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1 Introduction

Consider the following first order quasilinear hyperbolic system in the characteristic form

li(t, x, u)
(∂u

∂t
+ λi(t, x, u)

∂u

∂x

)

= µi(t, x, u), i = 1, · · · , n, (1.1)

where u = (u1, · · · , un)T is an unknown vector function of (t, x), li(t, x, u) = (li1(t, x, u), · · · , lin

(t, x, u)) (i = 1, · · · , n), and

µi(t, x, u) = ai(t, x, u)
(∂bi(t, x)

∂t
+ λi(t, x, u)

∂bi(t, x)

∂x

)

+ fi(t, x, u) + ci(t, x), i = 1, · · · , n. (1.2)

We assume that li(t, x, u), λi(t, x, u), ai(t, x, u), bi(t, x), fi(t, x, u) and ci(t, x) (i = 1, · · · , n) are

all C1 functions with respect to their arguments and on the domain under consideration,

det |lij(t, x, u)| 6= 0 (1.3)

and

fi(t, x, 0) ≡ 0, i = 1, · · · , n. (1.4)

The following discussion is still valid if ai and bi (i = 1, · · · , n) are vector functions.

Suppose that ri(t, x, u) = (ri1(t, x, u), · · · , rin(t, (x, u))T (i = 1, · · · , n) satisfy

li(t, x, u)rj(t, x, u) ≡ δij , i, j = 1, · · · , n, (1.5)

rT
i (t, x, u)ri(t, x, u) ≡ 1, i = 1, · · · , n. (1.6)
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and ri(t, x, u) have the same regularity as li(t, x, u).

Moreover, we suppose that on the domain under consideration

λp(t, x, u) < λq(t, x, u) ≡ 0 < λr(t, x, u), (1.7)

p = 1, · · · , l; q = l + 1, · · · ,m; r = m+ 1, · · · , n.

We give the initial condition

t = 0 : u = ϕ(x), 0 ≤ x ≤ L (1.8)

and the final condition

t = T : u = ψ(x), 0 ≤ x ≤ L. (1.9)

The boundary conditions are of the form

x = 0 : vr = Gr(t, v1, · · · , vl, vl+1, · · · , vm) +Hr(t), r = m+ 1, · · · , n, (1.10)

x = L : vp = Gp(t, vl+1, · · · , vm, vm+1, · · · , vn) +Hp(t), p = 1, · · · , l, (1.11)

where

vi = li(t, x, u)u, i = 1, · · · , n. (1.12)

Without loss of generality, we assume that

Gp(t, 0 · · · , 0) ≡ Gr(t, 0, · · · , 0) ≡ 0, p = 1, · · · , l; r = m+ 1, · · · , n. (1.13)

Li Tatsien, Rao Bopeng and Yu Lixin etc. have established the exact controllability for

general autonomous quasilinear hyperbolic systems in [3, 5–8]. This paper deals with the

corresponding results for general nonautonomous first order quailinear hyperbolic systems, in

which we adopt an idea initiated by Qin Tiehu for one-side controllability, when the number of

the positive eigenvalues is different from that of the negative ones.

We first study the semi-global C1 solution to the mixed initial-boundary value problem

(IBVP) (1.1), (1.8) and (1.10)-(1.11) in §2. Then we consider the exact controllability for

this problem in the cases that there is no zero eigenvalue and there are some zero eigenvalues

respectively in §3 and §4.

2 Existence and Uniqueness of Semi-global C
1 Solution

In order to get the semi-global C1 solution to the IBVP (1.1), (1.8) and (1.10)-(1.11) (Prob-

lem I), we need to introduce another type of boundary conditions as follows:

x = 0 : ṽr = gr(t, ṽ1, · · · , ṽl, ṽl+1, · · · , ṽm) + hr(t), r = m+ 1, · · · , n, (2.1)

x = L : ṽp = gp(t, ṽl+1, · · · , ṽm, ṽm+1, · · · , ṽn) + hp(t), p = 1, · · · , l, (2.2)

where

ṽi = li(t, x, ϕ(x))u, i = 1, · · · , n. (2.3)
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Without loss of generality, we assume that

gp(t, 0 · · · , 0) ≡ gr(t, 0, · · · , 0) ≡ 0, p = 1, · · · , l; r = m+ 1, · · · , n. (2.4)

Correspondingly, we denote the IBVP (1.1), (1.8) and (2.1)-(2.2) as Problem II. In order to

prove the equivalence of Problem I and Problem II when |u| is sufficiently small, it suffices to

show that the boundary conditions (1.10)-(1.11) can be replaced by the boundary conditions

(2.1)-(2.2) respectively, provided that |u| is sufficiently small.

