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Abstract In this paper, we study the asymptotics of the Krawtchouk polynomials
KN

n (z; p, q) as the degree n becomes large. Asymptotic expansions are obtained when
the ratio of the parameters n

N
tends to a limit c ∈ (0, 1) as n → ∞. The results are glob-

ally valid in one or two regions in the complex z-plane depending on the values of c and p;
in particular, they are valid in regions containing the interval on which these polynomials
are orthogonal. Our method is based on the Riemann-Hilbert approach introduced by
Deift and Zhou.
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1 Introduction

Let p > 0, q > 0 and p+ q = 1, and let N be a positive integer. By the binomial expansion,

we have

(1 − pw)N−x(1 + qw)x =

∞∑

n=0

KN
n (x; p, q)wn, (1.1)

where

KN
n (x; p, q) =

n∑

k=0

(
N − x
n− k

)(
x
k

)
(−p)n−kqk. (1.2)

For convenience, we put KN
n (x) ≡ KN

n (x; p, q). It is easy to see that KN
n (x) is a polynomial

in x of degree n. These polynomials are known as the Krawtchouk polynomials, and they are

orthogonal on the discrete set {0, 1, 2, · · · , N} with respect to the weight function

ρ(x) =

(
N

x

)
pxqN−x, x = 0, 1, · · · , N. (1.3)

More precisely, we have

N∑

j=0

KN
n (j)KN

m (j)

(
N

j

)
pjqN−j =

(
N

n

)
pnqnδn,m, n,m = 0, 1, · · · , N. (1.4)
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For further properties of this type of polynomial, we refer to Szegő [22].

Formula (1.4) tells us that these polynomials are orthogonal on an unbounded interval

as n → ∞. To facilitate our future analysis, we wish to introduce a rescaling so that the

polynomials become orthogonal on a bounded interval. Let XN be a set defined by:

XN,j := {xN,j | j = 0, 1, · · · , N − 1},

where

xN,j =
j + 1

2

N
.

The xN,j’s are called nodes, and they all lie in the interval (0, 1). Also, let

wN,j :=
NN−1√pq
qNΓ(N)

(
N − 1

j

)
pjqN−1−j (1.5)

and

PN,n(z) := KN−1
n

(
Nz − 1

2

)
.

It can be easily verified that the polynomials PN,n(x) are orthogonal on the nodes xN,j with

respect to the weight wN,j; that is

N−1∑

j=0

PN,n(xN,j)PN,m(xN,j)wN,j

{
= 0 for n 6= m,

6= 0 for n = m.
(1.6)

As usual, we also define the monic polynomials

πN,n(z) :=
n!

Nn
PN,n(z). (1.7)

Rewriting the weight function (1.5) in the form

wN,j = e−NWN (xN,j)
N−1∏

m=0

m 6=j

|xN,j − xN,m|−1, (1.8)

then a simple calculation shows

WN (x) ≡W (x) := νx, (1.9)

where ν = log q
p
. Without loss of generality, we can assume 0 < p < q < 1 so that ν > 0. Also,

let cn = n
N

, and assume that it tends to a limit c ∈ (0, 1) as n → ∞. The case p = q = 1
2 is

trivial and we will not consider it here.

It is well known that the properties of zeros of Krawtchouk polynomials are important

in the study of the Hamming scheme of classical coding theory (see [4, 14, 16, 21]). Also,

Lloyd’s theorem (see [13, 16]) states that the existence of a perfect code in the Hamming metric

corresponds to the Krawtchouk polynomials having integer zeros. Recently, there has been a

considerable amount of interest in the asymptotics of the Krawtchouk polynomials, when the

degree n grows to infinity (see [11, 15, 19]).
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Since the Krawtchouk polynomials do not satisfy a differential equation, most of the results

in the literature are obtained by using the steepest descent method or the saddle point method

for integrals, which come from the generating function in (1.1) (see [11, 15, 19]). For more

information about these classical integral methods, we refer to Wong [25]. Recently, Baik et al

[2, 3] have studied the asymptotics of discrete orthogonal polynomials with respect to a general

weight function by using the Riemann-Hilbert approach, introduced by Deift and Zhou [8] and

further developed in [6, 7]. The starting point of this method is a theorem of Fokas, Its and

Kitaev [10], which makes a beautiful connection between orthogonal polynomials and Riemann-

Hilbert problems (RHP). However, the results in [3] are too general and, as a consequence, not

very applicable. Moreover, the results are local in nature; that is, they have different asymptotic

formulas valid in different regions.

The purpose of this paper is to study uniform asymptotic behavior of the polynomial PN,n(z)

as n → ∞. After transforming the discrete RHP associated with this polynomial into a spe-

cific continuous one, we find that this problem is similar to some of the problems considered

previously (see, e.g., [23, 24, 26]), and our method in [5] can be applied. More precisely, for

0 < c < p, we present an infinite asymptotic expansion which is valid uniformly in the whole

complex plane bounded away from (−∞, 0] and [1,∞). This expansion involves parabolic cylin-

der functions. For the case p < c < 1
2 , since there exists a so-called hard edge (see [3, p. 27]),

we need two expansions each valid in a different region; these regions overlap and together cover

the whole complex plane bounded away from the two infinite lines on the real axis, mentioned

in the former case. Since there is a kind of dual property between the cases c and 1 − c, the

result for the case 1
2 < c < 1 is very similar to that for the case 0 < c < 1

2 .

The presentation of this paper is arranged as follows: In Section 2, we review some pre-

liminaries, including weak asymptotics of the zero distribution and the formulation of the first

RHP. In Sections 3 and 4, we solve the RHP in two different cases: 0 < c < p and p < c < 1
2 .

The limiting case c = p is quite different, and the method used here is not applicable. We will

study this exceptional case in a separate paper.

2 Preliminaries

2.1 Weak asymptotics

From the orthogonal properties in (1.4), the following proposition can be easily established

(see also [3]).

Proposition 2.1 Each discrete polynomial PN,n(z) has n simple real zeros. All zeros lie in

the range xN,0 < z < xN,N−1 and no more than one zero lies in the closed interval [xN,j , xN,j+1]

between any two consecutive nodes.

It is known that the zero distribution of these kinds of discrete orthogonal polynomials is

related to a constrained equilibrium problem for logarithmic potential with an external field

ϕ(x), which is given by the formula

ϕ(x) := W (x) +

∫ b

a

log |x− y|ρ0(y)dy for x ∈ (a, b) (2.1)
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(see [12] and references therein). Here, ρ0(y) is the density function of the nodes and is real

analytic in a complex neighborhood of [a, b]. In our case, ρ0(y) = 1 and the external field ϕ(x)

is given explicitly as

ϕ(x) = νx+

∫ 1

0

log |x− y|dy = νx+ x log x+ (1 − x) log(1 − x) − 1. (2.2)

Note that e−Nϕ(x) is the limit of wN,j in (1.8). The function ϕ(x) is real analytic in the interval

(0, 1), and the variational problem related to the Krawtchouk polynomials can be stated as

follows:

With ϕ(x) and c given, the variational problem is to find a Borel measure µc on [0, 1] which

minimizes the following energy functional

Ec[µc] := −c
∫ 1

0

∫ 1

0

log |x− y|µc(x)dxµc(y)dy +

∫ 1

0

ϕ(x)µc(x)dx, (2.3)

where µc(x) satisfies the upper and lower constraints

0 ≤ µc(x) ≤
1

c
(2.4)

and the normalization condition

∫ 1

0

µc(x)dx = 1. (2.5)

The minimizer is called the equilibrium measure. From (2.4) one can see that there is an

upper bound for the measure µc, which does not appear in the continuous case. This fact is

the key difference between discrete orthogonal polynomials and continuous ones. This can also

be seen in Proposition 2.1, since the equilibrium measure reflects the distribution of the zeros

of the orthogonal polynomials.

