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Abstract Though EV model is theoretically more appropriate for applications in which

measurement errors exist, people are still more inclined to use the ordinary regression

models and the traditional LS method owing to the difficulties of statistical inference and

computation. So it is meaningful to study the performance of LS estimate in EV model.

In this article we obtain general conditions guaranteeing the asymptotic normality of the

estimates of regression coefficients in the linear EV model. It is noticeable that the result

is in some way different from the corresponding result in the ordinary regression model.
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1 Introduction

Though many variables in applications suffer from measurement error, the EV model, which

contains measurement error as an element in the model, has not yet gain popular use. The

reason is apparently the complexity involved in its statistical inference and computation. For

example with random independent variable we may have the identification problem (see [1, 2]),

while when the independent variable is considered as unknown constant, the parameters in the

model increase steadily with the sample size. Still more conditions are required in EV models.

δ1 and ε1 are assumed to be independently normally distributed with common variance (see [3]).

(δ1, ε1) is assumed to have spherical symmetric distribution (see [4]). Replicated observations

are available (see [5]). Hence, though theoretically EV model is more appropriate in many

circumstances, people are still inclined to turn to the ordinary regression models and use the

traditional LS method in dealing with the problem of estimation. Therefore it is a meaningful

question to study the behavior of LS estimate when we really have an EV model. The main

purpose of this article is to study the asymptotic normality of LS estimate. For simplicity of

presentation we restrict ourselves to the case of simple linear model, which can be described as:

(A)





ηi = α + βxi + εi, ξi = xi + δi, 1 ≤ i ≤ n,

(εi, δi), 1 ≤ i ≤ n, i.i.d.,

Eε1 = Eδ1 = 0, Eδ2

1
= σ2

1
, Eε2

1
= σ2

2
, 0 < σ2

1
, σ2

2
< ∞.
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Here (ξi, ηi), 1 ≤ i ≤ n are observable, while xi, 1 ≤ i ≤ n, α, β, σ2

1
, and σ2

2
are unknown

parameters.

From (A) we have

ηi = α + βξi + νi, νi = εi − βδi, 1 ≤ i ≤ n. (1.1)

Considering formally (1.1) as a usual regression model of ηi on ξi, we get the LS estimates of

β and α as

β̂n =

n∑
i=1

(ξi − ξ̄n)(ηi − η̄n)

n∑
i=1

(ξi − ξ̄n)2
, α̂n = η̄n − β̂nξ̄n. (1.2)

Here η̄n ≡ n−1
n∑

i=1

ηi, ξ̄n and δ̄n are defined similarly.

In an earlier paper [6] we studied the consistency of β̂n and α̂n, and showed that under model

(A), the necessary and sufficient condition for β̂n being strong and weak consistent estimate of

β is

n−1Sn → ∞, Sn =

n∑

i=1

(xi − x̄n)2. (1.3)

Thus, as in the ordinary regression model, strong and weak consistency of β̂n are equivalent.

In this paper, we study the asymptotic normality of LS estimates under model (A) with

condition (1.3).

2 Asymptotic Normality of β̂n

From (1.2) we have

β̂n = β +
[ n∑

i=1

(ξi − ξ̄n)2
]−1

n∑

i=1

(ξi − ξ̄n)εi − β
[ n∑

i=1

(ξi − ξ̄n)2
]−1

n∑

i=1

(xi − x̄n)δi

− β
[ n∑

i=1

(ξi − ξ̄n)2
]−1

n∑

i=1

(δi − δ̄n)2. (2.1)

In this section we will prove the following theorem.

Theorem 2.1 Under model (A), suppose that δ1 and ε1 are independent, δ1 has fourth

order moment, and ε1 has third order moment. If (1.3) holds and

S
− 1

2

n max
1≤i≤n

|xi − x̄n| → 0 as n → ∞, (2.2)

then

√
Sn(β̂n − β + nA−1

n βσ2

1)
L−→ N(0, σ2

2 + β2σ2

1), (2.3)

where An = Sn + nσ2
1 .
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We first put forward a preliminary fact.

Lemma 2.1 Suppose that ω1, ω2, · · · are random variable sequence with zero mean and

finite variance, and constant sequence {xi} satisfies Sn → ∞. Then

S−1

n

n∑

i=1

(xi − x̄n)ωi → 0 a.s. as n → ∞.

This is a special case of a result in [2].

Turn back to the proof of the theorem. Write Tn =
n∑

i=1

(ξi − ξ̄n)2. From (2.1) we have

Tn(β̂n − β) + nβσ2

1 =

n∑

i=1

(ξi − ξ̄n)εi − β

n∑

i=1

(xi − x̄n)δi − β
[ n∑

i=1

(δi − δ̄n)2 − nσ2

1

]
. (2.4)

Let An = Sn + nσ2

1
. Then

Wn ≡ n√
Tn

( Tn

An

− 1
)

= n

[ n∑
i=1

(δi − δ̄n)2 − nσ2
1

]
+ 2

n∑
i=1

(xi − x̄n)δi

An

√
Tn

.