Similar to [4, 11], we have the following two lemmas.

Lemma 2.1 Suppose that li, gp, hp, gr, hr, Gp, Hp, Gr and Hr (i = 1, · · · , n; p = 1, · · · , l;

r = m+1, · · · , n) are all C1 functions with respect to their arguments. When |u| ≤ ε0 (ε0 > 0 is

a suitably small number), if the boundary conditions (1.10)-(1.11) are replaced by the boundary

conditions (2.1)-(2.2) respectively, then Problem I is equivalent to Problem II.

Lemma 2.2 Under the hypotheses of Lemma 2.1, the functions h(t) = (h1(t), · · · , hl(t),

hm+1(t), · · · , hn(t)) and H(t) = (H1(t), · · · , Hl(t), Hm+1(t), · · · , Hn(t)) in two equivalent

boundary conditions (2.1)-(2.2) and (1.10)-(1.11) satisfy the following properties: for any given

li, gp, gr, Gp and Gr (i = 1, · · · , n; p = 1 · · · , l; r = m + 1, · · · , n), there exist two positive

constants C1 and C2 depending only on ε0, such that on the domain under consideration we

have

C1‖h‖0 ≤ ‖H‖0 ≤ C2‖h‖0, (2.5)

‖h‖1 → 0 ⇔ ‖H‖1 → 0, (2.6)

where ‖ · ‖0 and ‖ · ‖1 stand for the C0 norm and C1 norm respectively.

By means of the method given in [9, 10], we have the existence and uniqueness of the local

C1 solution to Problem II.

Lemma 2.3 Suppose that li, λi, ai, bi, fi, ci, gp, hp, gr, hr (i = 1, · · · , n; p = 1, · · · , l; r =

m+1, · · · , n) and ϕ are all C1 functions. Suppose that (1.3)-(1.4), (1.7) and (2.4) hold and the

conditions of C1 compatibility are satisfied at the points (t, x) = (0, 0) and (0, L) respectively.

Then, for any given li, λi, ai, fi, gp and gr (i = 1, · · · , n; p = 1, · · · , l; r = m + 1, · · · , n),

there exists a positive constant δ = δ(‖ϕ‖1, ‖b‖1, ‖c‖1, ‖h‖1) > 0, such that Problem II admits

a unique C1 solution u = u(t, x) on R(δ) = {(t, x) | 0 ≤ t ≤ δ, 0 ≤ x ≤ L}. Moreover, when

‖ϕ‖1, ‖b‖1, ‖c‖1 and ‖h‖1 are sufficiently small, the C1 norm of u = u(t, x) is also sufficiently

small. In particular, we have

|u(t, x)| ≤ ε0, ∀ (t, x) ∈ R(δ), (2.7)

where ε0 is given in Lemma 2.1.

Then, by Lemmas 2.1 and 2.2 we get

Lemma 2.4 Suppose that li, λi, ai, bi, fi, ci, Gp, Hp, Gr, Hr (i = 1, · · · , n; p = 1, · · · , l; r =

m+1, · · · , n) and ϕ are all C1 functions. Suppose that (1.3)-(1.4), (1.7) and (1.13) hold and the

conditions of C1 compatibility are satisfied at the points (t, x) = (0, 0) and (0, L) respectively.

Then, for any given li, λi, ai, fi, Gp and Gr (i = 1, · · · , n; p = 1, · · · , l; r = m+1, · · · , n), when
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‖ϕ‖1, ‖b‖1, ‖c‖1 and ‖H‖1 are sufficiently small, there exists δ = δ(‖ϕ‖1, ‖b‖1, ‖c‖1, ‖H‖1) > 0

such that Problem I admits a unique C1 solution u = u(t, x) with small C1 norm on R(δ). In

particular, (2.7) holds.

Theorem 2.1 Under the hypotheses of Lemma 2.4, for any given T0 > 0, Problem I admits

a unique C1 solution u = u(t, x) (so-called the semi-global C1 solution) with sufficiently small

C1 norm on the domain

R(T0) = {(t, x) | 0 ≤ t ≤ T0, 0 ≤ x ≤ L}, (2.8)

provided that ‖ϕ‖C1[0,L], ‖b‖C1[R(T0)],‖c‖C1[R(T0)] and ‖H‖C1[0,T0] are sufficiently small (depen-

ding on T0).