The equilibrium measure µc(x)dx divides the interval [0, 1] into subintervals of three kinds:

(1) achieving the lower constraint; (2) attaining the upper constraint; (3) not reaching the

constraints. We call the open intervals of type (1) Voids (V), type (2) Saturated Regions (S),

and type (3) Bands (B). These terminologies are taken from [3].

The theory about the existence of a unique minimizer measure under the constraint in

an external field is well established (see [20]). Recently, Dragnev and Saff [9] have given the

exact density function for the zeros of Krawtchouk polynomials in three different cases. More

precisely, let

αc := (
√

(1 − c)p−√
cq)2, βc := (

√
(1 − c)p+

√
cq)2. (2.6)

They show that for 0 < c < p, it is a V-B-V case, which means µc(x)dx is supported on

[αc, βc] ⊂ [0, 1], and the density function is given by

µc(x) =
1

cπ

[
π

2
− arctan

√
αc(βc − x)

βc(x − αc)
− arctan

√
(1 − βc)(x− αc)

(1 − αc)(βc − x)

]
. (2.7)
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For p ≤ c < q, this is an S-B-V case; that is µc(x) = 1
c

for x ∈ [0, αc],

µc(x) =
1

cπ

[
π

2
+ arctan

√
αc(βc − x)

βc(x− αc)
− arctan

√
(1 − βc)(x− αc)

(1 − αc)(βc − x)

]
(2.8)

for x ∈ [αc, βc], and µc(x) = 0 for x ∈ [βc, 1]. For q ≤ c < 1, this is an S-B-S case, i.e.,

µc(x) =
1

cπ

[
π

2
+ arctan

√
αc(βc − x)

βc(x− αc)
+ arctan

√
(1 − βc)(x− αc)

(1 − αc)(βc − x)

]
(2.9)

for x ∈ [αc, βc], and µc(x) = 1
c

for x ∈ [0, αc] ∪ [βc, 1]. From here, it can be seen that the zero

density function µc(x) satisfies a symmetry property in c and 1 − c; more precisely, we have

µ1−c(1 − x) =
1

1 − c
[1 − cµc(x)] for x ∈ [0, 1]. (2.10)

Notice that there are two critical values c = p and c = q. In the two cases, αp and βq coincide

with the left endpoint 0 and the right endpoint 1, respectively (see (2.6)). Furthermore, µc(x)

does not reach the upper or the lower constraints at the points αp and βq, which is different

from other cases; more precisely, µp(0) =
1

2p
and µq(1) =

1

2q
. These two cases are special,

and the method in [3] is not applicable. As mentioned in Section 1, we will study these special

cases in a separate paper. For convenience, in situations with no confusion we will ignore the

dependence of c and use the simpler notations µ(x), α and β instead of µc(x), αc and βc,

respectively.

2.2 Riemann-Hilbert problem

Like the continuous orthogonal polynomials, it is easily verified that the discrete ones are

also connected with RHP (see [3]). For instance, the discrete RHP for Krawtchouk polynomials

PN,n(z) can be stated as follows:

(Ya) Y (z) is analytic for z ∈ C \XN ;

(Yb) at each xN,k ∈ XN , the second column of Y has a simple pole where the residue is

Res
z=xN,k

Y (z;N,n) = lim
z→xN,k

Y (z;N,n)

(
0

wN,k

2i

0 0

)
; (2.11)

(Yc) as z → ∞,

Y (z) =
(
I +O

(1

z

))(
zn 0
0 z−n

)
.

Using the theorem of Fokas, Its and Kitaev [10], it can be shown that the solution to the

above RHP is

Y (z) =




πN,n(z) 1
2i

N−1∑
k=0

wN,k πN,n(xN,k)
z−xN,k

γN,n−1PN,n−1(z)
1
2i

N−1∑
k=0

γN,n−1 wN,k PN,n−1(xN,k)
z−xN,k


 . (2.12)
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The proof of this result is very similar to that of the continuous case, just using the discrete or-

thogonal property instead of the continuous one (see [3]). Here, πN,n(z) is the monic polynomial

defined in (1.7).

If we can transform a discrete Riemann-Hilbert problem into a continuous one, then we can

apply the techniques that we have developed in [5, 23]. Due to the sensitivity of parameter c,

this transformation is different in different cases.

3 Case I 0 < c < p

In this V-B-V case, the upper constraint is not active. To get a continuous RHP, we

introduce the first transformation

R(z) := Y (z)




1 ∓ 1

2 e
∓iNπ(1−z)e−Nνz 1

N−1Q
k=0

(z−xN,k)

0 1



 for z ∈ Ω±. (3.1)

For z /∈ Ω±, we put R(z) := Y (z). The regions Ω± and the contour Σ = (0, 1)∪Σ± are depicted

in Figure 1. It is easy to verify that this transformation removes all the poles xN,k, and makes

R+(x) and R−(x) continuous on the interval (0, 1). Therefore, we get the continuous RHP for

R given below.

0 1

−Σ

−Ω

+

Σ

Ω

+

x

y

Figure 1 The domains Ω± and the contour Σ

(Ra) R(z) is analytic in C \ Σ;

(Rb) for x ∈ (0, 1),

R+(x) = R−(x)

(
1 rn(x)
0 1

)
, (3.2)

where

rn(x) = (−1)N−1 cos(Nπx) e−Nνx 1
N−1∏
k=0

(x− xN,k)

; (3.3)

for z ∈ Σ+ ∪ Σ−,

R+(z) = R−(z)

(
1 r̃n,±(z)
0 1

)
, (3.4)
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where

r̃n,±(z) = −1

2
e∓iNπ(1−z)e−Nνz 1

N−1∏
k=0

(z − xN,k)

; (3.5)

(Rc) as z → ∞,

R(z) =
(
I +O

(1

z

))(zn 0
0 z−n

)
;

(Rd) as z → 0 and z → 1,

R(z) = O

(
1 1
1 1

)
, (3.6)

where the O-symbol on the right-hand side is used to mean that all entries in the matrix are

O(1).

By using l’Hospital’s rule, it can be easily verified that the entry rn(x) in the jump matrix

(3.2) is continuous in (0, 1) and can be extended into the complex plane. More precisely, by

using the Gamma function and its reflection formula Γ(z)Γ(1 − z) = π cscπz, (3.3) can be

rewritten as

rn(z) = − NNπe−Nνz

Γ(Nz + 1
2 ) Γ(N(1 − z) + 1

2 )
, (3.7)

which is an entire function.

Because of the term e∓iNπ(1−z) in the definition of r̃n,±(z), we find that it is exponentially

small as N → ∞, comparing with rn(x) in the jump matrix on (0, 1). This fact indicates that

the jump matrix on (0, 1) dominates the jump matrices on Σ+ and Σ−.

Before we set out to solve our problem, we need several auxiliary functions. First, we

assume that the equilibrium measure µn(x) related to the weight function rn(x) is supported

on the interval [αn, βn] ⊂ [0, 1], where the constants αn, βn are to be determined later. Thus,

µn(x) ≥ 0 for αn ≤ x ≤ βn and
∫ βn

αn

µn(x)dx = 1. (3.8)

Then, we introduce two auxiliary functions given below.

