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Abstract This paper is devoted to the study of the structure of the double Ringel-Hall
algebra D(A) for an infinite dimensional hereditary algebra A, which is given by a valued
quiver I' over a finite field, and also to the study of the relations of D(A)-modules with
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1 Introduction

The Ringel-Hall algebra of a finite dimensional hereditary algebra A together with its torus
algebra can be endowed with a Hopf algebra structure [7, 19]. The double composition algebra
of the Ringel-Hall algebra is the quantized enveloping algebra of the corresponding Kac-Moody
algebra [7, 15, 14]. In [17, 4], it was shown that the Drinfeld double D(A) of a Ringel-Hall
algebra of any finite dimensional hereditary algebra A is the quantized enveloping algebra of a
generalized Kac-Moody algebra.

In this paper we consider the situation for the infinite dimensional hereditary algebra A,
which is the tensor algebra of a k-species S of a valued quiver I' of any type. For the Ringel-
Hall algebra of A, the double composition algebra C(A) is the quantized enveloping algebra of
a generalized Kac-Moody algebra g defined by a Borcherds-Cartan matrix A obtained from I'.
Also by decomposing the double Ringel-Hall algebra D(A), we can show that D(A) itself is also
the quantized enveloping algebra of a (bigger) generalized Kac-Moody algebra. Moreover, we
obtain the Weyl-Kac character formula for the irreducible highest weight module with dominant
highest weight, and then we prove the Kac theorem for infinite dimensional hereditary algebras
by applying the Ringel-Hall algebra approach (see [5]). And as a corollary, we get that for any
indecomposable representation, there exists a nilpotent indecomposable representation such
that they have the same dimension vector.

2 Preliminaries

2.1 Valued quiver
According to Dlab-Ringel [6], a valued graph T" is a graph together with positive integer ¢;

for each vertex ¢ and a pair of nonnegative integers (dfj, d?i) for each edge p between ¢ and j
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such that dfjej = d;isi. A valued quiver is an oriented valued graph. We do not exclude loops
or multiple arrows in a valued quiver. We denoted by I'y the set of vertices and by I'y the set
of arrows. We assume that the valued graph is connected.

Let k = [F, be a finite field of q elements, F = F, be the fixed algebraic closure of F,,.

Let I' = (I'0,I'1) be a valued quiver, and let S = (Fj, (;Mf, ;M[)) be a k-species of the
valued quiver I'. A k-representation V = (V;, ;%) of S consists of an Fj-vector space V; for
each ¢ € I'g and an Fj-linear map

i Vi®r iMP -V
for each p : i — j in I'y. dimV = (dimg, V;)er, € N0 is the dimension vector of V. Denote
by rep-S the category of k-representations of S. Let A be the tensor algebra of S. Then the
category rep-S is equivalent to the category mod-A of finite dimensional left A-modules. If T’
has loops or oriented cycles, the tensor algebra A is an infinite dimensional hereditary algebra
[20].

Now we assume that the valued quiver I" = (I'g,T'1) is finite, and let S be a k-species of T
Given V,W € rep-S, we define Euler form

(dimV, dimW) = > gia;ibi — > diejab;,

i€lg pii—j
and symmetric Euler form
(dimV, dimW) = (dimV, dimW) + (dimW, dimV’),

where dimV = (ay,as,---), dimW = (b1, bs, - --) are in N'°. These two bilinear forms are well
defined on Z. By [16], it is known that

(dimV, dimW) = dimy, Homy (V, W) — dimy, Ext} (V, W).

2.2 Borcherds-Cartan matrix and Borcherds datum

Let I be a finite index set. A real matrix A = (a;j);jer is called a Borcherds-Cartan
matrix if it satisfies (1) a;; = 2 or a;; < 0 for all i € I, (2) a;;j < 0ifi # j, and a;; € Z
if a; =2, (3) a;;j = 0 if and only if aj; = 0 for all ¢ # j. If there is a diagonal matrix
D = diag(s; € Z~o | i € I) such that DA is symmetric, then we say that A is symmetrizable.
LetIre:{iEI|aii:2} andIim:{iEI|aii§O}.

If a symmetric bilinear form e : Z[I] X Z[I] — Z and a set of positive integers d = {d;}ics
satisfy (1) 25 € {1,0,—1,-2,---} foralli € I, (2) %2 € {0,-1,-2,---} for all i # j in I,
then we call (I, e,d) a Borcherds datum.

By [18], Any symmetrizable Borcherds-Cartan matrix A with integer entries and even diag-
onal entries is associated with a Borcherds datum, which is called the Borcherds datum of A.
And there exists a k-species S of a valued quiver I" such that the symmetric Euler form of S is
the Borcherds datum of A. Moreover, we can get a Borcherds-Cartan matrix Ar = (ai;)ijer,
from a valued quiver of any type. Ar is symmetrizable with D = diag(e;), and it has integer
entries and even diagonal entries. So in this paper, we assume that Borcherds-Cartan matrix
A is symmetrizable with integer entries and even diagonal entries.

In [18], by using the Frobenius morphism and o-quiver theory (see [3]), we get the following
results.
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Theorem 2.1 (See [18]) Let M,(«,q) (resp., I5(c,q)) be the number of the isomorphic
classes of the representations (resp., indecomposable representations) of valued quiver T' of di-
mension vector « over the finite field Fy. Then it is a polynomial in q with rational coefficients
and is independent of the orientation of the valued quiver.

2.3 Simple representations and nilpotent representations

For a valued quiver I without oriented cycles, the set {S(i) | ¢ € T'p} is the complete set of
simple representations which we call as the standard simple representations.

Under the correspondence between the valued quiver I' and the Borcherds-Cartan matrix
A weset T = {i € Tg | ay =2} and T = {i € Ty | aiz < 0}. Then {S(i) | i € T}
is the set of the standard real simple representations, and {S(i) | i € Tj"} is the set of the
standard imaginary simple representations. Set dimS(i) = e; (i € I'g). For a non-standard
simple representation V', we have the following proposition.

Proposition 2.1 Let V = (V;, ;¢7) be a non-standard simple representation of the valued
quiver I'. Then the dimension vector dimV = « of V' satisfies:

(1) The support supp a of « is connected.

(2) Under the Euler form (—,—), we have (v, e;) <0 and {e;, ) <0 for all i € Ty.

Let I' = (T'o,I'1) and S = (F;, ;M;) be as above, and let F;; be the extension field of k& of
degree dfjsj. A k-representation V = (V;, ;) of S is equivalent to a set of F-vector space V;
for each i € I'g, together with Fj;-linear map

Yij o Vi®r iMj —V; Q@p, jM;

for each arrow p: i — j in I'y.
A k-representation V' = (V;, ;) is called nilpotent if collection of linear maps

{ij :Vi®p, iMj — V; @p, jM;| forall p:i—jin T}

satisfy the following conditions: for any i; € I'g, there exists » € N such that ¥, i, - YiyisViyin
=0 for any ig, -+ ,i, € I'g.

Let Nrep-S be the full subcategory of rep-S containing all nilpotent representations of S.
Then this category is closed under taking extensions and finite number of direct sums. It is an
Abelian category. The following is easy.

Lemma 2.1 A k-representation V. = (V;, ;) is nilpotent if and only if its composition
factors belong to the set {S(i) | i€ '}

2.4 Borcherds class

Now let C' = (I,(—, —), d) be a Borcherds datum. We choose R to be a commutative integral
domain of characteristic zero and choose v to be an invertible element of R.