Proof By Lemma 2.4, it suffices to prove that for any C1 solution u = u(t, x) to Problem

I on the domain

R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L} (2.9)

with 0 < T < T0, we have the following uniform a priori estimate:

‖u(t, · )‖1 , ‖u(t, · )‖0 + ‖ux(t, · )‖0 ≤ C(T0), ∀ t ∈ [0, T ], (2.10)

where C(T0) is a sufficiently small positive constant independent of T but possibly depending

on T0.

Let v = (v1, · · · , vn), w = (w1, · · · , wn), where vi (i = 1, · · · , n) are given by (1.12) and

wi = li(t, x, u)ux, i = 1, · · · , n. (2.11)

By (1.5)-(1.6), it is enough to estimate ‖v(t, · )‖0 and ‖w(t, · )‖0.

Similar to [1, 2, 11], we have

dvi

dit
= βi(t, x, u) +

n
∑

j=1

βij(t, x, u)vj +

n
∑

j,k=1

βijk(t, x, u)vjwk, i = 1, · · · , n, (2.12)

dwi

dit
= γi(t, x, u) +

n
∑

j=1

γij(t, x, u)wj +
n

∑

j,k=1

γijk(t, x, u)wjwk, i = 1, · · · , n, (2.13)

where

d

dit
=

∂

∂t
+ λi(t, x, u)

∂

∂x
(2.14)

denotes the directional derivative along the i-th characteristic,

βi(t, x, u) = ai(t, x, u)
dbi(t, x)

dit
+ fi(t, x, u) + ci(t, x), (2.15)
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βij(t, x, u) = −

n
∑

k=1

li(t, x, u)∇urj(t, x, u)rk(t, x, u)
[

ak(t, x, u)
dbk(t, x)

dkt

+ fk(t, x, u) + ck(t, x)
]

+
dli(t, x, · )

dit
rj(t, x, u), (2.16)

βijk(t, x, u) = (λk(t, x, u) − λi(t, x, u))li(t, x, u)∇urj(t, x, u)rk(t, x, u); (2.17)

γi(t, x, u) =

n
∑

k=1

li(t, x, u)
∂rk(t, x, · )

∂x

[

ak(t, x, u)
dbk(t, x)

dkt

+ fk(t, x, u) + ck(t, x)
]

+
d

dit

(

ai(t, x, u)
∂bi(t, x)

∂x

)

−
∂ai(t, x, · )

∂t

∂bi(t, x)

∂x
+
∂ai(t, x, · )

∂x

∂bi(t, x)

∂t

+ ai(t, x, u)
∂λi(t, x, · )

∂x

∂bi(t, x)

∂x
+
∂fi(t, x, · )

∂x
+
∂ci(t, x)

∂x
, (2.18)

γij(t, x, u) =

n
∑

k=1

li(t, x, u)(∇urk(t, x, u)rj(t, x, u) −∇urj(t, x, u)rk(t, x, u))

·
[

ak(t, x, u)
dbk(t, x)

dkt
+ fk(t, x, u) + ck(t, x)

]

+ ∇ufi(t, x, u)rj(t, x, u) + ∇uai(t, x, u)
dbi(t, x)

dit
rj(t, x, u)

+ ai(t, x, u)∇uλi(t, x, u)
∂bi(t, x)

∂x
rj(t, x, u) +

∂li(t, x, · )

∂t
rj(t, x, u)

− λj(t, x, u)li(t, x, u)
∂rj(t, x, · )

∂x
−
∂λi(t, x, · )

∂x
δij , (2.19)

γijk(t, x, u) =
1

2
[(λj(t, x, u) − λk(t, x, u))li(t, x, u)∇urk(t, x, u)rj(t, x, u)

−∇uλk(t, x, u)rj(t, x, u)δik + (j | k)], (2.20)

in which dli(t,x, · )
dit

and ∂rk(t,x, · )
∂x

etc. are the corresponding derivatives regarding u as parameter,

and the symbol (j | k) in (2.20) stands for all terms obtained by changing j and k in the previous

terms.