Definition 3.1 The so-called g-function is the complex logarithmic potential of the corre-

sponding measure µn, that is

gn(z) :=

∫ βn

αn

log(z − s)µn(s)ds, z ∈ C \ (−∞, βn]. (3.9)

Definition 3.2 The φ-function is defined by

φn(z) :=

∫ z

βn

vn(s)ds, z ∈ C \ (−∞, βn] ∪ [1,+∞). (3.10)

Here µn(x) and vn(z) are two measures to be determined later. Furthermore, vn(z) is a complex

measure extended from µn(x) and satisfies the requirement

vn,±(x) = ±πiµn(x) for x ∈ (αn, βn). (3.11)
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3.1 Determination of the auxiliary functions

Following the usual argument, we first find a probability measure µn(x) such that the related

g-function satisfies the property

(
n+

1

2

)
(gn,+(x) + gn,−(x)) + log

{
− NNπe−Nνx

Γ(Nx+ 1
2 ) Γ(N(1 − x) + 1

2 )

}
= 0 (3.12)

for x ∈ (αn, βn). (This is essentially what is needed in the normalization of the RHP for R.)

Differentiating both sides yields

(
n+

1

2

)
(g′n,+(x) + g′n,−(x)) −N

[
ν + ψ

(
Nx+

1

2

)
− ψ

(1

2
+N −Nx

)]
= 0,

where ψ(z) is the Psi function, which is the logarithmic derivative of the Gamma function given

by

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
.

Therefore, we get

g′n,+(x) + g′n,−(x) =
1

c̃n

(
ν + ψ

(
Nx+

1

2

)
− ψ

(1

2
+N −Nx

))
, (3.13)

where c̃n =
n+ 1

2

N
and tends to the limit c as n→ ∞. For simplicity, we introduce the notation

hn(x) := ν + ψ
(
Nx+

1

2

)
− ψ

(1

2
+N −Nx

)
. (3.14)

We need one more function Gn(z) defined by

Gn(z) :=
1

πi

∫ βn

αn

µn(s)

s− z
ds =

i

π
g′n(z), z ∈ C \ [αn, βn]. (3.15)

The following result provides an important relation between the functions gn(z) and φn(z).

Proposition 3.1 Let ln be defined as

ln := 2gn(βn) +
log rn(βn)

n+ 1
2

. (3.16)

Then, the following relation between the g-function and φ-function holds

gn(z) + φn(z) = − 1

2n+ 1
log rn(z) +

ln
2

(3.17)

for z ∈ C \ (−∞, 0] ∪ [1,∞), where rn(z) is given in (3.7).

Proof Coupling (3.13) and (3.15) yields

Gn,+(x) +Gn,−(x) =
i

πc̃n
hn(x). (3.18)

Since Gn,±(x) = lim
ε→0

Gn(x ± iε), it follows that

Gn,±(x) = lim
ε→0

1

πi

∫ βn

αn

µn(s)(s − x± iε)

(s− x)2 + ε2
ds = ±µn(x) +

1

πi
P.V.

∫ βn

αn

µn(s)

s− x
ds. (3.19)
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This means ReGn,±(x) = ±µn(x) and ImGn(x) ≡ ImGn,±(x) for x ∈ (αn, βn). Furthermore,

from (3.18) we also have

ImGn(x) =
1

2c̃nπ
hn(x). (3.20)

Recalling the requirement (3.11) between µn(x) and vn(z), we need

vn,+(x) = πiµn(x) = πiReGn,+(x). (3.21)

This evokes us to define vn(z) to be

vn(z) = πi(Gn(z) − i ImGn(z)).

From (3.20), we get

vn(z) = πiGn(z) +
1

2c̃n
hn(z). (3.22)

Since g′n(z) = −πiGn(z), one easily obtains (3.17) by integrating both sides of the formula

(3.22) from βn to z. Furthermore, since φn(βn) = 0, letting z = βn in (3.17) immediately gives

(3.16).

Now, let us find αn, βn and µn(x). Equation (3.18) is actually a scalar RHP, and can be

solved explicitly as

Gn(z) =

√
(z − αn)(z − βn)

2πi

∫ βn

αn

hn(s)

c̃nπ
√

(s− αn)(βn − s)

ds

s− z
(3.23)

for z ∈ C \ [αn, βn]. From the definition of gn(z), we know that

g′n(z) =

∫ βn

αn

1

z − s
µn(s)ds =

1

z
+O

( 1

z2

)
as z → ∞.

Since Gn(z) = i
π
g′n(z), from the above formula we can obtain Gn(z) → 0 and zGn(z) → i

π
as

z → ∞. Therefore, one gets two integral equations for αn and βn:

∫ βn

αn

hn(s)√
(s− αn)(βn − s)

ds = 0 (3.24)

and

1

2π

∫ βn

αn

shn(s)√
(s− αn)(βn − s)

ds = c̃n, (3.25)

where c̃n =
n+ 1

2

N
as before. To solve them, we need more information about the function hn(x).

Recall the asymptotic expansion for the ψ-function given by

ψ(z) ∼ ln z − 1

2z
−

∞∑

r=1

B2r

2r
z−2r as z → ∞ in | arg z| < π,
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where B2r are the Bernoulli numbers (see [1, (6.3.18)]). Therefore, hn(x) has an asymptotic

expansion of the form

hn(x) ∼ ν + lnx− ln(1 − x) +
∞∑

k=2

h(k)(x)

nk
as n→ ∞, (3.26)

where the coefficient functions h(k)(x) can be given explicitly; for example, we have

h(2)(x) =
c2

24

( 1

x2
− 1

(1 − x)2

)
.

Moreover, to derive the asymptotic expansions of αn and βn, we assume cn has an asymptotic

expansion of the form

cn ∼ c+

∞∑

k=1

ck
nk
. (3.27)

Substituting (3.26) and (3.27) into (3.24) and (3.25), we also obtain the asymptotic expansions

αn ∼ α+

∞∑

k=1

α(k)

nk
, βn ∼ β +

∞∑

k=1

β(k)

nk
, (3.28)

where α and β are given in (2.6). Since µn(x) = ReGn,+(x), we have from (3.23)

µn(x) =

√
(x − αn)(βn − x)

2π
P.V.

∫ βn

αn

hn(s)

c̃nπ
√

(s− αn)(βn − s) (s− x)
ds (3.29)

for x ∈ (αn, βn), and it can be shown that

µn(x) = µ(x) +O

(
1

n

)
(3.30)

uniformly for x ∈ [α, β], where µ(x) is given in (2.7).

Once the measure µn(x) is determined, vn(z) is well defined. Furthermore, one can obtain

the important mapping properties of the function φn(z) as shown in Figure 2, where we have

used the same letters to indicate corresponding points on the boundary. From the definition of

φn(z) in (3.10), it is easy to see that φn(βn) = 0 and φn,+(αn) = −πi.

α β x

y

A

BCDE

F nn0 1

u

v

A

B

C

D
E

F

0

Figure 2 The upper half plane under the transformation of φn(z)
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3.2 Construction of the parametrix

As usual, to simplify the jump conditions in (Rb), we introduce the transformation R → V

defined by

V (z) := e−
1
2
(n+ 1

2
)lnσ3R(z)rn(z)

1
2
σ3 , (3.31)

where rn(z) is given in (3.7) and σ3 is the Pauli matrix. It is readily seen that V is a solution

of the following RHP:

(Va) V (z) is analytic for z ∈ C \ Σ;

(Vb) for x ∈ (0, 1),

V+(x) = V−(x)

(
1 1
0 1

)
; (3.32)

for z ∈ Σ±,

V+(z) = V−(z)

(
1 1

1+e∓2Nπiz

0 1

)
; (3.33)

(Vc) as z → ∞,

V (z) =
(
I +O

(1

z

))
z−

1
2
σ3e−(n+ 1

2
)φn(z)σ3 ;

(Vd) as z → 0 and z → 1,

V (z) = O

(
1 1
1 1

)
.