Let 7 be the torus of C' defined by the generators { K, | a € Z[I]}. We say that a skew-Hopf
pairing (AT, A~ ¢) (see [19] for the details) belongs to the Borcherds datum C or (A1, A, )
is a member of the Borcherds class £(C') if the following conditions are satisfied:

(AT1) AT = @ Af is an N[[]-graded associated R-algebra generated by z; € Af (i € I)

veN([I]
and by Al = T, such that K,z = o®Va] K, for alli € I, a € Z[I].
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(A1) A- = @ A, isan N[[]-graded associated R-algebra generated by x; € A (i € I)
veNI[I]
and by Ay = T, such that K,z; = v~ (@27 K, foralli € I, o € Z[I].

(A2) Ayi(af)=af @1+ K@z, Aur(Ka) =K, @ K,.
Ap(z])=2; K ;+1@x;, A (Ka)=Ky®K,.

(A3) @(x;r,x;)zo fori#jinl. p(zf,z;7)#0 foricl.
@(KQ;KB) = 'U_(aﬂ)a (p(.ﬁ;—,K@) =0= (P(Kozaxi_) foriel, o, € Z[I]'

If restricted form ¢ : a™ x a= — R is non-degenerate, then we say that (A7, A7, ) is a
restricted non-degenerate member of £(C), where a™ (resp., a™) is the subalgebra of AT (resp.,
A7) generated by x (resp., ;) (i € I).

Two skew-Hopf pairings (AT, A=, ¢) and (B*,B~,¢) in L£(C) are said to be canonically
isomorphic if there are Hopf algebra isomorphisms f : A¥ — BT and f : A~ — B~ such that
f(x;t) = y;t for all i € I and f preserves T = AT = B(:)t elementwise, where x;t (resp., yf)
(i € I) are the generators of AT (resp., BT).

Analogously to [7] (see also [19]), we have the following

Proposition 2.2 Let C = (I,(—,—),d) be a Borcherds datum. Then any two restricted
non-degenerate skew-Hopf pairings in L(C) are canonically isomorphic.

2.5 Quantum generalized Kac-Moody algebra

In this part, we assume that R is a field of characteristic 0, and v in R is not a root of unity.

Let A = (a4j)i,jer be a symmetrizable Borcherds-Cartan matrix with integer entries and even
diagonal entries with the symmetrizer D = diag{s; | i € I}, and let g = g(A) be the generalized
Kac-Moody algebra associated with A generated by the elements h;,d; (i € 1), e;, f; (i € I)
with the relations as in [12, 13]. Then relative definitions, such as Cartan subalgebra b, Z-lattice
PV weight lattice P, simple reflection {r; | i € I'*} and Weyl group W etc., can be defined as
in [12, 13].

The quantum generalized Kac-Moody algebra U = U,(g) associated with a symmetrizable
Borcherds-Cartan matrix A is an associative algebra with 1 over R generated by the elements
e, fi (i € I) and K, (o € Z[I]) with the defining relations:

(R1) Ko=1, KoK= Kuis, a,f¢cZ[I],
(R2) Kqe; =0 @K, Kofi=v (@)K, acZlI], icl,

K,—K_,
(R3) eifj — fiei = 5%‘1’1}&7

—p—si’

R4 —1)fePe e =0 it ay; =2, 1 # j,
) J1
st+t=1—a;;

Z (_1)Sf7;(8)fjfi(t) =0 if ai; = 2’ 7 7& j7

st+t=1—a;;

where e§") = e /[n];! and fi(n) = fi*/[n]il,
(R5) eiej —eje; =0=fif; — fifi ifa;=0.

The algebra U has a Hopf algebra structure with comultiplication A, counit € and antipode
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S being given by

A(Ka) =K, ®Kou E(Koz) = 1; S(Kor) = K—on
Ale))=e; @1+ K;®e;, e(e;) =0, S(e;)=—K, e,
(

K3

A(f)=fi®K_i+1® fi, e(fi)=0, S(fi)=—fKi S'(fi)=-Kif:

for « € Z[I],i € I.
We denote by U= (resp., US?) the subalgebra of U generated by K, («a € Z[I]) and e;
(resp., fi) for i € I. For f € 4, set

Uitﬁ ={z e U* | KozK_o = vPWyg for all a € Z[1]}.

By [13], there exists a bilinear form 1 on UZ? x U= which is given by ¥ (x,y) = £(y)(z)
for z € U2,y € US?, where ¢ : US? — (UZ9)* defined by £(K®) = ¢, £(f) = —#wz
for o € Z[I], i € I is an algebra homomorphism and the linear functionals ¢,,%; € (U=°)* are

given by
bo(xKg) = e(x)v (P for x € U, B € Z[I],
Yi(xK,) =0 foerUg, BeZI\ {a},
wi(eiKa) =1.

And by the properties 1 (see [13]), we can show that (UZ%, U< 1) is a restricted non-degenerate
member of £(Cy) where Cy = (I,(—,—),d) is the Borcherds datum of A.

For A € b*, let M(\) be the Verma U-module and L()\) be the corresponding irreducible
quotient module. Let T' denote the set of all imaginary simple roots a; (i € I'™). We have

Proposition 2.3 (See [1, 13]) For A € b*, if (\, ;) > 0 fori € I, and (\, ;) € Z for
1 € I, then we have

e(N) S
chM(\) = T e(N) (dimU_y)e(—0),
a611+(1 —e(—a))? Be%i g
S () le(uw(A+ p+ 5(F)) — p)
weW,FCT
B T (- ey |
aEA

where Ay denotes the set of positive roots of g, g denotes the root space, and F' runs over all
finite subsets of T such that (A, ;) =0 for a; € F and (o, ;) =0 for a;, o5 € F with i # j.
|F'| denotes the number of elements in Fand s(F') denotes the sum of elements in F'.

3 Double Ringel-Hall Algebra and Its Decomposition

In this part, we assume that k = IF, is a finite field of ¢ elements, and set v = /q. Let I' be
any valued quiver, and S be a k-species of I with tensor algebra A.

3.1 Ringel-Hall algebra and its Drinfeld double

We denote by P the set of isomorphic classes of finite k-representations of S, and denote
by I C P the set of isomorphic classes of simple k-representations of S. Set Py = P\ {0}. For
each a € P, let V,, be the representative in the isoclass . And in particular, we denote by V;
the representative in the isoclass i € I.
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By Subsection 2.3, we have I'g C I. Set Iy = I \ I'g. The representative V,, in the isoclass «
is a representation of § with dimV,, € NI'y. For Euler form (—, —) and symmetric Euler form
(—,—), we define

(o, f) = (dimV,,, dimVg), (o, f) = (dimV,,dimVg) for all o, 5 € P.

In particular, (¢, j) = (dimV;,dimV}) (¢,7 € I). Set dimV; = «; for ¢ € I (in particular, o; = e;
for i € T'y), and set dimV,, = d,, for « € P\ I.