For the time being we assume that

|v(t, x)| ≤
η0

n
, |w(t, x)| ≤ η1, ∀ (t, x) ∈ R(T ), (2.21)

where η0, η1 are suitably small positive constants (the validity of this hypothesis will be shown

later). Then, by (1.5)-(1.6) and (1.12) we have

|u(t, x)| ≤ η0, ∀ (t, x) ∈ R(T ). (2.22)

Integrating the i-th equation in (2.12)-(2.13) along the i-th characteristic and using the
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boundary conditions if necessary (cf. [4, 11]), we have

|v(t, x)| ≤ Cmax{‖ϕ‖C0[0,L], ‖b‖C0[R(T0)], ‖c‖C0[R(T0)], ‖H‖C0[0,T0]}, ∀ (t, x) ∈ R(T ), (2.23)

|w(t, x)| ≤ Cmax
{

‖ϕ′‖C0[0,L], ‖b‖C1[R(T0)], ‖c‖C1[R(T0)], ‖H
′‖C0[R(T0)],

d(η0), ‖f‖0,
∥

∥

∥

∂f(t, x, ·)

∂x

∥

∥

∥

0

}

, ∀ (t, x) ∈ R(T ), (2.24)

where C > 1 is a positive constant independent of T ,

d(η0) → 0, as η0 → 0 (2.25)

and

‖f‖0 = sup
(t,x)∈R(T )

|u|≤η0

|f(t, x, u)|,
∥

∥

∥

∂f(t, x, · )

∂x

∥

∥

∥

0
= sup

(t,x)∈R(T )
|u|≤η0

∣

∣

∣

∂f(t, x, · )

∂x

∣

∣

∣
. (2.26)

Noting (1.4), we have

‖f‖0 → 0,
∥

∥

∥

∂f(t, x, ·)

∂x

∥

∥

∥

0
→ 0, as η0 → 0. (2.27)

Hence, both ‖v(t, · )‖0 and ‖w(t, · )‖0 (0 ≤ t ≤ T ) are sufficiently small and η0 can be chosen

to be sufficiently small, provided that ‖ϕ‖C1[0,L], ‖b‖C1[R(T0)], ‖c‖C1[R(T0)] and ‖H‖C1[0,T0] are

sufficiently small. This implies not only (2.10) but also the validity of hypothesis (2.21). The

proof of Theorem 2.1 is finished.

Remark 2.1 Under the hypotheses of Theorem 2.1, when
∂Gp

∂t
, ∂Gr

∂t
(p = 1, · · · , l; r =

m + 1, · · · , n) satisfy the local Lipschitz condition with respect to their arguments except t

and ∂fi

∂x
(i = 1, · · · , n) satisfy the local Lipschitz condition with respect to u, the C1 solution

u = u(t, x) to Problem I satisfies the following estimate

‖u‖C1[R(T0)] ≤ C0 max{‖ϕ‖C1[0,L], ‖b‖C1[R(T0)], ‖c‖C1[R(T0)], ‖H‖C1[R(T0)]}, (2.28)

where C0 is a positive constant.

3 Exact Boundary Controllability for Nonautonomous First Order

Quasilinear Hyperbolic Systems — Case Without Zero Eigenvalues

Assume that system (1.1) has no zero eigenvalues:

λr(t, x, u) < 0 < λs(t, x, u), r = 1, · · · ,m; s = m+ 1, · · · , n. (3.1)

Correspondingly, the boundary conditions are of the form:

x = 0 : vs = Gs(t, v1, · · · , vm) +Hs(t), s = m+ 1, · · · , n, (3.2)

x = L : vr = Gr(t, vm+1, · · · , vn) +Hr(t), r = 1, · · · ,m (3.3)

with

Gr(t, 0 · · · , 0) ≡ Gs(t, 0, · · · , 0) ≡ 0, r = 1, · · · ,m; s = m+ 1, · · · , n, (3.4)
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where vi (i = 1, · · · , n) are given by (1.12).

In this case, we can realize the exact controllability only by boundary controls acting on

x = L and/or x = 0. By means of the theory on the semi-global C1 solution in §2, we

can establish the following two-sides exact boundary controllability by solving some well-posed

IBVPs.

Theorem 3.1 (Two-Sides Control) Suppose that li, λi, ai, bi, fi, ci and Gi (i = 1, · · · , n)

are all C1 functions. Suppose furthermore that (1.3)-(1.4), (3.1) and (3.4) hold. Let

R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}. (3.5)

If there exists T > 0 such that

∫ T

0

min
i=1,··· ,n

inf
0≤x≤L

|λi(t, x, 0)| dt > L (3.6)

and ‖(bi, ci)‖C1[R(T )] (i = 1, · · · , n) is sufficiently small, then, for any given initial data ϕ and

final data ψ with sufficiently small C1 norm, there exist boundary controls Hi(t) (i = 1, · · · , n)

with small C1 norm, such that the IBVP (1.1), (1.8) and (3.2)-(3.3) admits a unique C1 solution

u = u(t, x) with small C1 norm on R(T ), which verifies exactly the final condition (1.9).