To construct a parametrix for the above RHP, we recall the properties of φn(z) illustrated

in Figure 2, which are very similar to those of the function

f(ξ) := ξ
√
ξ2 − 1 − log(ξ +

√
ξ2 − 1 ), (3.34)

where ξ ∈ C\(−∞, 1] (see Figure 3). Simple calculation gives f(1) = 0 and f+(−1) = −πi. The

function f(ξ) plays an important role in describing the asymptotic behavior of the parabolic

cylinder function U(−τ, 2√τ ξ) as τ → ∞ (see [1, 18]). This fact invokes us to construct our

approximate solution by using the parabolic cylinder function, and to introduce the mapping

between ξ ↔ z defined by

f(ξ(z)) = φn(z), (3.35)

or equivalently

ξ(z) = (f−1 ◦ φn)(z). (3.36)

As z traverses the boundary of the semi-circular region in the upper half-plane once, the image

point φn(z) also traverses once the corresponding boundary in Figure 2. Similarly, as ξ describes

the semi-circular region once, f(ξ) goes once along the corresponding curve in Figure 3. This
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_ x

y

A

B
CD

E

F

01 1

u

v

A

B
C

D
E

F

0

Figure 3 The upper half plane under the transformation of f(ξ)

establishes the one-to-oneness of the mapping z ↔ ξ on the boundary of the semi-circular

region. By Theorem 4.5 in [17, Vol. 2, p. 118], this mapping is also one-to-one in the interior

of the region. By Schwarz’s reflection principle, the transformation z ↔ ξ defined in (3.35) is,

in fact, one-to-one and analytic in the whole z-plane with two cuts (−∞, 0] and [1,∞). From

condition (Vc) and the asymptotic property of U(−τ, 2√τ ξ), it is readily seen that we should

take the parameter τ to be n+ 1
2 . The advantage of adopting the parabolic cylinder function,

over the Airy function as done in [5], is that the region of validity of the asymptotic expansion

we get here can include both the critical values αn and βn, whereas the region of validity of the

Airy-type expansion given in [5] includes only one critical value.

We now begin to construct the parametrix. From formula (19.4.7) in [1], we have

√
2π U(a,±x) = Γ

(1

2
− a
)
{e−iπ( 1

2
a+ 1

4
)U(−a,±ix) + eiπ( 1

2
a+ 1

4
)U(−a,∓ix)}, (3.37)

which provides the matrix equation



U(−τ, 2√τ ξ) Γ(n+1)√

2π
eiπ n

2 U(τ, 2i
√
τ ξ)

U ′(−τ, 2√τ ξ) Γ(n+1)√
2π

eiπ n+1

2 U ′(τ, 2i
√
τ ξ)




=




U(−τ, 2√τ ξ) −Γ(n+1)√

2π
e−iπ n

2 U(τ,−2i
√
τ ξ)

U ′(−τ, 2√τ ξ) −Γ(n+1)√
2π

e−iπ n+1

2 U ′(τ,−2i
√
τ ξ)







1 1

0 1



 , (3.38)

where

τ = τn := n+
1

2
. (3.39)

For convenience, we sometimes suppress the dependence of τ on the large variable n. We also

recall the asymptotic expansions

U(−τ, 2
√
τ ξ) ∼ 2−

1
2 e−

1
2
ττ

n
2
e−τf(ξ)

(ξ2 − 1)
1
4

,

U ′(−τ, 2
√
τ ξ) ∼ −2−

1
2 e−

1
2
τ τ

1
2
(τ+ 1

2
)(ξ2 − 1)

1
4 e−τf(ξ)
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as n → ∞, uniformly for ξ ∈ C \ (−∞, 1] (see [18, p. 140]). With the above results, simple

calculation yields



U(−τ, 2√τ ξ) Γ(n+1)√

2π
eiπ n

2 U(τ, 2i
√
τ ξ)

U ′(−τ, 2√τ ξ) Γ(n+1)√
2π

eiπ n+1

2 U ′(τ, 2i
√
τ ξ)




∼ 1√
2
(ξ2 − 1)−

1
4
σ3


m11e

−τf(ξ) m12e
τf(ξ)

m21e
−τf(ξ) m22e

τf(ξ)


 , (3.40)

where the constants mij are given by

m11 := e−
1
2
(n+ 1

2
)(n+ 1

2 )
n
2 , m12 := −iΓ(n+1)√

2π
e

1
2
(n+ 1

2
)(n+ 1

2 )−
n+1

2 ,

m21 := −e− 1
2
(n+ 1

2
)(n+ 1

2 )
n+1

2 , m22 := −iΓ(n+1)√
2π

e
1
2
(n+ 1

2
)(n+ 1

2 )−
n
2 .

(3.41)

Note that there is a relation between these constants, namely, −m11

m21
= m12

m22
.

For z ∈ C+, we define

Q(z) :=
√

2




1
m11

0

2z−αn−βn

4m12

1
2m22



((ξ2 − 1)

1
4

bn(z)

)σ3

×



U(−τ, 2√τ ξ) Γ(n+1)√

2π
eiπ n

2 U(τ, 2i
√
τ ξ)

U ′(−τ, 2√τ ξ) Γ(n+1)√
2π

eiπ n+1

2 U ′(τ, 2i
√
τ ξ)


 , (3.42)

where bn(z) is the analytic function in C \ (−∞, βn] given by

bn(z) := (z − βn)
1
4 (z − αn)

1
4 . (3.43)

The reason why we divide (ξ2 − 1)
1
4 by bn(z) is to make sure that (ξ2 − 1)

1
4 /bn(z) is analytic in

C \ (−∞, 0]∪ [1,∞), with no jump on the interval (0, 1). Furthermore, it can be easily verified

that Q(z) satisfies the same large -z behavior as V (z) given in (Vc).

Similarly, we can construct the parametrix in the lower half plane. For z ∈ C−, we define

Q(z) :=
√

2




1
m11

0

2z−αn−βn

4m12

1
2m22



( (ξ2 − 1)

1
4

bn(z)

)σ3

×




U(−τ, 2√τ ξ) −Γ(n+1)√

2π
e−iπ n

2 U(τ,−2i
√
τ ξ)

U ′(−τ, 2√τ ξ) −Γ(n+1)√
2π

e−iπ n+1

2 U ′(τ,−2i
√
τ ξ)



 . (3.44)

It is easy to see that Q(z) satisfies all four conditions in the RHP for V , except for a new

jump on (−∞, 0) ∪ (1,∞). In view of the transformation from V (z) to R(z) introduced in

(3.31), a reasonable parametrix to the RHP for R is given by

R̃(z) := e
1
2
(n+ 1

2
)lnσ3Q(z)rn(z)−

1
2
σ3 . (3.45)
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Since rn(z) in (3.7) is an entire function and ξ(z) in (3.36) is analytic on (0, 1), it is readily

verified that

R̃+(x) = R̃−(x)



1 rn(x)

0 1



 for x ∈ (0, 1).

But there is an additional jump matrix on the part (−∞, 0] ∪ [1,∞) of the real axis. In the

following subsection, we will show that this jump matrix tends to the identity matrix.

3.3 Uniform asymptotic expansions

Define the matrix

D(z) := e−
1
2
(n+ 1

2
)lnσ3R(z)R̃−1(z)e

1
2
(n+ 1

2
)lnσ3 . (3.46)

Since R̃(z) has the same jump as R(z) on the interval (0, 1), the matrix D(z) satisfies the

relation

D+(x) = D−(x), x ∈ (0, 1).