For any «a,3,\ € P, let géﬁ be the number of submodules M of V) such that M = Vj
and V) /M = V,. And more generally, if o, ,a;, A € P, let gél,,,at be the number of the
filtrations 0 = My C My C --- C My C My = V) such that M;_1/M; 2V, for all 1 <i <t.
For each A\ € P, set ay = | Auti (V)]

We recall the definition of the Ringel-Hall algebra of A and its Drinfeld double (see [4, 19]).
Let R be a subfield of the real number field R containing v, and H*(A) be an R-vector space
with basis {K,ul | @ € ZI'g, A € P}. In the following sense, H(A) becomes a Hopf algebra:

(1) Multiplication (see [15]):

ul’u; = Z v<a’6>ggﬁuj\r for all o, 3 € P,

AEP
Kqul = U(O‘A)u;\rKa forall A € P, a € ZT'y,
KaKg = K(H_g for all a, 8 € ZI'y

with unit 1 = u(')" = K.
(2) Comultiplication (see [7]):

a, A Galp
A(uy) = %E:PM P05 0 Pul K, @ uf forall A€ P,
AK,) =K, ® K, for all o € ZT'y

with counit: e(uf) =0 for 0 # A € P, and £(K,) = 1 for a € ZTy.
(3) Antipode (see [19]):

23 (NN ay. ---a
+\ m o A1 Am A +
S)=do+ D (=)™ D 0T Al R K gl AEP,
m>1 TeP,
Alv"'v)\'mepoo

S(Ky) = K_, forall a€Zl.

ax

We call Hopf algebra HT(A) the (extended twisted) Ringel-Hall algebra of A. The subspace
HT(A) of HT(A) generated by {uf | A € P} is an associative subalgebra. For simple represen-
tation V;, i € I, we have A(ul) = uf ® 1 + K, ® u}, and S(u) = —K_,,u;. hT(A) and
HF(A) are all NT'g-graded.

Dually, we can define a Hopf algebra H™(A) and its subalgebra h= (A).

By [19], there exists a bilinear map ¢ : HT(A) x H™(A) — R, defined by

—(a,a’)=(B,0" )+ (0,8 Vi
(p(KaU,;,Ka/U,;,):’U (e,0)= (8,07 +( ’6)%(555/.

And in fact ¢ is a skew Hopf pairing. So there exists a Hopf algebra structure on H™(A) ®
H~(A). Therefore, we can define Drinfeld double of (HT(A), H™(A),¢). The ideal generated



The Double Ringel-Hall Algebras of Valued Quivers 707

by {Ko x K_o — 1] a € ZT'y} is a Hopf ideal. The quotient by modular this Hopf ideal is a
Hopf algebra, which is called the double Ringel-Hall algebra of A. We denote it by D(A). Let
7 be the torus algebra generated by {K, | « € ZI'g}. Then we have triangular decomposition
D(A) = b~ (A) & T @ h+(A).

The subalgebra C(A) of D(A) generated by {uf, K | i € Ty} is called the double com-
position algebra of A. It is a Hopf subalgebra and admits a triangular decomposition C(A) =
¢ (A)® 7T @ ct(A), where ¢t (A) (resp., ¢~ (A)) is the composition algebra, which is generated
by {uj | i € To} (vesp., {u; |i € To}), and is still N['-graded.

Furthermore, D(A) admits an operator w which is defined by

wul) =uy, w(uy)=uf foreP,
w(KO/) = _K—a fOI‘ o€ ZFO

and ¢(z,y) = ¢(w(y),w(x)) for z € h7(A), y € h=(A).

3.2 The structure of double Ringel-Hall algebra

Let I' = (T'p,I'1) be a valued quiver of any type and S be a k-species of I'. Let Ar be the
corresponding Borcherds Cartan matrix and let Cp be the Borcherds datum of Ap. Let A be
the tensor algebra of S. Following an idea of Sevenhant and Van den Bergh [17], we consider
the structure of the double Ringel-Hall algebra D(A) (see also [4]).

Let F be the fundamental set of NI'g, which by definition is the set

{0#£aeNI'y| (a,e;) <0 foralli €Ty, and supp« is connected }.

Set

Fo=F\( U @)

ieI\I'5e

For o, B € ZT'y, we define a < 8 by 8 — a € NIy
For each 0 € NI', we define

Zr = D, hT(N)uhT(A), and Eg =37 b7 (A)uhT (M)
ptv=0 ntv=0
Ry nAOF#v
It is easy to see =, = w(E,).
For each 0 € NI'g, we also define

Ly ={at bt (A)g | p(a*,Z5) =0} and Ly ={y" €b (A)g | 0(Z5.y) =0}

So obviously, we have L, = w(L}).

Lemma 3.1 (See [4]) (1) The elements in each LE are primitive, that is for each x* € L],
we have A(zt) = 2t @14+ Ko ® 27 and S(z™) = —K_ga™. For each y~ € L, , we have
AlyT )=y @K _p+1Qy~ and S(y~) = —y~ Kpy.

(2) Forat e L}, y~ €L,, we have
ety —yTat = (et yT) (Ko — K_y).

(3) If L;t #0, then 0 € Fy. And 0 is the dimension vector of an indecomposable represen-
tation.
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For each ¢ € I, we have

_ |‘/1|(U - U_l) KO@ - K—ai

U':ru; o u;u:r = —@(uj,u;)(K% - K—ai)(sij = a; v —v—1 dij (3.1)
where a; = | Aut V;|. Set x; = — Vo1 and set E;(0) = u;", F;(0) = yiu; . Then
K., — K_g,,
E0)E;(0) - BO)B(0) = =255,
In particular, if ¢ € Ty, then y; = —v™%, and
K;—K_;
E;(0)F;(0) — F5(0)E;(0) = m@f (3.2)

For 6 € Fy, let ny = dimp L;t.

Lemma 3.2 (See [4]) There exists an R-basis {E,(0) | 1 < p < ng} of L} and nonzero
elements xgp € IR, such that

D(Ep(6), X000 (Eo(0)) = — 5,0,

v—ov7t
If set F,(6) = xo,pw(Ep(6)), then by the above lemmas, we have

Ko —K_y
v—op1

Ep(0)Fy(m) — Fy(m)Ep(0) = OpqO0r (3.3)
f0r97776~7:071§p§7797 1§Q§7]w

Now for each subset & C Fy, we denote by Dg(A) the subalgebra of h*(A) generated by
¢*(A) and L7 with € €. Then 9F(A) is N[p-graded and the restriction of ¢ on 9 (A) x 0z (A)
is non-degenerate. Set

De(A) =0 (A)®@T @05 (A) for £ C Fy.

In particular, we have
Dy(A) =C(A) and Dg,(A) =D(A).

So for any £ C Fy, we get a family of subalgebras ngt(A) of h*(A) and a family of subalgebras
De(A) of D(A).

3.3 Uniqueness of skew-Hopf pairing

Now we extend Borcherds datum C' = (I,(—,—),d) as in [4]. Choose non-zero element
0; € N[I] for each j € J, where J is an index set. And assume that the set {j' € J | §; = §;}
for each j € J is finite. Denote by C the datum (I, (-, —),d, {6; | 7 € J}). In particular, we
set 6; = i for i € I. We call C' an extended Borcherds datum.

Analogously to Subsection 2.4, given an extended Borcherds datum C = (I, (—, —),d, {6; |
j € J}), a skew-Hopf paring (A*, A=, ¢) is said to belong to C or (A", A~ ¢) is a member of

the extended Borcherds datum £(C) if AT = @ AF is an N[I]-graded associated R-algebra
veN[I]
generated by 2 € A (i € TUJ) and by AT = T, such that the similar relations (A*1), (A2)
and (A3) in Subsection 2.4 are satisfied. N
And then we have the similar definitions of restricted non-degenerate member of £(C') and

of canonically isomorphic for two skew-Hopf pairings in £(C').
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Proposition 3.1 Let C = (I,(—,—), d, {0; | j € J}) be an extended Borcherds datum. Then
any two restricted non-degenerated skew-Hopf pairings in L(C) are canonically isomorphic.

Example 3.1 For each &€ C Fp, we set Jg = {j = (0,p) | 0 € £,1 < p < np}. If
j=(0,p) € Je, we set 6; = 6. Set Ce = (To, (-, —),d, {6; | j € Je}). Then it is easy to see
that (DF (A), Dg (A), ¢) is a restricted non-degenerate member of L(Cg). And in particular, for
Jy (vesp., J = Jg,), (CT(A),C~(A),¢) (vesp., (HT(A),H (A), ¢)) is a restricted non-degenerate
member of £(Cy) = L(Cr) (resp., L(Cx,)), where Cr, = (Lo, (=, —),d, {5; | j € J}).