Proof By (3.6), there exists ε1 > 0 so small that

∫ T

0

min
i=1,··· ,n

inf
0≤x≤L,

|u|≤ε1

|λi(t, x, u)| dt > L. (3.7)

Taking T1, T2 such that

∫ T1

0

min
i=1,··· ,n

inf
0≤x≤L,

|u|≤ε1

|λi(t, x, u)| dt =

∫ T

T−T2

min
i=1,··· ,n

inf
0≤x≤L,

|u|≤ε1

|λi(t, x, u)| dt =
L

2
, (3.8)

we have T1 < T − T2.

As in [5], we can construct a C1 solution u = u(t, x) to system (1.1) on R(T ), which satisfies

the initial condition (1.8) and the final condition (1.9) simultaneously.

First we take some suitable artificial boundary conditions

x = 0 : vs = ηs(t), s = m+ 1, · · · , n, (3.9)

x = L : vr = ηr(t), r = 1, · · · ,m, (3.10)

where vi (i = 1, · · · , n) are still given by (1.12), such that the forward IBVP (see Figure 1) for

system (1.1) with the initial condition (1.8) and the boundary conditions (3.9)-(3.10) admits a

unique semi-global C1 solution u = uf (t, x) with small C1 norm on

Rf = {(t, x) | 0 ≤ t ≤ T1, 0 ≤ x ≤ L}. (3.11)

Similarly, we can also take some other suitable artificial boundary conditions at x = 0 and

x = L, such that the backward IBVP (see Figure 1) for system (1.1) with the final condition

(1.9) and these boundary conditions admits a unique semi-global C1 solution u = ub(t, x) with

small C1 norm on

Rb = {(t, x) | T − T2 ≤ t ≤ T, 0 ≤ x ≤ L}. (3.12)



650 Z. Q. Wang

Since T1 < T −T2, the domains Rf and Rb never intersect. Then there exists a C1 function

γ(t) with small C1[0, T ] norm such that

γ(t) =











uf

(

t,
L

2

)

, 0 ≤ t ≤ T1,

ub

(

t,
L

2

)

, T − T2 ≤ t ≤ T.

(3.13)

Now we change the status of the variables t and x. Then the leftward (resp. rightward)

IBVP (see Figure 2) for system (1.1) with the initial condition

x =
L

2
: u = γ(t), 0 ≤ t ≤ T (3.14)

and the following boundary conditions induced by (1.8) and (1.9) respectively:

t = 0 : vr= lr(0, x, ϕ(x))ϕ(x), 0 ≤ x ≤
L

2
, r = 1, · · · ,m, (3.15)

t = T : vs= ls(T, x, ψ(x))ψ(x), 0≤ x ≤
L

2
, s = m+ 1, · · · , n, (3.16)

(resp. t = 0 : vs= ls(0, x, ϕ(x))ϕ(x),
L

2
≤ x ≤ L, s = m+ 1, · · · , n, (3.17)

t = T : vr= lr(T, x, ψ(x))ψ(x),
L

2
≤ x ≤ L, r = 1, · · · ,m) (3.18)

admits a unique semi-global C1 solution u = ul(t, x) (resp. u = ur(t, x)) with small C1 norm

on

Rl =
{

(t, x)
∣

∣

∣
0 ≤ t ≤ T, 0 ≤ x ≤

L

2

} (

resp. Rr =
{

(t, x)
∣

∣

∣
0 ≤ t ≤ T,

L

2
≤ x ≤ L

})

. (3.19)

In particular, we have

|ul(t, x)| ≤ ε1, ∀ (t, x) ∈ Rl (resp. |ur(t, x)| ≤ ε1, ∀ (t, x) ∈ Rr). (3.20)

Let

u = u(t, x) =

{

ul(t, x), (t, x) ∈ Rl,

ur(t, x), (t, x) ∈ Rr.
(3.21)

We need only to check that u = u(t, x) satisfies the initial condition (1.8) and the final condition

(1.9) simultaneously.