Furthermore, since R(z) is analytic on (−∞, 0) ∪ (1,∞), it is easy to verify that D(z) is a

solution of the following RHP:

(Da) D(z) is analytic in z ∈ C \ (−∞, 0] ∪ [1,∞);

(Db) for x ∈ (−∞, 0) ∪ (1,∞),

D+(x) = D−(x)JD(x), (3.47)

where

JD(x) := e−
1
2
(n+ 1

2
)lnσ3R̃−(x)(R̃+(x))−1e

1
2
(n+ 1

2
)lnσ3 ; (3.48)

(Dc) for z ∈ C \ R,

D(z) = I +O
(1

z

)
as z → ∞;

(Dd) as z → 0 and z → 1,

D(z) = O


1 1

1 1


 .

To solve this problem, we need to derive the explicit asymptotic expansion of JD(x). Note

that for x ∈ (1,∞), we have

U(−τ, 2
√
τ ξ+(x)) ∼ ρ(

√
2τ )

e−τf(ξ+(x))

(ξ2+(x) − 1)
1
4

∞∑

s=0

As(ξ+(x))

(2τ)s
, (3.49a)

U(τ, 2i
√
τ ξ+(x)) ∼ ρ(i

√
2τ )

eτf(ξ+(x))

(ξ2+(x) − 1)
1
4

∞∑

s=0

As(ξ+(x))

(−2τ)s
, (3.49b)

U ′(−τ, 2
√
τ ξ+(x)) ∼ −

√
τ ρ(

√
2τ )(ξ2+(x) − 1)

1
4 e−τf(ξ+(x))

∞∑

s=0

Bs(ξ+(x))

(2τ)s
, (3.49c)

U ′(τ, 2i
√
τ ξ+(x)) ∼ −i

√
τ ρ(i

√
2τ )(ξ2+(x) − 1)

1
4 eτf(ξ+(x))

∞∑

s=0

Bs(ξ+(x))

(−2τ)s
, (3.49d)
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where

ρ(
√

2τ) ∼ 2−
1
2 e−

1
2
τ τ

τ
2
− 1

4

[
1 +

1

2

∞∑

s=1

γs

τs

]
, (3.50)

As(ξ) =
us(ξ)

(ξ2 − 1)
3
2

s
, Bs(ξ) =

vs(ξ)

(ξ2 − 1)
3
2
s

(3.51)

(see [18, p. 140]). Here u0(ξ) = v0(ξ) = 1, and when s > 0, both us(ξ) and vs(ξ) are polynomials

of degree 3s if s is odd, and 3s− 2 if s is even. Moreover, the polynomials us(ξ) and vs(ξ) can

be successively determined through the following recurrence relations:

(ξ2 − 1)u′s(ξ) − 3sξus(ξ) = rs−1(ξ), vs(ξ) = us(ξ) +
1

2
ξus−1(ξ) − rs−2(ξ)

with r−1(ξ) = 0 and

8rs(ξ) = (3ξ2 + 2)us(ξ) − 12(s+ 1)ξrs−1(ξ) + 4(ξ2 − 1)r′s−1(ξ).

Therefore, it is easily seen from (3.51) that A0(ξ) = B0(ξ) ≡ 1, and for s = 1, 2, · · · ,

A2s(ξ) = O
( 1

ξ2

)
, B2s(ξ) = O

( 1

ξ2

)
, A2s−1 = O(1), B2s−1 = O(1) as ξ → ∞. (3.52)

The coefficients γs in the expansion (3.50) are given by the following formula

Γ
(
z +

1

2

)
∼ (2π)

1
2 e−zzz

∞∑

s=0

γs

zs
, | arg z| < π,

and the first three terms are

γ0 = 1, γ1 = − 1

24
, γ2 =

1

1152
.

Now let us construct the asymptotic expansion of JD(x). For x ∈ (1,∞), we get from (3.45)

and (3.48)

JD(x) = e−
1
2
(n+ 1

2
)lnσ3R̃−(x)(R̃+(x))−1e

1
2
(n+ 1

2
)lnσ3

= Q−(x) rn,−(x)−
1
2

σ3rn,+(x)
1
2
σ3Q+(x)−1. (3.53)

From the Wronskian

i U(−τ, 2
√
τ ξ) U ′(τ, 2i

√
τ ξ) − U ′(−τ, 2

√
τ ξ) U(τ, 2i

√
τ ξ) = −i e−nπi

2 ,

we have

JD(x) =




1

m11
0

2x−αn−βn

4m12

1
2m22




( (ξ2−(x) − 1)

1
4

bn(x)

)σ3

×




U(−τ, 2√τ ξ−(x)) −Γ(n+1)√

2π
e−iπ n

2 U(τ,−2i
√
τ ξ−(x))

U ′(−τ, 2√τ ξ−(x)) −Γ(n+1)√
2π

e−iπ n+1

2 U ′(τ,−2i
√
τ ξ−(x))





× rn,−(x)−
1
2
σ3rn,+(x)

1
2
σ3

i
√

2π

Γ(n+ 1)
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×




Γ(n+1)√

2π
eiπ n+1

2 U ′(τ, 2i
√
τ ξ+(x)) −Γ(n+1)√

2π
eiπ n

2 U(τ, 2i
√
τ ξ+(x))

−U ′(−τ, 2√τ ξ+(x)) U(−τ, 2√τ ξ+(x))





×
( (ξ2−(x) − 1)

1
4

bn(x)

)−σ3




1

m11
0

2x−αn−βn

4m12

1
2m22




−1

.

Inserting the expansions in (3.49) into the last formula yields

JD(x) ∼




1
m11

0

2x−αn−βn

4m12

1
2m22


 bn(x)−σ3

∞∑

s=0

Ms(x)

(2τ)s


ρ(

√
2τ ) 0

0 ρ(−i
√

2τ )




× e−(n+ 1
2
)f(ξ−(x))σ3rn,−(x)−

1
2
σ3rn,+(x)

1
2
σ3e(n+ 1

2
)f(ξ+(x))σ3

i
√

2π

Γ(n+ 1)

×


ρ(i

√
2τ ) 0

0 ρ(
√

2τ )




∞∑

s=0

Ns(x)

(2τ)s
bn(x)σ3




1
m11

0

2x−αn−βn

4m12

1
2m22




−1

, (3.54)

where

Ms(x) :=




As(ξ−(x)) −Γ(n+1)√
2π

e−πi n
2 (−1)sAs(ξ−(x))

−√
τ Bs(ξ−(x)) −Γ(n+1)√

2π
e−πi n

2

√
τ (−1)sBs(ξ−(x))


 ,

Ns(x) :=




Γ(n+1)√
2π

eπi n
2

√
τ (−1)sBs(ξ+(x)) −Γ(n+1)√

2π
eπi n

2 (−1)sAs(ξ+(x))

√
τ Bs(ξ+(x)) As(ξ+(x))


 .

From (3.9), it is readily seen that gn,+(x) = gn,−(x) for x ∈ (1,∞). Hence, by using (3.17), it

can be shown that

e−(n+ 1
2
)f(ξ−(x))σ3rn,−(x)−

1
2

σ3rn,+(x)
1
2
σ3e(n+ 1

2
)f(ξ+(x))σ3 = I.