For a valued quiver I" of any type, let I be the valued quiver obtained from I' by choosing
another orientation. Let &’ be a k-species of IV with tensor algebra A’. Then S’ is obtained
from S by replacing ;M Jp by its k-dual whenever the orientation of p : i —j in I is different of it
in . Let H*(A’) be the Ringel-Hall algebra of A’. Then according to the fact that the number
of the isoclasses of indecomposable representations of fixed dimension vector is independent of
the orientation of I', analogously to [4], we have

Theorem 3.1 For any subset £ C Fy, there exists Hopf algebra isomorphism: ®g :
De(A) — De(N) such that for £ C G C Foy, we have the following commutative diagram

De(A) c Dg(A) c D, (A)

De(A) < Dg(A) < Dr(d)

and in particular, Ringel-Hall algebra H(A) and H(A') are canonically isomorphic.

Remark 3.1 Ringel-Hall algebra H(A) is independent of the orientation of the valued
quiver I

3.4 Generic composition algebra

Let T' = (T'g,T'1) be any valued quiver with positive integers {€;} and a pair of nonnegative
integers (df;, df;). Let S be a k-species of I'. Assume that C' = (T'g, (—, —),d) is the Borcherds
datum of I'.

Let K be a set of finite field &, such that the set {|k| | k € K} is infinite. Let R be a subfield of
real number field R containing, for each k € K, an element vy such that v7 = |k|. For each finite
field k € K, we have the (extended twisted) Ringel-Hall algebra H ™ (Aj), where Ay, is the tensor
algebra of k-species S which is associated with S, and then the composition algebra C*(Ay)
which is the R-algebra generated by the elements u; (k) (i € I'g) and K, = K4 (k) (o € ZI'y).
Consider the direct product

HYA) =[] H (M),
keKx
v,0~1 and @] are elements of H* (A) whose k-components are vy, vy ' and uf (k) respectively.
Denote by CT(A) the subalgebra of Ht(A) generated by Q,v,v~! and @ and K, = (Ka).
Since v is central in CT(A) and there is no p(T) € Q(T') such that p(v) = 0 unless p(T') = 0, we
may regard CT(A) as the Q[v, v~!]-algebra generated by @ (i € Ty) and K, (a € ZI'y). Denote
by ¢t(A) the Q[v, v~!]-subalgebra of C*(A) generated by @} (i € Ty). Define Q(v)-algebra

C*+(K) = @('U) ®Q[1),v—1] C+(K)
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with u} t=1® ﬂf € C*+(K), called the generic composition algebra of the Borcherds datum
C.

¢ (R) = Q(v) Bgpye-1y €7 (A)

is a subalgebra of C**(A) generated by wr* (i € T).
Dually we can construct H~(A), C~(A), ¢~ (A), C*~(A) and ¢*~(A).
The skew-Hopf pairing oy : HT(Ag) x H™(Ax) — Rg, for each k € K, induces an R-linear
map
g HT(A) xH (A) = ] R
kek

which is given by ¢(z,y) = (ox(@r ya)kex for @ = (zp)rex € HH(A) and y = (yp)rex €
H~(A), where Ry, = R for all k € K. And we have

261
Yk

Bl i) = (puui (k) uy (k)eex = (—)K

For z = (xx)kex € CT(A), and y = (yr)kex € C(A), where p = Y wyi, there exists
i€l

M, ,(v) € Q[v,v™1] and positive integer n(x,y), such that G(z,y) = M, ,(v) [ @@, q; )
i€y

and (v — 1)"@Y3(2,5) € Qv, v~ 1.

Hence, @ induces a skew-Hopf pairing ¢ : C**(A) x C*~(A) — Q(v) which is a member
of £(C) over Q(v), and then we can get the reduced Drinfeld double C*(A), called the double
generic composition algebra. It admits a decomposition C*(A) = ¢*~(A) ® T @ ¢*T(A).

And for m,n,i,j € ', we have

261'

_ —(em,en)—(ei,en)+(em,ei) Uk
- Uk 2¢e; ij
vyt —1 kex
,U2€7;
v —1

—(em,en)—(ei,en)+(em,ei)

=

5ij1~

In particular for F = Q, we have the quantum generalized Kac-Moody algebra U = U,(g)
over Q(v). For bilinear form v : U2% x US? — Q(v), by formula (3.1), we have

¢(Kme7;,Kn(—vdi)fj) = (_Usi)(_U—(em,76n)—(6i7en,)+(em7ei)) : 1 5,
Ve — pTE
= 'U_(em7ewr)_(eiven)+(emvei) UQEi ..
- p2ei —1 9"

So we have

Theorem 3.2 Let I' be any valued quiver and S be a k-species of T'. Cr = (I'g, (—, —),d)
is the Borcherds datum of T' and A is the Borcherds-Cartan matriz of T'. Let U = U,(g) be the
quantum generalized Kac-Moody algebra of A over Q(v), and C*([~\) be the double generic com-
position algebra associated with Cr. Then the correspondence u;?‘+ — e, ul o= —vfy, I~Q —
K; (i € Ty) induces a Hopf algebra isomorphism C*(A) — U.

Remark 3.2 The theorem still holds if we give up the condition: “generic” and take v to
be the square root of |k| (see [14]).
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3.5 Drinfeld double D’(A)
Let C = (I'g,(—,—),d) be the Borcherds datum of a valued quiver I' (or a Borcherds-

matrix), and C' = (T, (—, —), d, {6; | j € J}) be the extended Borcherds datum, where J =
Jr, ={(0,p) | 0 € Fo,1 <p <mg} and 0y, = 0 for € Fy and for all 1 < p < ny. We define
C' = ToUJ, (= —),d), where (i,j) = (0i,0;) for all 7,7 € To U J and d' = (d;)ier,us with
d; =d; fori € Ty and d; = 1 for i € J. Then we have the reduced Drinfeld double D’(A) of the
restricted non-degenerate member of £(C").

We extend the torus 7 of C' = (I', (—, —),d) to the torus 7" of C' = (Do U J, (—, =), d’)
and view D(A) as a Z[I'g U J]-graded Hopf algebra. Set x; = E;(0), y; = F;(0) for i € I'g, and

set z; = E,(0), y; = F,(0) for j = (0,p) € J. Thus D’(A) admits a triangular decomposition
D'(A)=h" (M) 2T @b (A),

where b’ (A) (resp., h'~(A)) is generated by x; (resp., y;) for i € ToUJ. We also set H'T(A) =
T' @b T (A) and H'~(A) =7' @ §'~(A). They are all naturally N[y U J]-graded.

Let ¢ : H'T(A) x H'~(A) — R be the restricted paring induced by ¢, which satisfies that
gp’(xi, yj) = (Sij foralli e Ty U J.

Moreover, it is easy to see that there exists a Hopf algebra epimorphism p : D'(A) — D(A)
such that p(x;) = 2, p(y;) = v; and p(K;) = K, fori € Ty U J.

For the Borcherds datum €’ = (Tg U J, (—, —), d’), there exists a Borcherds-Cartan matrix
A" = (aj;)ijer,u. associated to C’, such that dia;; = (6;,6;) = (i,7)" for all i, j € T'o U J, that
is
a/“:{(é"'d%fj) for i € I'g,

Y (51,(5J) fori € J.