By definition, both ul(t, x) and uf (t, x) satisfy the same one-side IBVP for system (1.1)

with the initial condition

x =
L

2
: u = γ(t), 0 ≤ t ≤ T1 (3.22)

and the boundary condition (3.15). By (3.8), the maximum determinate domain of this one-side

IBVP should contain the interval [0, L
2 ] on x-axis (see Figure 3). Hence, we get

ul(0, x) = uf (0, x) = ϕ(x), 0 ≤ x ≤
L

2
(3.23)
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by the uniqueness of C1 solution. Similarly, we have

ur(0, x) = uf(0, x) = ϕ(x),
L

2
≤ x ≤ L. (3.24)

Thus, u = u(t, x) satisfies the initial condition (1.8). In a similar way we get that u = u(t, x)

also verifies the final condition (1.9).

Taking the boundary controls as

Hs(t) = (vs −Gs(t, v1, · · · , vm))|x=0, s = m+ 1, · · · , n, (3.25)

Hr(t) = (vr −Gr(t, vm+1, · · · , vn))|x=L, r = 1, · · · ,m, (3.26)

where vi (i = 1, · · · , n) are obtained from (1.12) and (3.21), we get the desired exact boundary

controllability.
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In the case of one-side control, without loss of generality, we may assume that the number

of the positive eigenvalues is not bigger than that of the negative ones:

m , n−m ≤ m, i.e., n ≤ 2m. (3.27)

Theorem 3.2 (One-Side Control) Suppose that li, λi, ai, bi, fi, ci, Gi (i = 1, · · · , n) and

Hs (s = m+ 1, · · · , n) are all C1 functions. Suppose furthermore that (1.3)-(1.4), (3.1), (3.4)

and (3.27) hold. Suppose finally that the boundary condition (3.2) can be equivalently rewritten

in a neighborhood of u = 0 as

x = 0 : vr̄ = Gr̄(t, vm+1, · · · , vm, vm+1, · · · , vn) +H r̄(t), r̄ = 1, · · · ,m (3.28)

with

Gr̄(t, 0, · · · , 0) ≡ 0, r̄ = 1, · · · ,m. (3.29)
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If there exist T1, T > 0 such that

∫ T1

0

min
r=1,··· ,m

inf
0≤x≤L

|λr(t, x, 0)| dt > L, (3.30)

∫ T

T1

min
s=m+1,··· ,n

inf
0≤x≤L

|λs(t, x, 0)| dt > L, (3.31)

when ‖(bi, ci)‖C1[R(T )] (i = 1, · · · , n) and ‖Hs‖C1[0,T ] (s = m+ 1, · · · , n) are sufficiently small,

for any given initial data ϕ and final data ψ with small C1 norm, satisfying the conditions

of C1 compatibility at the points (t, x) = (0, 0) and (T, 0) respectively, there exist boundary

controls Hr(t) (r = 1, · · · ,m) with small C1 norm, such that the IBVP (1.1), (1.8) and (3.2)-

(3.3) admits a unique semi-global C1 solution u = u(t, x) with small C1 norm on R(T ), which

verifies exactly the final condition (1.9).

Proof By (3.30)-(3.31), there exists an ε1 > 0 such that

∫ T1

0

min
r=1,··· ,m

inf
0≤x≤L

|u|≤ε1

|λr(t, x, u)|dt > L, (3.32)

∫ T

T1

min
s=m+1,··· ,n

inf
0≤x≤L

|u|≤ε1

|λs(t, x, u)|dt > L. (3.33)

Taking T2 such that

∫ T

T−T2

min
s=m+1,··· ,n

inf
0≤x≤L

|u|≤ε1

|λs(t, x, u)| dt = L, (3.34)

we have T1 < T − T2.

First we choose some suitable artificial boundary conditions (3.10) at x = L, such that the

forward IBVP (see Figure 4) for system (1.1) with the initial condition (1.8), the boundary

conditions (3.2) and (3.10) admits a unique semi-global C1 solution u = uf (t, x) with small C1

norm on Rf .

Similarly, besides (3.2) (or (3.28)) we choose some additional artificial boundary conditions

at x = 0,

x = 0 : vr = η̄r(t), r = m+ 1, · · · ,m, (3.35)

and some suitable artificial boundary condition at x = L,

x = L : vs = η̄s(t), s = m+ 1, · · · , n, (3.36)

such that the backward IBVP (see Figure 4) for system (1.1) with the final condition (1.9) and

these boundary conditions admits a unique semi-global C1 solution u = ub(t, x) with small C1

norm on Rb.

Since T1 < T −T2, the domains Rf and Rb never intersect. Then there exists a C1 function

γ(t) with small C1[0, T ] norm such that

γ(t) =







uf(t, 0), 0 ≤ t ≤ T1,

ub(t, 0), T − T2 ≤ t ≤ T,
(3.37)
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and γ(t) satisfies (3.2) on the whole interval [0, T ].