Lemma 2.1 and (1.3) imply S−1
n Tn → 1 a.s. While

√
Tn

Sn

Wn =
n

An

n∑
i=1

(δi − δ̄n)2 − nσ2

1

√
Sn

+ 2
n

An

n∑
i=1

(xi − x̄n)δi

√
Sn

. (2.5)

Because Eδ4

1
< ∞, when n → ∞, the distribution of n− 1

2

[ n∑
i=1

(δi − δ̄n)2 − nσ2

1

]
converges to a

normal distribution. Also from (1.3) we have

S
− 1

2

n

[ n∑

i=1

(δi − δ̄n)2 − nσ2

1

]
→ 0 in probability.

The first term in the right-hand side of (2.5) converges to 0 in probability in view of nA−1

n → 0.

From var
[
S
− 1

2

n

n∑
i=1

(xi−x̄n)δi

]
= σ2

1
and nA−1

n → 0 we see that the second term in the right-hand

side of (2.5) also converges to 0. Therefore
√

TnS−1
n Wn → 0 in probability.

This together with S−1

n Tn → 1 a.s. gives

Wn → 0 in probability. (2.6)

The definition of Wn implies

n = nTnA−1

n −
√

Tn Wn.

Substituting the relationship above into (2.4), we have

Tn(β̂n − β) + TnnA−1

n βσ2

1
−

√
Tn Wnβσ2

1

=
n∑

i=1

(ξi − ξ̄n)εi − β

n∑

i=1

(xi − x̄n)δi − β
[ n∑

i=1

(δi − δ̄n)2 − nσ2

1

]
. (2.7)
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Dividing both sides by
√

Tn and noticing (2.6), we obtain

√
Tn (β̂n − β + nA−1

n βσ2

1) = T
− 1

2

n

n∑

i=1

(ξi − ξ̄n)εi − βT
− 1

2

n

n∑

i=1

(xi − x̄n)δi

− βT
− 1

2

n

[ n∑

i=1

(δi − δ̄n)2 − nσ2

1

]
+ op(1). (2.8)

Because the third term in the right-hand side of (2.8) is op(1) and S−1

n Tn → 1 a.s., we know

that when n → ∞, the limiting distribution of
√

Sn (β̂n − β + nA−1
n βσ2

1) is the same as that of

V ∗
n ≡ S

− 1

2

n

n∑

i=1

(ξi − ξ̄n)εi − βS
− 1

2

n

n∑

i=1

(xi − x̄n)δi

= S
− 1

2

n

n∑

i=1

[(xi − x̄n)εi − β(xi − x̄n)δi + δiεi] − nS
− 1

2

n δ̄nε̄n.

Because
√

n δ̄n and
√

n ε̄n have the limiting distributions N(0, σ2
1) and N(0, σ2

2) respectively,

we know nS
− 1

2

n δ̄nε̄n = op(1). Hence the limiting distribution of
√

Sn (β̂n −β +nA−1

n βσ2

1
) is the

same as that of

Vn ≡
n∑

i=1

S
− 1

2

n [(xi − x̄n)εi − β(xi − x̄n)δi + δiεi] ≡
n∑

i=1

tni.

Here tn1, tn2, · · · , tnn are mutually independent and have zero mean. Further,

B2

n ≡ var(Vn) =

n∑

i=1

S−1

n [(xi − x̄n)2σ2

2
+ (xi − x̄n)2β2σ2

1
+ σ2

1
σ2

2
]

= σ2

2
+ β2σ2

1
+ nS−1

n σ2

1
σ2

2
→ σ2

2
+ β2σ2

1
,

Cn ≡
n∑

i=1

E|tni|3 ≤ Const. ·
n∑

i=1

[|xi − x̄n|3(d2 + |β|3d1) + d1d2]S
− 3

2

n ,

where d1 = E|δ1|3, d2 = E|ε1|3. By the moment assumption imposed on δ1 and ε1, d1 and d2

are finite. Therefore

Cn ≤ Const. ·
{[

max
1≤i≤n

|xi − x̄n|S− 1

2

n

]
(d2 + |β|3d1) + nd1d2S

− 3

2

n

}
.

(2.2) and nS−1

n → 0 imply Cn → 0 and then CnB
− 3

2

n → 0. Consequently Vn has limiting

distribution N(0, σ2
2 + β2σ2

1). The proof is completed.