And A’ is symmetrizable, with D = diag(d} | i € To U J). So we can define the generalized
Kac-Moody algebra g’ = g(A’) and its quantization U’ = U,(g’) as in Subsection 2.5. Let A’ be
the root system of g’. The symmetric bilinear form on the Cartan subalgebra b’of g’ is exactly
the bilinear form (—, —)’ in the Borcherds datum C’ = (I U J, (—, =)', d').

Let W' be the Weyl group of g’ generated by the reflections {r, | i € T'{°} defined by
ri(A) = A — A for A € Z[Ty U J).

Define a linear map 0 : Z[ToUJ] — ZT'o by §(i) = 0; for i € ToUJ. Then we have dr, = r;0
for r; € W, the Weyl group of g = g(A). It is easy to see that 7} — r;, i € T'(® induces a group

isomorphism W’ = W. So we have

Lemma 3.3 §(A') = A.

4 Representation Theory and Complete Reducibility

4.1 Category O and category o

Let A be the hereditary algebra defined as in the above section, and D(A) be the double
Ringel-Hall algebra of A. Let X be the weight lattice of C' = (T'g, (—, —),d), i.e., X = {\ € ZT¢ |
(A, i) € Z for all i € Tg}. A D(A)-module M is called a weight module if M admits a weight

space decomposition M = @ My, where My := {m € M | K,m = v(®Ym for all a € ZT}.
AeX
We call wt(M) :={\ € X | My # 0} the set of weights of M.

For a =Y k;i € ZT, set tra = k.
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We denote by O the category consisting of weight modules M which satisfy: (1) every
weight space is finite dimensional, (2) for every z € M, there exists an ng > 0 such that
ht(A)ox = 0 for a € ZT'y whenever tra > ny.

A weight D(A)-module V is called a highest weight module with highest weight A € X if
there exists a nonzero vector vy € V (called a highest weight vector), such that (1) u;vy =0
foralli € Ty, (2) D(A)vy =V.

For A € X, denote by J(A) the left ideal of D(A) generated by E,(0) (j = (6,p) € To U J)
and K, — v®@N1 (o € Z[Ty U J]), and set V(X) = D(A)/J(A). Then V(\) admits a left
D(A)-module structure under left multiplication. V(A) is called the Verma module. Then
L(X\) := V(N\)/N()) is an irreducible highest weight D(A)-module with highest weight A, where
N(A) is the unique maximal submodule of V().

Set Xt ={\e X | (\i)>0foralliey}, the set of the dominant integral weights. We
consider the structure of the irreducible highest weight D(A)-module L()\) with A € X+,

Proposition 4.1 Let A € XT be a dominant integral weight, and u be a weight of L(\).
For each j = (0,p) € T¥ U J, we have
(a‘) (:uvéj) = (M?o) € ZZO;

(b) if (u,05) =0, then L(\),—s, =0, and F,(0)(L(\),) =0,
(e) if (. 0;) < —(0;,65) and (35,6;) # 0, then Ep(0)(L(A)u) = 0.
Proof For p € wt(L())), we may assume that g = A — o where o = > ji with ji € T.

k=1
For any j € T'i™ U J, we have that (ji,d;) < 0 for each 1 < k < s. Then («,d;) <0, and

(1, 05) = (A = @, 85) = (X, 65) = (, 65) > (A, 65) = 0.

If (u,05) =0, then (X, 9;) = (o, d;) = (kz;:ljk,dj) =0. So (jr,d;) =0forall 1 <k <s, and

F;, (0)F,(0) = F,(0)F}, (0). Then F,(0)u, vy = u, Fp(@)vy = 0. But ug vy € L(A)a—aq = L(N),,
50 Fy(0)(L(N)) = 0.

If (1,65) < —(65,65) # 0, then (u+6;,0;) = (u,9;) + (65,0;) < 0. If (u+6;,6;) = 0, then
by (b), we have L(X), = 0, a contradiction to the fact u € wt(L())). And then by (a), we have
that E,(0)(L(\),) = 0.

We define

Definition 4.1 The category O consists of D(A)-module M satisfying the following prop-
erties:

(1
2

M belongs to the category O,

(2) if j €T, then the action of u; on M is locally nilpotent,

(3) ifj ey UJ, then (u,6;) € Z>o for all p € wt(M),

(4) ifj €T UJ, and (u,d;) = 0, then F,(0)M, =0,

(5) ifje Pbm uJ, (/J,,(Sj) = —(5j,5j) and (5j,5j) #0, then EP(Q)MM =0.

Proposition 4.2 Let L(\) be the irreducible highest weight D(A)-module with highest weight
A € X. Then L(\) belongs to the category O if and only if A € XT.

—_— — ~— ~—

Proof Assume that L(\) belongs to the category 0. Ifi e I'te, the action of u; on
L(A) is locally nilpotent, so there exists a non-negative integer n; such that (u; )™ # 0, but
(u )" = 0. Then by uju; = uj uf + =LL(K; — K_;), we have

a;

—1Vil 1 = o=@ (natl) —(,7)
e Lt L1 Sl ( G v ) —\n
0=l o == g ) ()0
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So (i,\) = &% ¢ 7.,
If i € Ty, we have (), i) € Z>¢ by the above definition.
If A € X+, by Proposition 4.1, L()\) belongs to the category O.
A weight D(A)-module M in the category O is said to be integrable.

4.2 Category O’ and category O’

Let D’(A) be the reduced Drinfeld double in Subsection 3.5 which is generated by z;,y; (j €
o U J) with triangular decomposition D'(A) = §'~(A) @ 7" @ h’'T(A).

Let X' = {\ € Z[ToUJ] | (\,i) € Z forall i € TgU J} be the weight lattice of C' =
Lo U J, (= =) d).

Now for o = kjj € Z[To U J],let @ = k;0; € ZT'y. We set tra = tra.

We define O’ to be the category consisting of weight D’(A)-modules M which satisfy: for
each m € M, there exists ng > 0 such that §'*(A),m = 0 for o € Z[['g U J] with tra > ng.

For each A € X', let J'(\) be the left ideal of D’(A) generated by x; (i € T'o U J) and
Ko—vW'1 (o € Z[ToUJ)). Set V/(X) = D'(A)/J’(\). Then V'(\) admits a left D’ (A)-module
structure under left multiplication. We call V/(\) the Verma module. Using the triangular
decomposition of D’'(A), we have a bijection n : §'~(A) — V'(N\); y — y+ J'(A). Under this
bijection, h'~(A) admits a left D’(A)-module structure. So 7 is in fact a module isomorphism.
The module structure of '~ (A) is given by

Ko-y=v* 'y yiy=yy, 2-1=0

forally € '~ (A)g, a € ZTyU J] and i € Ty U J.

Let L'(\) be the irreducible highest weight module with highest weight .

We define X' = {\ e X' | (\,i)) >0 foralli € ToUJ}, and set Jy = {i € ToU J |
(A1) =0}.

Proposition 4.3 Let A € X'T be a dominant integral weight.
(1) The highest weight vector v} of L'(\) satisfies that

A0
d;’, + /o 0 £ ]_"re
yi v)\_ ) ZfZG 0> (41)

yvh =0, if i€ Jx.

(2) Let (V,\,v) be a highest weight D'(A)-module with highest weight X\ € X't and highest
weight vector v, if v satisfies relation (4.1), then V is isomorphic to L'(\).

Similarly to Proposition 4.1, we have

Proposition 4.4 Let u be a weight of L'(\) with A € X't and i € T U J. Then
(1) (1) € Zxo,

(2) if (u,2) =0, then L'(X)—; =0 and y;(L'(N),) =0,

(3) if (1,3) < —(2,7)" and (2,7)" # 0, then z;(L'(X),) = 0.