Now we change the status of the variables t and x. Then the rightward IBVP (see Figure

5) for system (1.1) with the initial condition

x = 0 : u = γ(t), 0 ≤ t ≤ T (3.38)

and the following boundary conditions induced by (1.8) and (1.9) respectively:

t = 0 : vs = ls(0, x, ϕ(x))ϕ(x), 0 ≤ x ≤ L, s = m+ 1, · · · , n, (3.39)

t = T : vr = lr(T, x, ψ(x))ψ(x), 0 ≤ x ≤ L, r = 1, · · · ,m, (3.40)

where vi (i = 1, · · · , n) are given by (1.12), admits a unique semi-global C1 solution u = u(t, x)

with small C1 norm on R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}. In particular, we have

|u(t, x)| ≤ ε1, ∀ (t, x) ∈ R(T ). (3.41)

Consequently, u(t, x) and uf (t, x) satisfy the same one-side IBVP for system (1.1) with the

initial condition

x = 0 : u = γ(t), 0 ≤ t ≤ T1 (3.42)

and the boundary condition (3.39). By (3.32), the maximum determinate domain of this one-

side IBVP should contain the interval [0, L] on x-axis (see Figure 6). Hence, we get

u(0, x) = uf (0, x) = ϕ(x), 0 ≤ x ≤ L (3.43)

by the uniqueness of C1 solution. Similarly, u = u(t, x) also verifies the final condition (1.9).

Taking

Hr(t) = (vr −Gr(t, vm+1, · · · , vn))|x=L, r = 1, · · · ,m (3.44)

as the boundary controls, where vi (i = 1, · · · , n) are obtained by (1.12) and u = u(t, x), we

complete the proof of Theorem 3.2.
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4 Exact Controllability for Nonautonomous First Order Quasilinear

Hyperbolic Systems —Case with Zero Eigenvalues

Assume that system (1.1) has some zero eigenvalues, i.e., (1.7) holds. In order to realize

the exact controllability, we should use not only suitable boundary controls acting on x = 0

and/or x = L but also suitable internal controls on those equations which correspond to zero

eigenvalues in (1.1). Consider the system


































lp(t, x, u)
(∂u

∂t
+ λp(t, x, u)

∂u

∂x

)

= µp(t, x, u), p = 1, · · · , l,

lq(t, x, u)
∂u

∂t
= µq(t, x, u) + χq(t, x), q = l + 1, · · · ,m,

lr(t, x, u)
(∂u

∂t
+ λr(u)

∂u

∂x

)

= µr(t, x, u), r = m+ 1, · · · , n,

(4.1)

(4.2)

(4.3)

where

χq(t, x) = āq(t, x)
∂b̄q(t, x)

∂t
+ c̄q(t, x), q = l + 1, · · · ,m, (4.4)

in which āq, b̄q and c̄q (q = l + 1, · · · ,m) are all C1 functions of (t, x).

Similar to [8], we have the following

Theorem 4.1 (Two-Side and Internal Control) Suppose that li, λi, ai, bi, fi, ci, Gp and

Gr (i = 1, · · · , n; p = 1, · · · , l; r = m + 1, · · · , n) are all C1 functions with respect to their

arguments. Suppose furthermore that (1.3)-(1.4), (1.7) and (1.13) hold. If there exits T > 0

such that

∫ T

0

min
s=1,··· ,l; m+1,··· ,n

inf
0≤x≤L

|λs(t, x, 0)| dt > L (4.5)

and ‖(bi, ci)‖C1[R(T )] (i = 1, · · · , n) are sufficiently small, then, for any given initial data ϕ and

final data ψ with sufficiently small C1 norm, there exist boundary controls Hp(t), Hr(t) (p =

1, · · · , l; r = m+1, · · · , n) with small C1 norm and internal controls χq(t, x) (q = l+1, · · · ,m)

with “small” C1 norm (see Remark 4.1 for the precise meaning), such that the IBVP (4.1)-(4.3),

(1.8) and (1.10)-(1.11) admits a unique semi-global C1 solution u = u(t, x) with small C1 norm

on R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which verifies exactly the final condition (1.9).