One might notice that although the assumption nS−1

n → 0 implies nA−1

n → 0, the left-side

of (2.3) cannot be replaced by
√

Sn (β̂n − β). This is because

√
Sn (β̂n − β + nA−1

n βσ2

1) =
√

Sn (β̂n − β) +
√

Sn nA−1

n βσ2

1 ,

while it is possible that nA−1

n

√
Sn does not converge to 0. If we assume σ2

1
is known in model

(A), we can replace β̂n by β̃n = (1 − nA−1
n σ2

1)β̂n as the estimate of β. Then

√
Sn (β̃n − β)

L−→ N(0, σ2

2 + β2σ2

1).
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3 Asymptotic Normality of α̂n

From (1.2) we have

α̂ − α = (β − β̂n)x̄n + (β − β̂n)δ̄n − βδ̄n + ε̄n. (3.1)

Again denote
n∑

i=1

(ξi − ξ̄n)2 by Tn. Then

Tn(α̂n − α) = −x̄n

n∑

i=1

(ξi − ξ̄n)εi + βx̄n

n∑

i=1

(xi − x̄n)δi + βx̄n

n∑

i=1

(δi − δ̄n)2

− δ̄n

n∑

i=1

(ξi − ξ̄n)εi + βδ̄n

n∑

i=1

(xi − x̄n)δi + βδ̄n

n∑

i=1

(δi − δ̄n)2

− βTnδ̄n + Tnε̄n. (3.2)

Theorem 3.1 Under model (A), suppose that δ1 and ε1 are independent, δ1 has sixth order

moment, and ε1 has third order moment. Write

An = Sn + nσ2

1 , D2

n = (σ2

2 + β2σ2

1)(x̄2

n + n−1Sn). (3.3)

If (1.3) and (2.2) hold, then

D−1

n

√
Sn (α̂n − α − nx̄nA−1

n βσ2

1)
L−→ N(0, 1). (3.4)

We need the following preliminary fact.

Lemma 3.1 Sn → ∞ implies x̄2
nS−1

n → 0.

Consider two special cases: (1) {x̄n} are bounded. (2) |x̄n| → ∞. We need only to consider

case (2). Given natural integer m, find n0 sufficiently large such that when n ≥ n0,

|x̄n| ≥ 2 max{|x1|, · · · , |xm|}.

As n ≥ n0,

Sn ≥
m∑

i=1

(xi − x̄n)2 ≥ mx̄2

n

4
,

that is x̄2

nS−1

n ≤ 4m−1. Hence

x̄2

nS−1

n → 0.

Because we can draw a subsequence from arbitrary subsequence of {x̄n} belonging to case (1)

or case (2), the lemma is proved.

Now turn back to the proof of the theorem. From (3.2) we have

√
Tn (α̂n − α − nx̄nA−1

n βσ2

1)

=
√

Tn (α̂n − α − nx̄nT−1

n βσ2

1) +
√

Tn nx̄nβσ2

1(T−1

n − A−1

n )

=
√

Tn nx̄nβσ2

1
(T−1

n − A−1

n ) − x̄n√
Tn

n∑

i=1

(xi − x̄n)εi −
x̄n√
Tn

n∑

i=1

δiεi +
1√
Tn

nx̄nδ̄nε̄n
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+
βx̄n√

Tn

n∑

i=1

(xi − x̄n)δi +
βx̄n√

Tn

n∑

i=1

(δ2

i − σ2

1
) − βx̄n√

Tn

nδ̄2

n − δ̄n√
Tn

n∑

i=1

(xi − x̄n)εi

− δ̄n√
Tn

n∑

i=1

(δi − δ̄n)εi +
βδ̄n√
Tn

n∑

i=1

(xi − x̄n)δi +
βδ̄n√
Tn

n∑

i=1

(δi − δ̄n)2 −
√

Tn βδ̄n +
√

Tn ε̄n

≡
13∑

i=1

fi. (3.5)

Consider fi, 1 ≤ i ≤ 13 one by one. Firstly, var(nδ̄nε̄n) = σ2

1
σ2

2
< ∞ and

√
n δ̄n

L−→ N(0, 1)

together with x̄2

nS−1

n → 0 (see Lemma 3.1) and S−1

n Tn → 1 a.s. imply

f4, f7 → 0 in probability.

Secondly var
(
S
− 1

2

n

n∑
i=1

(xi − x̄n)εi

)
= σ2

2 < ∞ and δ̄n → 0 a.s. imply

f8 → 0 in probability.

f10 → 0 in probability is deduced similarly. Then var
(
S
− 1

2

n

n∑
i=1

δiεi

)
= nS−1

n σ2

1σ2

2 → 0 implies

f9 → 0 in probability,

and var
(
S
− 1

2

n

n∑
i=1

δ2

i

)
= nS−1

n var(δ2

1
) → 0 implies

f11 → 0 in probability.