Ko—K_g

By formula (3.3), for i = (6,p) € Ty U J, we have z;y; — y;x; = . And for n € N, we

v—ov—1
have
11— =09 (nt+1) , ;1
L (B0 _ = (0.3) ) )
Ty Ty P e e O (v v g Yy (4.2)

Now we define the category O’ of integrable D’ (A)-module.
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Definition 4.2 The category O’ consists of D'(A)-modules M satisfying the following prop-
erties:

(1
2

) M lies in the category O,

(2) ifi e T, the action of y; on M is locally nilpotent,

(3) ifieTi™UJ, then (u,i) € Zso for all p € wt(M),

(4) ifieT§™UJ, and (u,i) =0, then y; M, = 0,

(5) ifieTimUJ, (u,i) =—(i,i)" and (i,i) # 0, then z;M,, = 0.

Then we have

Proposition 4.5 Let L'()\) be the irreducible highest weight D'(A)-module with highest
weight A € X'. Then L'(X) belongs to the category O if and only if A € X'T.

Proposition 4.6 (1) If M is a highest weight D'(A)-module in the category O with highest
weight A € X', then A\ € X't and M = L'(\).

(2) Every irreducible D' (A)-module in the category O' is isomorphic to some L'(X) for some
Ae X't

Proof (1) Suppose M lies in the category O with highest weight vector vy. If i € T,
then by formula (4.2), setting n; = 2((3!’32, = 28:?)),, we have y" v} = 0.

If i € Ti™ U J, then by Definition 4.2, we have (\,i)’ € Z>o. And if (\,i)’ = 0, then
yiMy = 0, i.e., y;vi = 0. Hence A\ € X'T. By Proposition 4.3, we have M = L'()).

(2) Let V be an irreducible D’(A)-module in the category ©’. By the definition, V lies in

the category O'. Let V.= @ V,,, where V,,’s are finite dimensional weight spaces. And for any
pnex’

m € V, there exists an integer n > 0, such that h’'*(A),m = 0 for a € Z[[n U J] with tra > n.
Now for weight space V), let m,, be any element in V,,, so there exists n such that z,m, =0

for @ with tra > n. Let ng be the minimal integer satisfying this condition, i.e., there exists
ag such that xo,m, # 0 with tray < ng. Now assume that trag is the maximal ones. Then
for any i € To U J, ziza,m, = 0, and Kgxa,m, = vw?“*’“‘)),xaom“. So V =D'(AN)za,m, is a
highest weight D’(A)-module in the category O’. By (1), we have V 2 L/(\).

4.3 Complete reducibility

In the following part, we consider the complete reducibility of modules in the category 9}
and the category O’.
Define an anti-involution o of D'(A) by o(x;) = yi, 0(y;) = x4, 0(K;) = K; for all 4.

Let M = @ M, be a D'(A)-module in the category O'. We define its finite dual (see
AEX
[9, 10]) to be the vector space

M* = P M; where M; := Homp(My, R).
rex’

Using o, we can construct a D’(A)-module structure on M* by
(x-¢)(v) = ¢(o(z) -v) forxzeD'(A), pe M*, ve M.

Let M be a D'(A)-module in the category @’. A maximal weight of M is a weight A € wt(M)
such that A + 7 is not a weight of M for any ¢ € I'g U J. Then for a nonzero vector vy € M)
and set V = D’'(A)vy, we have A € X'T and V = L'(\).

Take py € M5 satisfying ¢y (vy) =1, and set W = D’'(A)px. Then W = L'(X).
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Lemma 4.1 Let M be a D'(A)-module in the category O’ and V be the submodule of M
generated by a nonzero vector vy of mazimal weight \. Then we have M =V @& (M/V).

Theorem 4.1 Every D'(A)-module in the category O is isomorphic to a direct sum of
irreducible highest weight module L'(X) with A\ € X'T.

Proof By Proposition 4.3, it is enough to prove that any D’(A)-module M in the category
O’ is semisimple.

Firstly, if M is generated as a D’(A)-module by a finite dimensional H'* (A)-module M, we
use induction on the dimension of M to prove that M is semisimple.

If M # 0, we choose a nonzero vector vy of maximal weight X\ of M in X'*, and set V =
D'(A)vy = L'(N\). By the above lemma, we have M =V @& (M/V). M)V =D'(A)(M/MNV)
and dim(M /M NV) < dim M. So by induction hypothesis, M/V is semisimple. Hence M is
semisimple.

Let M ba an arbitrary D’(A)-module in the category ©'. For any m € M, H't(A)m is
finite dimensional, and then D’(A)m is semisimple. And M is a sum of D’(A)-module D’'(A)m,
which is equivalent to the direct sum of D'(A)m by [2]. So M is completely reducible.

Proposition 4.7 Let L(\) be the irreducible highest weight D(A)-module with highest
weight A\ € X and highest weight vector vy. Then

=0, ifieTiF.
vy =0, if i € JyNT. (4.3)
Fy(0)va =0, if i =(0,p) € JxN (J\To).

Theorem 4.2 FEvery D(A)-module in the category O is isomorphic to a direct sum of
irreducible highest weight module L(\) with A € X .

Proof For any D(A)-module M in the category O, M can be viewed as a D’(A)-module
denoted by M. According to the definition of @', we get that M is in ©’. Then by Theorem 4.1,
M is completely reducible. By the action of §, we get M is the direct sum of L()\) (A € XT).

4.4 Canonical isomorphism
By the choices of index i € T'{® and analogously to [4], we have the following remark.
Remark 4.1 The double Ringel-Hall algebra D(A) is generated by z;,y; (i € To U J) and
K, (a € ZTy) satisfying the following relations:
(1) Ko=1, K;K;=K;; fori,jelyUl
(2) Koz =0 %Ky, Koy =v (%), K, forieToUJ, aeZl.

Ks. — K_s.
(3) ziy; —yjxi = 51']'%, where v/ =% if 1 €'y and v/ =wvifi e J.
(4) Z (_1)5371(‘8)371'%(‘” =0, Z (—1)Sy58)yjy§t) =0 foriel\’, i#j, where
stt=1—a;; stt=1—a;;

n n n n 6i767‘
o = a2 [l y =y /i), agy = L2

(5) @iz —xjo; =0 =yy; —yjui if (:,0;) = 0.

Let U be the associative algebra over R generated by {e;, fi, Kzi | i € ToUJ}, such that the
generators satisfy the similar relations as in Remark 4.1. We define comultiplication A, counint
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¢ and antipode S as we did in Subsection 2.5. Then U is a quantum generalized Kac-Moody
algebra.

Let UZ% and U=? be the subalgebra of U as we defined in Subsection 2.5. We define
@ : UZ9 x USY — R satisfying:

(
pleis fj) = 03 (1 —v= 01 o(Ko, Kp) = v (),
p(,yy') = p(Az),y @y) forallw € U=0, y,y € U=,
o(xa',y) = p(z @ 2', A°PP(y)) for all x,2' € UZ0, y € U=O.
Then (U2, U<°, ¢) is a member of £(C").

For any ¢ € T'{, we can define Lusztig symmetries T; on U as in [4]. The map II: U — D’'(A)
defined by I(e;) = x;, H(f;) = vi, (K;) = K; (Vi € TgUJ) is a surjection. In fact it is an
isomorphism. By the uniqueness of skew-Hopf pairing, it suffices to show that (UZ°, U=, ¢) is

restricted non-degenerate in £(C"), i.e., to prove
ITt={zeU" [p(x,U7)=0}, I ={yeU |pU'y) =0}

are zero in U and U~ respectively. Using Lusztig symmetries and analogously to [4], we have
Lemma 4.2 [t holds that T+ =0 (resp., T~ =0) in UT (resp., U™).
From this lemma, we get that the map II: U — D’(A) is an isomorphism. And we have

Theorem 4.3 Double Ringel-Hall algebra D(A) is generated by z;,y; (i € T'o U J) and
K, (a € Z'g) with the generating relations (1)—(5) in Remark 4.1.

