
xu|

[

∫ d

0

ωa(r)

r
+ d

∫ 1

d

ωa(r)

r2

]

, (2.2)

where d = |p1−p2| (parabolic distance), ωf(r)= sup
|p1−p2|<r

|f(p1)−f(p2)|, and ωa(r)=sup
i,j

ωaij (r).

Note that the modulus of continuity of ∂tu follows from (2.2) and equation (2.1). If aij and

f are Hölder continuous, by the interpolation inequality [11], we obtain the Schauder estimate

for parabolic equations. That is if aij , f ∈ Cα(Q1) for some α ∈ (0, 1), then

‖u‖
C

2+α,1+α
2

x,t (Q 1
2

)
≤ C

[

sup
Q1

|u| + ‖f‖Cα(Q1)

]

. (2.3)

If α = 1, we have an estimate similar to (1.4).

Proof Denote Qk = Qρk(0) (ρ = 1
2 ). Let uk be the solution of

∑

aij(0)uxixj − ut = f(0) in Qk, uk = u on ∂pQk,
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where ∂p denotes the parabolic boundary. Then v = u − uk satisfies
∑

aij(0)vxixj − vt = f − f(0) +
∑

(aij(0) − aij(x))uxixj . (2.4)

By the maximum principle,

‖uk − u‖L∞(Qk) ≤ Cρ2k[ωf (ρk) + ωa(ρk)η],

where η = sup |∂2
xu|. Hence

‖uk − uk+1‖L∞(Qk+1) ≤ Cρ2k[ωf (ρk) + ωa(ρk)η]. (2.5)

Therefore similarly as (1.8),

sup
Qk+2

{|∂2
x(uk − uk+1)|, |∂t(uk − uk+1)|} ≤ C[ωf (ρk) + ωa(ρk)η]. (2.6)

The rest of the proof is the same as that of Theorem 1.1 and is omitted here.

3 Fully Nonlinear Equations

3.1 Fully nonlinear, uniformly elliptic equations

The argument in §1 also applies to fully nonlinear uniformly elliptic equations. For simplicity

we consider the equation

F (D2u) = f(x) in B1(0), (3.1)

where F is C1,1. The estimates can be extended to operators of the form F (D2u, x) by the

freezing coefficient method as in §2. We need an a priori estimate as (1.4).

Assumption (a) For any solution to

F (D2u + M) = c0 in Br,

where c0 is a constant and M is a symmetric constant matrix such that F (M) = c0, we have

the estimate

‖u‖C2,ᾱ(Br/2) ≤ Cr−2−ᾱ‖u‖L∞(B1), (3.2)

where ᾱ ∈ (0, 1], C is independent of M, c0 and r.

If F is concave or convex, the interior C2,ᾱ estimate for some ᾱ ∈ (0, 1] was established

independently by Evans [6] and Krylov [10]. Similarly to Theorem 1.1 we then have

Theorem 3.1 Let u ∈ C2 be a solution of (3.1). Then ∀x, y ∈ B 1
2
(0),

|D2u(x) − D2u(y)| ≤ C
[

dᾱ sup
B1

|u| +

∫ d

0

ω(r)

r
+ dᾱ

∫ 1

d

ω(r)

r1+ᾱ

]

. (3.3)

If f ∈ Cα(B1), we have

‖u‖C2,α(B 1
2

) ≤ C
[

sup
B1

|u| + ‖f‖Cα(B1)

]

, if 0 < α < ᾱ, (3.4)

|D2u(x) − D2u(y)| ≤ Cdᾱ
[

sup
B1

|u| + ‖f‖Cα | log d|
]

, if α = ᾱ, (3.5)

‖u‖C2,ᾱ(B 1
2

) ≤ C
[

sup
B1

|u| + ‖f‖Cα(B1)

]

, if ᾱ < α ≤ 1. (3.6)
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The constant C depends on n, ᾱ, C in (3.2), and the ellipticity constants (least and largest

eigenvalues of { ∂
∂rij

F (r)}).