Finally, by the definition of Dn,

D−1

n f1 = −βσ2

1

x̄n

Dn

· S2

n

AnTn

· n

Sn

·
√

Tn√
Sn

·
2

n∑
i=1

(xi − x̄n)δi +
n∑

i=1

(δi − δ̄n)2 − nσ2

1

√
Sn

.

Because |x̄n| ≤ Const. · Dn and S2
nA−1

n T−1
n → 1 a.s.,

D−1

n f1 → 0 in probability.

Summing up the discussions above and observing that S−1

n Tn → 1 a.s., we know that the

limiting distribution of D−1
n

√
Sn (α̂n − α − nx̄nA−1

n βσ2
1) is the same as that of

Ṽn ≡
n∑

i=1

D−1

n S
− 1

2

n {[βx̄n(xi − x̄n) − βn−1Sn]δi + βx̄n(δ2

i − σ2

1
)

− [x̄n(xi − x̄n) − n−1Sn]εi − x̄nδnεn}

≡
n∑

i=1

t̃ni. (3.6)
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Here t̃n1, · · · , t̃nn are mutually independent and have zero mean. Further,

B̃2

n ≡ var
( n∑

i=1

t̃ni

)
= 1 + S−1

n D−2

n nx̄2

n[σ2

1σ
2

2 + β2var(δ2

1)] − D−2

n β2x̄nEδ3

1 → 1,

C̃n ≡
n∑

i=1

E|t̃ni|3 ≤ Const. · D−3

n S
− 3

2

n

n∑

i=1

[
|β|3|x̄n|3|xi − x̄n|3d1 +

|β|3S3

n

n3
d1

+ |β|3|x̄n|3d3 + |β|3|x̄n|3σ6

1
+ |x̄n|3|xi − x̄n|3d2 +

S3

n

n3
d2 + |x̄n|3d1d2

]

≤ Const. ·
{

max
1≤i≤n

|xi − x̄n|S− 1

2

n D−3

n |x̄n|3(|β|3d1 + d2)

+ D−3

n S
3

2

n n−2(|β|3d1 + d2) + nD−3

n S
− 3

2

n |x̄n|3[|β|3(d3 + σ6

1) + d1d2]
}
,

where d1 = E|δ1|3, d2 = E|ε1|3, d3 = Eδ6

1
. By the assumption imposed upon δi and εi, d1, d2

and d3 are all finite. Since Dn ≥ Const. ·
√

n−1Sn and Dn ≥ Const. · |x̄n|, we have

D−3

n S
3

2

n n−2 ≤ Const. · n− 1

2 → 0, nD−3

n S
− 3

2

n |x̄n|3 ≤ Const. · nS
− 3

2

n → 0.

This proves that C̃n → 0 and C̃nB̃
− 3

2

n → 0. Therefore Vn has the limiting distribution N(0, 1).

The proof is completed.

The proof can be greatly simplified if measurement errors are assumed to have normal

distribution:

(δ1, ε1) ∼ N(0, 0, σ2

1 , σ
2

2 , 0).

From (3.1) we have

√
Sn(α̂n − α − nx̄nA−1

n βσ2

1
)

= −
√

Snx̄n(β̂n − β + nA−1

n βσ2

1
) − β

√
Snδ̄n +

√
Snε̄n +

√
Snδ̄n(β − β̂n)

≡ J1n + J2n + J3n + J4n.

J1n, J2n and J3n are mutually independent for the normal case. This is because J2n and J3n

are mutually independent and J1n is independent of (J2n, J3n). The latter assertion is because

J1n depends only on the following four variables

I1 =

n∑

i=1

(xi − x̄n)δi, I2 =

n∑

i=1

(xi − x̄n)εi, I3 =

n∑

i=1

(δi − δ̄n)2, I4 =

n∑

i=1

(δi − δ̄n)(εi − ε̄n),

and the normal condition implies δ̄n, ε̄n, I1, I2 and (I3, I4) are mutually independent. Further,

we have

J2n ∼ N(0, n−1Snβ2σ2

1), J3n ∼ N(0, n−1Snσ2

2),

and J1n approaches asymptotically to normal distribution N(0, x̄2

n(σ2

2 + β2σ2

1)). When (1.3)

holds, β̂n is consistent estimate of β (see [3]). Hence J4n = op(J2n). Therefore the limiting

distribution of D−1

n

√
Sn (α̂n − α − nx̄nA−1

n βσ2

1) is N(0, 1).

Theorem 2.1 and Theorem 3.1 show a difference between EV model and classical regression

model. Asymptotic normality in EV model does not point at α̂n −α and β̂n −β but at α̂n −αn
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and β̂n−βn with αn → α and βn → β. This stems from the fact that in the ordinary regression

model the LS estimates α̂n and β̂n are unbiased, which is not necessary so in the EV case.
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