As a corollary, we have

Corollary 4.1 Double composition algebra C(A) is generated by uj,u; (i € To) and
K, (a € ZI'y), which satisfy the generating relations:

(1) Ko=1, K;K;=K,; fori,jeTy.

(2) Kouf = v(“’i)uj’K@, Kou; = v_(“’i)ui_Ka fori ey, aeZly.

P =

K,— K_;
3) wiur —uwul =8 ———* RSN
(3) wu; u; —uj g e — fori,jeTy
@ D F)HPhHeHY =0, > (=1 (u) P () )(w)P =0 for ie
st+t=1—a;; st+t=1—a;;

U5 and i # §, where (uf )™ = (u)*/[n)i!, (u])™ = (u;)"/[n]:!.

(5) uj'uj—ujuj 0

u;y —uju; if (4,5) =0.

5 Weyl-Kac Character Formula and Kac Theorem

Now we consider the Weyl-Kac character formula of an irreducible highest weight D(A)-
module.

5.1 Character formula

Let ®* be the set of the dimension vectors of all indecomposable representations of S. Set
&~ = —®" and ® = &~ UPT. Let W be the Weyl group corresponding to the Borcherds
datum C' = Cr.
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By Theorem 2.1, the number of isomorphism classes of indecomposable representations of I"
with a fixed dimension vector over a finite field is independent of the orientation of I'. Therefore,
we can apply the BGP-reflection functors o; for i € I'f° to the set ®, to obtain the action of
the fundamental reflections r; on ® by r;(a) = o — %z (as we did in [5]). The same as in [5]
we have the well-defined action of W on .

Let M be a D(A)-module in the category O and let M = @ M. The formal character of

Aex
M is defined by
ch M =" (dim My)e(\).
A

For a € NI'y, denote by m(«, ¢q) the number of isomorphic classes of representations of S
with dimension vector « over finite field Fy, and by I(«, ¢) the number of isomorphic classes of
indecomposable representations of S with dimension vector o in ®+.

For Verma module V() = D(A)/J(A) =2 h~(A), if V(X)) # 0, dim V' (A)g = m(X — 3, ¢) by
V(A 2 h™(A)r—p, so

V) =Y mA-B.ge® = Y eNmlagle(—a) =) Y mla,q)e(~a).
B

a€NIg aeNI'g

Let L = {a € P | V, is an indecomposable representation of S}. For a € L, let u, ; (1 <i <
dimbh~ (A)r—a = Ta—a) be an R-basis of 7 (A)r—n. Then

[T () (g n ), where Y (nay+ o Fnup,_Ja= A= 5,
a€L ael

form a basis of h~(A)r—_g = V(\)g; that is, {u, | @ € L} in a fixed order provides a universal
PBW-basis of h~(A) (see [8]). So

chV(N) =e(N) J] @ —e(—a))~ 2. (5.1)

aedt

Let A € Xt and L(\) be the corresponding irreducible D(A)-module. Then we have
multyy) p = multy ) w(p) for each w € W and p € wt(L())). If we define the action of
Weyl group on formal exponential by w(e(X)) = e(w(N)) for A € X,w € W, then we have
w(ch L(A)) =ch L(\) for A\ € XT,w e W.

Let R= [[ (1—e(—a))!@®9, Forwe W, set e(w) = (=1)“). Furthermore, we have
acdt

w(e(p)R) = e(w)e(p)R  for w € W.
Firstly, for D’(A)-module in the category O, we have the following
Lemma 5.1 If V is a D'(A)-module from the category O, then
chV= )" [V:L'(N]chL'(N),
Aewt(V)
where [V : L'(N)] is the multiplicity of L'(X) in V.
In particular, for L'(\') with A € X't we have

Lemma 5.2
ch L/(\N) = Z cw ch V' (i),
M/g)\/
N +o N +p) = +p,u"+p)
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where ¢,y € Z and cxr = 1.

By sending > a;ito >, a;d;, we defined a map § : Z[['o U J] — ZI'y in Subsection
ieloUJ eloUJ

3.5. For A € X, set A € X'* such that (X, i) = (\,d;) for all i € To U J.

Lemma 5.3 Let A € X T and M be a highest weight D(A)-module with highest weight X.
Then

ch M = > cgr ch V(3),
Y
(Ao A +p) =(8"+p,8'+p)’

where 8 satisfies 6(A — 3') = X — 3.
So from this lemma, we have

chL(\) = cg chV(B), (5.2)

/SX

At A+p)'=(8"+p,8'+p)
S(A—pB')=A—

where cg € Z.
For convenience, we write §(p) as p.

Our main result is

Theorem 5.1 For A € X1, we have
> (D) HTle(w(A + p + 8(S(T))) - p)

weW,T
IT (- e(-a)) @) |
aedt

chL(\) =

where T runs over all finite subsets of (I'oUJ)™ such that (A, 6;) =0 fori € T and (6;,6;) =0
fori £ g in T. |T| is the number of elements in T. S(T) is the sum of elements in T.

Proof By formulae (5.1) and (5.2), it follows that

e(p)Rch L(\) = > cgre(B+ p). (5.3)
o B<A
(At A+p)'=(8"+p.8'+p)’
8(A—p")=A-p

Set \— ' =+/, A\— 3 =r. Then 3 < \. By the fact (A +p, A+ p) = (3 +p, 5 +p)', we
have

0=2A7") +2(p,7) = (+',7) =2\ %) +2(p,7) — (7,7), (5.4)
A+pA+p)—(B+p,B+p) =0. (5.5)

Conversely, by formula (5.5), we can get formula (5.4). So if 3 satisfies 5(5\ -p)=X=5,
A+, A+p)=B+p,B+p) and A+ p, A+ p) = (8 + p, B + p)’ are equivalent.
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Thus formula (5.3) is equivalent to

e(p)Reh L(A) = 3 cre(B+ p), (5.6)
B'<X
(At+p,A+p)=(B+p.B+p)
S(A=p")=A-p
and both sides of (5.6) are antisymmetric under W, i.e., for any w € W, we have

w(e(p)Rch L(N)) = e(w)e(p)Rch L(N).

Let Sy be the sum of the terms on the right of (5.6) for which 8+ p satisfies (8 + p,d;) > 0
for all i € T{°. If (8 + p,d;) # 0, then Y e(w)e(w(B+p)) =0. So

weWw

e(p)Rch L(\) = Z e(w)w(Sy). (5.7)

weW

Now if 3 + p satisfies that (8 + p,d;) > 0 for all i € T(¢, we write =X — Y a;0; with
ieloUJ

a; € Z~p. Because of the fact (6+ p, 8+ p) = (A + p, A\ + p), we have

Zai(éia)‘) +Zaz’(5z‘,ﬂ+2f0) =0. (5.8)

By the fact that A € X T, we have (), d;) > 0 for all i.

For i € supp(A — ), if i is a real index, we have (§;,8 + 2p) = (6:, 5+ p) + (bi,p) >
(6:, 8+ p) > 0.

If i is an imaginary index, then

(6,84 2p) = (6, A) = > a;j(8;,65) + (1 — ;) (i, 6;) > 0
J#i

So (A 8i) = 0 = (8,8 + 2p). But (8,84 2p) = (8,8 + p) + 5(8:,0), s0 (8;, 8 + p) =
—%(&, 9;) > 0. Then i is an imaginary index.