Furthermore, since ρ(i
√

2τ ) = (−1)τ+ 1
2 ρ(−i

√
2τ) (see (3.50)), equation (3.54) can be written

in the form

JD(x) ∼ ieπi n
2 ρ(

√
2τ) ρ(i

√
2τ )




1

m11
0

2x−αn−βn

4m12

1
2m22



 bn(x)−σ3

×







2

√
τ 0

0 2
√
τ


+

∞∑

t=1

∑

j+k=t

Mj,k(x)

(2τ)t




 bn(x)σ3




1
m11

0

2x−αn−βn

4m12

1
2m22




−1

(3.55)

for x ∈ (1,∞), where Mj,k(x) is the matrix




√
τ [(−1)k + (−1)j]Aj(ξ−)Bk(ξ+) [(−1)k+1 + (−1)j ]Aj(ξ−)Ak(ξ+)

τ [(−1)k+1 + (−1)j ]Bj(ξ−)Bk(ξ+)
√
τ [(−1)k + (−1)j ]Bj(ξ−)Ak(ξ+)



 . (3.56)
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Also from (3.50), we have

ρ(
√

2τ) ρ(i
√

2τ ) ∼ 1

2
e−( τ

2
+ 1

4
)πi τ−

1
2

∞∑

s=0

ηs

τs
,

where η0 = 1 and

ηs =
1

2
[(−1)s + 1]γs +

1

4

∑

j+k=s

j,k 6=0

(−1)kγjγk for s = 1, 2, · · · .

Therefore, we get

JD(x) ∼ I +

∞∑

m=1

J
(m)
D (x)

(2n+ 1)m
, (3.57)

where J
(m)
D (x) is equal to

∑

s+j+k=m

2s−1 ηs√
n+ 1

2




1
m11

0

2x−αn−βn

4m12

1
2m22


 bn(x)−σ3Mj,k(x)bn(x)σ3




1
m11

0

2x−αn−βn

4m12

1
2m22




−1

.

Using (3.52) and (3.56), it can be shown that

J
(m)
D (x) = O

( 1

x2

)
, m = 1, 2, · · · , as x→ ∞.

Thus, the expansion in (3.57) is uniformly valid for all x ∈ [1,∞).

For convenience, we put J∗
D(x) := JD(x) − I so that

J∗
D(x) ∼

∞∑

m=1

J
(m)
D (x)

(2n+ 1)m
.

From (Db) and (3.57), we get

D+(x) = D−(x)[I + J∗
D(x)] = D−(x)

[
I +O

( 1

n

)]
for x ∈ (1,∞). (3.58)

In a similar way, it can be shown that (3.58) also holds for x ∈ (−∞, 0). Therefore, we have

established the equation

(D+(x) − I) − (D−(x) − I) = D−(x)J∗
D(x) for x ∈ (−∞, 0) ∪ (1,∞).

As in [5], we first derive formally the expansion

D(z) ∼ I +

∞∑

k=1

Dk(z)

(2n+ 1)k
as n→ ∞. (3.59)

Let D0(z) = I, and define Dk(z) recursively by

Dk(z) =
1

2πi

( ∫ 0

−∞
+

∫ ∞

1

)[ k∑

j=1

(Dk−j)−(x)J
(j)
D (x)

] dx

x− z
for z ∈ C \ (−∞, 0] ∪ [1,∞).
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Using induction, it can be verified that for k = 1, 2, · · · ,

Dk(z) = O
( 1

|z|
)

as z → ∞.

Furthermore, by successive approximation (see [5]), it can be easily demonstrated that the

expansion (3.59) holds uniformly for all z ∈ C \ (−∞, 0] ∪ [1,∞).

Theorem 3.1 Let rn(z), ln and ξ(z) be defined in (3.7), (3.16) and (3.35), respectively.

Then the asymptotic expansion of the monic polynomial πN,n(z) in (1.7) is given by

πN,n(z) =
√

2 rn(z)−
1
2 e

1
2
(n+ 1

2
)ln
[
U
(
− n− 1

2
, 2

√
n+

1

2
ξ(z)

)
A(z, n)

+ U ′
(
− n− 1

2
, 2

√
n+

1

2
ξ(z)

)
B(z, n)

]
, (3.60)

where A(z, n) and B(z, n) are analytic functions of z in C \ (−∞, 0]∪ [1,∞). Furthermore, the

asymptotic expansions

A(z, n) ∼ (ξ2 − 1)
1
4

m11(z − βn)
1
4 (z − αn)

1
4

[
1 +

∞∑

k=1

Ak(z)

(2n+ 1)k

]
, (3.61)

B(z, n) ∼ (z − βn)
1
4 (z − αn)

1
4

m11(ξ2 − 1)
1
4

∞∑

k=1

Bk(z)

(2n+ 1)k+ 1
2

(3.62)

hold uniformly for z bounded away from (−∞, 0] ∪ [1,∞), where the constant m11 is given in

(3.41).

Proof Let Rij(z) and R̃ij(z) denote the elements in R(z) and R̃(z), respectively. Since

R(z) = e
1
2
(n+ 1

2
)lnσ3D(z)e−

1
2
(n+ 1

2
)lnσ3R̃(z), we have

πN,n(z) = y11(z) = R11(z) = D11(z)R̃11(z) +D12(z)e
(n+ 1

2
)lnR̃21(z). (3.63)

By (3.59), we have

D11(z) ∼ 1 +

∞∑

k=1

D
(k)
11 (z)

(2n+ 1)k
, (3.64)

D12(z) ∼
∞∑

k=1

D
(k)
12 (z)

(2n+ 1)k
. (3.65)

From the definition of R̃(z) in (3.45), we also know that for z in either C+ or C−, the entries

in the first column of this matrix are the same. More precisely, we have

R̃(z) =
√

2



R̃11(z) ∗
R̃21(z) ∗



 ,

where

R̃11(z) =
1

m11

(ξ2 − 1)
1
4

bn(z)
U
(
− n− 1

2
, 2

√
n+

1

2
ξ
)
rn(z)−

1
2 e

1
2
(n+ 1

2
)ln ,

R̃21(z) = e−
1
2
(n+ 1

2
)ln rn(z)−

1
2

((ξ2 − 1)
1
4

bn(z)
U
(
− n− 1

2
, 2

√
n+

1

2
ξ
) 2z − αn − βn

4m12
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+
bn(z)

(ξ2 − 1)
1
4

U ′
(
− n− 1

2
, 2

√
n+

1

2
ξ
) 1

2m22

)
.

By (3.63), one easily obtains (3.60), with

A(z, n) =
(ξ2 − 1)

1
4

bn(z)

[
D11(z)

1

m11
+D12(z)

2z − αn − βn

4m12

]
,

B(z, n) =
bn(z)

2m22(ξ2 − 1)
1
4

D12(z).

Note that A(z, n) and B(z, n) are analytic for z in C \ (−∞, 0] ∪ [1,∞). Hence, by (3.64) and

(3.65), we have the asymptotic expansions in (3.61) and (3.62). Here, one additional thing that

needs attention is 1
m22

∼ i√
n+ 1

2

1
m11

as n→ ∞. This completes the proof of the theorem.

4 Case II p < c <
1

2

Since the parameter c is defined in terms of the degree of the polynomial, the number of

zeros of the polynomial increases as c increases. Moreover, the zeros near the origin become

as dense as the nodes (see [3, Theorem 2.12] and [19, Theorem 2]). Also, the density function

reaches its upper constraint (see (2.4) and (2.8)). As we mentioned before, this fact is a

crucial difference between the discrete orthogonal polynomials and the continuous ones, see the

paragraph following (2.5).

Furthermore, since µ(x) is not differentiable at the point α in this case, the functions v+(x)

and φ+(x) are not analytic in the neighborhood of x = α, and we can not expect to obtain

a globally uniform asymptotic expansion (by using parabolic cylinder functions) in a region

which includes both of the critical values α and β. However, as we shall see, each of these

values lies in a region in which there is a globally uniform asymptotic expansion in terms of the

Airy function; the two regions overlap, and together cover the whole plane with two cuts along

(−∞, 0] and [1,∞).