For one-side control, we still assume that positive eigenvalues are less than the negative

ones:

m , n−m ≤ l, i.e., n ≤ l+m. (4.6)

We have

Theorem 4.2 Suppose that li, λi, ai, bi, fi, ci, Gp, Gr and Hr (i = 1, · · · , n; p = 1, · · · , l;

r = m+ 1, · · · , n) are all C1 functions. Suppose furthermore that (1.3)-(1.4), (1.7), (1.13) and

(4.6) hold. Suppose finally that the boundary condition (1.10) can be equivalently rewritten in

a neighborhood of u = 0 as

x = 0 : vp̄ = Gp̄(t, vm+1, · · · , vm, vm+1, · · · , vn) +H p̄(t), p̄ = 1, · · · ,m (4.7)
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with

Gp̄(t, 0, · · · , 0) ≡ 0, p̄ = 1, · · · ,m. (4.8)

If there exist T1, T > 0 such that

∫ T1

0

min
p=1,··· ,m

inf
0≤x≤L

|λp(t, x, 0)|dt > L, (4.9)

∫ T

T1

min
r=m+1,··· ,n

inf
0≤x≤L

|λr(t, x, 0)|dt > L, (4.10)

when ‖(bi, ci)‖C1[R(T )] (i = 1, · · · , n) and ‖Hr‖C1[0,T ] (r = m+ 1, · · · , n) are sufficiently small,

for any given initial data ϕ and final data ψ with sufficiently small C1 norm, satisfying the

conditions of C1 compatibility (except (4.2)) at the points (t, x) = (0, 0) and (T, 0) respectively,

there exist boundary controls Hp(t) (p = 1, · · · , l) with small C1 norm and internal controls

χq(t, x) (q = l + 1, · · · ,m) with “small” C1 norm (see Remark 4.1 for the precise meaning),

such that the IBVP (4.1)-(4.3), (1.8) and (1.10)-(1.11) admits a unique semi-global C1 solution

u = u(t, x) with small C1 norm on R(T ), which verifies exactly the final condition (1.9).

Remark 4.1 The internal controls χq(t, x) (q = l + 1, · · · ,m) taken in Theorem 4.1 and

Theorem 4.2 have the form of (4.4), where āq, b̄q, c̄q (q = l+ 1, · · · ,m) are all C1 functions on

R(T ) and the C1 norms of b̄q and c̄q (q = l + 1, · · · ,m) are suitably small.

5 Remarks

Remark 5.1 Theorems 3.1 and 3.2 (or Theorems 4.1 and 4.2) show the exact controllability

for general nonautonomous first order quasilinear hyperbolic systems. The assumptions (3.6)

and (3.30)-(3.31) (or (4.5) and (4.9)-(4.10)) make essential restrictions on the behavior of the

eigenvalues λi(t, x, u) (i = 1, · · · , n) with respect to t (see [12]).

Remark 5.2 Theorems 3.1-3.2 and Theorems 4.1-4.2 generalized all the results on the exact

controllability for autonomous first order quasilinear hyperbolic systems in [3, 5–8].

Remark 5.3 Similar results hold, if the negative eigenvalues are less than the positive ones

(n ≥ 2m). Similar to Theorem 3.2, we can establish the exact controllability by using suitable

boundary controls Hs(t) (s = m+ 1, · · · , n) at x = 0, but the restrictions (3.30) and (3.31) on

T1, T should be replaced by

∫ T1

0

min
s=m+1,··· ,n

inf
0≤x≤L

|λs(t, x, 0)| dt > L (5.1)

and
∫ T

T1

min
r=1,··· ,m

inf
0≤x≤L

|λr(t, x, 0)| dt > L (5.2)

respectively. Similar to Theorem 4.2, some suitable boundary controls Hr(t) (r = m+1, · · · , n)

can be acted on x = 0, but the restrictions (4.9) and (4.10) on T1, T should be replaced by

∫ T1

0

min
r=m+1,··· ,n

inf
0≤x≤L

|λr(t, x, 0)| dt > L (5.3)
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and

∫ T

T1

min
p=1,··· ,m

inf
0≤x≤L

|λp(t, x, 0)| dt > L (5.4)

respectively. This means that the one-side boundary controls should be acted on the side where

there are more boundary conditions and the number of the boundary controls is equal to the

number of the boundary conditions on this side. In the special case where these two numbers

are the same, the one-side boundary controls can be acted on either side.

Remark 5.4 The exact control time T given by (3.6) and (3.30)-(3.31) (or (4.5) and (4.9)-

(4.10)) in Theorems 3.1 and 3.2 (or Theorems 4.1 and 4.2) is optimal.

Remark 5.5 The controls used to realize the exact controllability are not unique.
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