Furthermore, we get that (0;, A\ — 8 — ;) = —(8;,6+2p) =0, and A — 3 —6; = > a;0; +
(a; —1)d;. So (0;,0;) = 0 unless ¢ = j and a; = 1. ”

Then for any term cge(8 + p) in Sy, G is of the form A\ — 3" a;0;, where a; € Zsg, all the
i’s are imaginary index and (J;,A\) = 0, and (0;,0;) = 0 if 4 # j, and (6;,6;) =0if a; # 1. And
furthermore, 8 of thus form naturally satisfies (3,0;) > 0 for all j € I'{.

If (A — > aid; + p) is a term of ch L(X), then there exists j such that (X,d;) # 0. So the

terms of the form e(A—3" a;d; 4 p) of the right side of formula (5.6) in Sy are those coming from
eQA+p)R=eA+p) [I (1—e(—a))/(@D If (§,45;) = 0 for i # j, then the coefficient of e(\+

aedt

p—3"a;0;)is to be 0if a; > 1 for some 4, and (—1)2 % otherwise. So Sy = e(A+p) > e(s)e(5(s)),

S

m .
where the sum is taken over all s of simple roots. If we set s E i (i; € T§™ U J), then we
A,

have e(s) = (—=1)™ if i; # ip (j # k), (0s;,05,) =0 (Vj # k) and ( 51 )=0(Vj),and e(s) =0
otherwise. Or equivalently, we have Sy = e(\ + p) S2(=1)Tle(5(S(T ))), where T' runs over all
T
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finite subsets of I'i™ U J such that (\,d;) = 0 for i € T and (8;,6;) = 0 for i # j in T. |T| is the
number of elements in 7. S(T') is the sum of elements in T'. So we have

(PR L) = Y e(wyw(e(r+p) 3 (~1) Tle(8(S(7))))
T

w

= Y ew)(=D)Tle(wX+p+35(S(1))))

weW;T

and then we can get the formula in the theorem.

5.2 Kac theorem

Let I' be any valued quiver, and let Ar be the matrix of I'. Set A be the root system of Ar.

Let A’ be the Borcherds-Cartan matrix defined by extended Borcherds datum ¢’ and A’ be
the root system. Then by Subsection 3.5 and Lemma 3.5, we have §(A’) = A.

By Subsection 4.4, D'(A) and U are canonically isomorphic, where U is the quantum gener-
alized Kac-Moody algebra associated to A’. Then D’(A) is a quantum generalized Kac-Moody
algebra.

For quantum algebra U, let U~ be the negative part of U which can be viewed as a highest
weight U-module. Define character

chU™ = Z dimUZ e(—p).
HEN[TOU.T]

Then by Proposition 2.3 in Subsection 2.5, we have

chU™ = ] (1 —e(—a))=mte, (5.9)

aEA!,

For the negative part '~ (A) of D'(A), '~ (A) can be viewed as a D’(A)-module. Define
character

chh'~(A)= Y dimb' " (A)_pe(—p).

PEN[THUJ]
Since '~ (A) and U~ are isomorphic, we have chh’~(A) = chU~.
Now we have our second main result.

Theorem 5.2 (1) ®F = A, the set of dimension vectors of indecomposable representa-
tions of T is the positive root system of T'.

(2) If a € A'E, then up to isomorphism, there exists unique indecomposable representation
of T' of dimension vector c.

Proof For subalgebra h~(A) of D(A), by Subsection 5.1, we have

chh~(8) = ] (1 - e(—a)) .

aedt

We know that the difference between D’(A) and D(A) only lies in the gradation. For
subalgebras '~ (A) and h~(A), we have 6(chh’~(A)) = chh™(A) = 6(chU~). So by formula
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(5.9) and by 6(A’) = A, we have

Ch[’)i(A) = H (1 — e(_a))*f(aﬂ) — 5( H (1 _ e(_al))fmulta')

acedt a’€A’,
_ ’
B e multal e a/\é(%:,)=a mult
=TI II a-et-a) = [[ @ —e(=a))
aEAy o aEA Y
(e )=a

Then we have ®T = A, . And if « is a real root, there is only one o’ such that §(a/) = «, and
multa’ = 1. So I(«,q) = 1.

5.3 Situation of nilpotent representations

We denote by Py the set of isomorphic classes of nilpotent representations of S (a k-
species of T'), and by Iy the set of isomorphic classes of simple nilpotent representations of S.
Then according to Subsection 3.1, we can define the Rignel-Hall algebra 'Hf\? (A) and the double
Ringel-Hall algebra Dy (A), which have basis indexed by Pn. We simply call them the nilpotent
Ringel-Hall algebra and the nilpotent double Ringel-Hall algebra.

Let Cxn(A) be the double composition subalgebra of Dn(A). Then we have Cn(A) = C(A).
It is easy to see that Iy = I'g as index set by Lemma 2.1.

If F is the fundamental set of NT'g, then we set Fo, = F \ ( U ei).

ielim

For each subset £ C Fp,, we can get subalgebras Dy, (A) of Dy (A3 as similar as in Subsection
3.2. And (H{(A), Hy (A), @) is a restricted non-degenerate member of L(é}‘ON ), where éfON =
(Fo, (—, —),d, {(5J | Jje JN}) with Jx = J]:ON.

Since HE(A) and Dn(A) are subalgebras of H*(A) and D(A) respectively, we have the
relations C(A) C Dn(A) C D(A) as graded subalgebras. If we let ®% be the set of dimension
vectors of the nilpotent indecomposable representations of S and let ®* be the set of all
indecomposable representations of S, then we have @g C <I>§ C %, where <I>g = A, is the
positive root system of I', because of the fact of Theorem 4.2 and its remark. By the Theorem
5.2, we have the following corollary.

Corollary 5.1 ®f =& = o+,

So by this corollary, we can apply BGP-reflection functors o; for all i € I'f® to the set
Py = <I>f\} U —<I>f\} to obtain the action of the fundamental reflections r; on ®n. Let In(«,q)
be the number of the isomorphic classes of nilpotent indecomposable representations of S with
dimension vector « in ®5;. Then if we let Lx () be the irreducible highest weight Dy (A)-module
with A € X, we have the following character formula.

Theorem 5.3 For A\ € X1, we have

S (=) Tl (w(N + p+ 5(S(T))) — p)
weW,T
ChLN()\) = H (1 _ e(_a))IN(On,(I) )

aedt

where T runs over all finite subsets of (ToUJn)™ such that (X, 8;) =0 fori € T and (6;,;) =0
fori# g inT. |T| is the number of elements in T'. S(T) is the sum of elements in T

Similarly as in Subsection 3.2, we can define Eei and L;t for each 6 € NI'g. Then we can get
a similar lemma as Lemma 3.1 with the third conclusion being given by:
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Lemma 5.4 If L;t # 0, then 0 € Foy. And 0 is the dimension vector of a nilpotent
indecomposable representation.

We also have the Kac theorem for the situation of nilpotent representations.

Theorem 5.4 (1) ®f = AL, the set of dimension vectors of nilpotent indecomposable
representations of T is the positive Toot system of T.

(2) If a € AY, then up to isomorphism, there exists unique nilpotent indecomposable
representation of T of dimension vector c.

We have the following corollary

Corollary 5.2 For any indecomposable representation W of a valued quiver I', there exists
a nilpotent indecomposable representation V of T' such that dimV = dimW .

Therefore any indecomposable representation with dimension vector being real root is nilpo-
tent.
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