4.1 Preliminary work

Now we need to modify our method to handle this case. First, we want to remove the

saturated region. Define

σn :=
1

2
(xN,k0−1 + xN,k0

) =
k0

N
, (4.1)

and choose k0 so that σn tends to a limit σ ∈ (0, 1). Here, k0 is somewhat arbitrary, as long as

xN,k0−1 is in the band, not tending to its boundary and not asymptotically equal to n. Under

this assumption, we shall see later that α < σ < β and σ 6= c. Our first transformation is

H(z) := Y (z)




k0−1∏
j=0

(z − xN,j)
−1 0

0
k0−1∏
j=0

(z − xN,j)


 . (4.2)

It is easy to see that H is a solution of the following RHP:
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(Ha) H(z) is analytic for z ∈ C \XN ;

(Hb) the residue at the simple pole xN,k is given by

Res
z=xN,k

H(z;N,n) = lim
z→xN,k

H(z;N,n)




0
wn,k

2i

k0−1∏
j=0

(xN,k − xN,j)
2

0 0


 (4.3)

for k = k0, · · · , N − 1, and

Res
z=xN,k

H(z;N,n) = lim
z→xN,k

H(z;N,n)




0 0

2i
wn,k

k0−1∏
j=0

j 6=k

(xN,k − xN,j)
−2 0


 (4.4)

for k = 0, · · · , k0 − 1;

(Hc) as z → ∞,

H(z) =
(
I +O

(1

z

))


z
n−k0 0

0 z−n+k0



 .

To introduce the second transformation, which removes the poles and transforms the discrete

RHP into a continuous one, we define

R∗(z) := H(z)




1 0

∓ 1
2 e

∓iNπ(1−z)eNνz

N−1Q
j=k0

(z−xN,j)

k0−1Q
j=0

(z−xN,j)

1




for z ∈ Ω∆
± , (4.5)

R∗(z) := H(z)




1 ∓ 1
2 e

∓iNπ(1−z)e−Nνz

k0−1Q
j=0

(z−xN,j)

N−1Q
j=k0

(z−xN,j)

0 1




for z ∈ Ω∇
± , (4.6)

R∗(z) := H(z) for all other z ∈ C \ Σ∗, (4.7)

where Σ∗ = (0, 1)∪Σ∆
± ∪Σ∇

± . For the description of the domains Ω∆
±, Ω∇

± and the contour Σ∗,

see Figure 4. In this section, we use the superscript * to indicate that we are considering Case

II.

The matrix R∗(z) is a solution of the following continuous RHP:

(R∗
a) R∗(z) is analytic for z ∈ C \ Σ∗;

(R∗
b) the jump conditions on the curve Σ∗: for x ∈ (0, σn),

R∗
+(x) = R∗

−(x)



 1 0

r1,n(x) 1



 , (4.8)
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σ

Ω

Σ
∆

∆

+

−Σ

∆

Σ+

−
∆Σ

∆
+

−Ω∆

Ω+

∆

Ω

∆

−

x

y

0 1
n

Figure 4 The domains Ω∆
± , Ω∇

± and the contour Σ∗

where

r1,n(x) = (−1)N−1 cos(Nπx) eNνx

N−1∏
j=k0

(x− xN,j)

k0−1∏
j=0

(x− xN,j)

; (4.9)

for x ∈ (σn, 1),

R∗
+(x) = R∗

−(x)


1 r2,n(x)

0 1


 , (4.10)

where

r2,n(x) = (−1)N−1 cos(Nπx) e−Nνx

k0−1∏
j=0

(x− xN,j)

N−1∏
j=k0

(x− xN,j)

; (4.11)

for z ∈ Σ∆
±,

R∗
+(z) = R∗

−(z)


 1 0

r∆±(z) 1


 , (4.12)

where

r∆± (z) =
1

2
e∓iNπ(1−z)eNνz

N−1∏
j=k0

(z − xN,j)

k0−1∏
j=0

(z − xN,j)

; (4.13)

for z ∈ Σ∇
± ,

R∗
+(z) = R∗

−(z)



1 r∇± (z)

0 1



 , (4.14)
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where

r∇± (z) =
1

2
e∓iNπ(1−z)e−Nνz

k0−1∏
j=0

(z − xN,j)

N−1∏
j=k0

(z − xN,j)

; (4.15)

(R∗
c) as z → ∞,

R∗(z) =
(
I +O

(1

z

))


z
n−k0 0

0 z−n+k0



 ;

(R∗
d) as z → 0 and z → 1,

R∗(z) = O


1 1

1 1


 .

As in Case I, due to the term e∓iNπ(1−z) in the definitions of r∆± (z) and r∇± (z), we shall

concentrate on the jump conditions on the real line. Again by using the Gamma function,

r1,n(z) and r2,n(z) can be written as

r1,n(z) = −N
2k0−NπeNνz Γ(N(1 − z) + 1

2 )

Γ(Nz + 1
2 ) Γ2(k0 −Nz + 1

2 )
, (4.16)

r2,n(z) = − NN−2k0πe−Nνz Γ(Nz + 1
2 )

Γ2(Nz − k0 + 1
2 ) Γ(N(1 − z) + 1

2 )
. (4.17)

As usual, we now define the auxiliary functions g∗ and φ∗.

Definition 4.1 The g-functions are defined by

g̃∗n(z) :=

∫ β∗
n

α∗
n

log(z − s)µ∗
n(s)ds, z ∈ C \ [α∗

n,∞), (4.18)

g∗n(z) :=

∫ β∗
n

α∗
n

log(z − s)µ∗
n(s)ds, z ∈ C \ (−∞, β∗

n], (4.19)

where the measure µ∗
n(x) and the Mhaskar-Rakhmanov-Saff numbers α∗

n and β∗
n will be deter-

mined later.

Definition 4.2 The φ-functions are defined by

φ̃∗n(z) := −
∫ z

α∗
n

ṽ∗n(s)ds for z ∈ C \ (−∞, 0] ∪ [α∗
n,∞), (4.20)

φ∗n(z) :=

∫ z

β∗
n

v∗n(s)ds for z ∈ C \ (−∞, β∗
n] ∪ [1,∞). (4.21)

Here the measures ṽ∗n(z) and v∗n(z) are defined in the complex plane and satisfy

n

n− k0
ṽ∗n,±(x) = ±πiµ∗

n(x) for x ∈ (α∗
n, σn), (4.22)

n

n− k0
v∗n,±(x) = ±πiµ∗

n(x) for x ∈ (σn, β
∗
n). (4.23)



Global Asymptotics of Krawtchouk Polynomials 23

To find the measures in the above definitions, we need the following equations:

−(n− k0)(g̃
∗
n,+(x) + g̃∗n,−(x)) + log r1,n(x) = 0 for x ∈ (α∗

n, σn), (4.24)

(n− k0)(g
∗
n,+(x) + g∗n,−(x)) + log r2,n(x) = 0 for x ∈ (σn, β

∗
n). (4.25)

These formulas correspond to (3.12) in Case I; they are what is required in the normalization

of the RHP for R∗.