Proof The proof is very similar to that of Theorem 1.1. Let uk be the solution of

F (D2uk) = f(0) in Bk, uk = u on ∂Bk. (3.7)

By Assumption (a), uk−uk+1 satisfies a linearized equation of F with coefficients in Cᾱ. Hence

by the Schauder estimate for linear elliptic equations,

‖D2(uk − uk+1)‖Bk+2
≤ Cρ−2k‖uk − uk+1‖L∞ ≤ Cω(ρk). (3.8)

It follows that D2uk(0) is convergent if f is Dini continuous. By Assumption (a) and since

u ∈ C2, we have D2uk(0) → D2u(0). The only difference in the rest part of the proof is that

(1.12) should be replaced by

|D2hk(z) − D2hk(0)| ≤ Cρ−kᾱω(ρk)|z|ᾱ, (3.9)

where hk = uk − uk+1.

3.2 The Monge-Ampère equations

Estimate (1.2) (or (3.3) with ᾱ = 1) holds for strictly convex solutions to the Monge-Ampère

equation

detD2u = f(x) in B1, (3.10)

where C∗ ≤ f ≤ C∗ for positive constants C∗, C
∗, and ω(r) = sup

|x−y|<r

|f(x)−f(y)|
(

equivalent to

sup
|x−y|<r

|f
1
n (x)− f

1
n (y)|

)

. The constant C depends on n, C∗, C∗, and the modulus of convexity

of u.

The proof is similar to that of Theorem 1.1, except that we first need to normalize the

solution as follows. By subtracting a linear function, we assume u(0) = 0 and Du(0) = 0.

Denote Sh = {x ∈ B1, u(x) < h}. For a sufficiently small h > 0, first make unimodular linear

transform T such that BR ⊂ T (Sh) ⊂ BnR. Then make a dilation x → x/R and u → u/R2

such that B1 ⊂ S1 ⊂ Bn and
∫ 1

0
ω(r)

r
is small. The Monge-Ampère operator is invariant under

the changes.

Now define uk as in (3.7) (for the Monge-Ampere equation it is more convenient to use level

sets than balls in (3.7)). We need to verify Assumption (a) (with ᾱ = 1) for all k. It suffices

to show that the set Ek = {x ∈ R
n | uk(x) < inf uk + ρ2(k+1)} has a good shape, namely

BRk
⊂ Ek ⊂ B2nRk

for concentrated balls BRk
and B2nRk

. But this is guaranteed at k = 0 and

also at k > 0 by induction, as long as ρ is chosen small and
∫ 1

0
ω(r)

r
is sufficiently small. We

wish to discuss the regularity of the Monge-Ampère equation with more details in a separate

work.

3.3 Remarks

( i ) By Aleksandrov’s maximum principle [8], we can replace ω(r) = oscBrf by ω(r) =

r−n‖f − f(0)‖Ln(Br) in the above proofs.



642 X. J. WANG

( ii ) By the existence and uniqueness of weak or viscosity solutions to the Dirichlet prob-

lem, the above theorems also hold for weak or viscosity solutions.

(iii) The sharp estimate (1.2) for the Laplace equation was established in [1] by delicate

singular integral estimates.

(iv) Theorem 3.1 with f ∈ Cα (α < ᾱ) was proved by Safonov [13, 14] and Caffarelli [2,

4] by a perturbation argument, using approximation by quadratic polynomials. See also [9] for

the case when f is Dini continuous. Our proof allow the case α ≥ ᾱ in (3.5) and (3.6) above.

(v) The C2,α estimate for strictly convex solutions to the Monge-Ampère equation (3.10)

was proved in [3]. When the Hölder continuity of f is relaxed to Dini continuity, the continuity

of D2u was proved in [18].

(vi) Similar estimate to (1.14) also holds for the parabolic equation (2.1) and fully nonlinear

equation (3.1), but it is not true for the Monge-Ampère equation (3.10), by an example in [19].
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