Proposition 4.1 With the constants defined by

l∗n := 2g∗n(β∗
n) +

log r2,n(β∗
n)

n− k0
, (4.26)

l̃∗n := 2g̃∗n(α∗
n) − log r1,n(α∗

n)

n− k0
, (4.27)

the following connection formulas between the g-function (g̃-function) and the φ-function (φ̃-

function) hold

g∗n(z) +
n

n− k0
φ∗n(z) = − 1

2(n− k0)
log r2,n(z) +

l∗n
2

for z ∈ C \ (−∞, σn] ∪ [1,∞), (4.28)

g̃∗n(z) − n

n− k0
φ̃∗n(z) =

1

2(n− k0)
log r1,n(z) +

l̃∗n
2

for z ∈ C \ (−∞, 0] ∪ [σn,∞). (4.29)

Furthermore, we have

g̃∗n(z) =

{
g∗n(z), z ∈ C+,

g∗n(z) + 2πi, z ∈ C−,
(4.30)

φ̃∗n(z) =






−φ∗n(z) − n− k0

n
πi− 1

2n
log r1,n(z)r2,n(z), z ∈ C+,

−φ∗n(z) +
n− k0

n
πi− 1

2n
log r1,n(z)r2,n(z), z ∈ C−,

(4.31)

l̃∗n = ln + 2πi. (4.32)

Proof The proof is similar to that of Proposition 3.1, and we only give a sketch of it.

Corresponding to (3.22), here we have

n

n− k0
ṽ∗n(z) = −g̃∗′

n (z) +
1

2(cn − σn)

[
ν + 2ψ

(
N(σn − z) +

1

2

)

− ψ
(
Nz +

1

2

)
− ψ

(
N(1 − z) +

1

2

)]
(4.33)

for z ∈ C \ (−∞, 0] ∪ [α∗
n,∞), and

n

n− k0
v∗n(z) = −g∗′

n (z) +
1

2(cn − σn)

[
ν + 2ψ

(
N(z − σn) +

1

2

)

− ψ
(
Nz +

1

2

)
− ψ

(
N(1 − z) +

1

2

)]
(4.34)

for z ∈ C \ (−∞, β∗
n] ∪ [1,∞). Integrating v∗n(z) and ṽ∗n(z) from β∗

n and α∗
n to z, respectively,

we obtain (4.28) and (4.29). Moreover, (4.26) and (4.27) follow immediately.
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Equation (4.30) is obtained by observing the branch cut of log(z − s) in (4.18) and (4.19).

To get (4.31), we note that by using (4.33) and (4.34),

ṽ∗n(z) = v∗n(z) +
1

2n

d

dz
log r1,n(z)r2,n(z). (4.35)

From (4.20) and (4.21), it follows that

φ̃∗n(z) = −
∫ z

α∗
n

ṽ∗n(s)ds = −
∫ β∗

n

α∗
n

ṽ∗n,±(s)ds−
∫ z

β∗
n

ṽ∗n(s)ds

= ∓n− k0

n
πi− φ∗n(z) − 1

2n
log r1,n(z)r2,n(z) for z ∈ C±. (4.36)

In reaching the last equality, use has been made of (4.22), (4.23) and (4.35). This establishes

(4.31). Subtracting (4.29) from (4.28), we obtain (4.32) from (4.30) and (4.31).

From (4.24) and (4.25), one can derive the asymptotic expansions of α∗
n and β∗

n; they have

the same form as given in (3.28). It turns out that these expansions are independent of the

choice of k0 and the corresponding number σn in (4.1). Furthermore, µ∗
n(x) can be shown to

satisfy the relation

µ∗
n(x) = µ∗(x) +O

( 1

n

)
(4.37)

uniformly for x ∈ [α, β] (see the corresponding result (3.30) in Case I). Note that due to the

transformation in (4.2), here µ∗(x) is discontinuous at the point σ. Moveover, we have

µ∗(x) =






c

c− σ

(
µ(x) − 1

c

)
, x ∈ (0, σ),

c

c− σ
µ(x), x ∈ (σ, β),

where µ(x) is defined in (2.8).

4.2 Construction of the parametrix

We now define the final transformation

V ∗(z) :=





e−

1
2
(n−k0)l

∗
nσ3R∗(z)r2,n(z)

1
2
σ3 for Re z > σn,

e−
1
2
(n−k0)l̃

∗
nσ3R∗(z)r1,n(z)−

1
2
σ3 for Re z < σn.

(4.38)

Let Γ be the line Re z = σn; see Figure 5. Using the relations (4.28) and (4.29), it can be

verified that V ∗(z) satisfies the RHP:

(V∗
a) V ∗(z) is analytic in C \ Σ∗ ∪ Γ;

(V∗
b) the jump conditions on the contour Σ∗ ∪ Γ: for x ∈ (σn, 1),

V ∗
+(x) = V ∗

−(x)


1 1

0 1


 ; (4.39)

for x ∈ (0, σn),

V ∗
+(x) = V ∗

−(x)



1 0

1 1



 ; (4.40)
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σ
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∆

∆
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∆
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∆
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−Ω∆
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∆

Ω

∆

−
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Γ−

x

y

0 1n

Figure 5 The domains Ω∆
± , Ω∇

± and the contours Σ∗ and Γ

for z ∈ Σ∇
± ,

V ∗
+(z) = V ∗

−(z)


1 − 1

1+e∓2Nπiz

0 1


 ; (4.41)

for z ∈ Σ∆
±,

V ∗
+(z) = V ∗

−(z)


 1 0

− 1
1+e∓2Nπiz 1


 ; (4.42)

for z ∈ Γ±,

V ∗
+(z) = (−1)n−k0V ∗

−(z)




i
eNπiz+e−Nπiz 0

0 −i(eNπiz + e−Nπiz)




±1

; (4.43)

(V∗
c ) as z → ∞,

V ∗(z) =
(
I +O

(1

z

))
e−nφ∗

n(z)σ3 (4.44)

for Re z > σn, and

V ∗(z) =
(
I +O

(1

z

))
enφ̃∗

n(z)σ3 (4.45)

for Re z < σn;

(V∗
d) as z → 0 and z → 1,

V ∗(z) = O



1 1

1 1



 .
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From the well-known formula

Ai(z) + ωAi(ωz) + ω2 Ai(ω2z) = 0,

one can get the following matrix equations


Ai(f∗(z)) −ω2 Ai(ω2f∗(z))

Ai′(f∗(z)) −ωAi′(ω2f∗(z))



 =



Ai(f∗(z)) ωAi(ωf∗(z))

Ai′(f∗(z)) ω2 Ai′(ωf∗(z))







1 1

0 1



 , (4.46)



−ω2 Ai(ω2f∗(z)) Ai(f∗(z))

−ωAi′(ω2f∗(z)) Ai′(f∗(z))



 =



 ωAi(ωf∗(z)) Ai(f∗(z))

ω2 Ai′(ωf∗(z)) Ai′(f∗(z))







1 0

1 1



 . (4.47)

We divide the complex plane into four regions by using Γ and the real axis, see Figure 6.

σ

Γ+

Γ−

I II

III IV

x

y

0 1n

Figure 6 The domains I, II, III and IV

With a similar technique as given in [5], we construct the parametrix of the RHP for V ∗ by

using the Airy functions in these four regions. Define

Q∗(z) := 2
√
π



 1 i

−1 i




−1 (f∗(z)

1
4

an(z)

)σ3



Ai(f∗(z)) −ω2 Ai(ω2f∗(z))

Ai′(f∗(z)) −ωAi′(ω2f∗(z))



 (4.48)

for z ∈ II,

Q∗(z) := 2
√
π


 1 i

−1 i




−1 (f∗(z)
1
4

an(z)

)σ3


Ai(f∗(z)) ωAi(ωf∗(z))

Ai′(f∗(z)) ω2 Ai′(ωf∗(z))


 (4.49)

for z ∈ IV,

Q∗(z) := 2
√
π


i 1

i −1




−1

(f̃∗(z)
1
4 an(z))σ3


−ω2 Ai(ω2f̃∗(z)) Ai(f̃∗(z))

−ωAi′(ω2f̃∗(z)) Ai′(f̃∗(z))


 (4.50)

for z ∈ I and

Q∗(z) := 2
√
π



i 1

i −1




−1

(f̃∗(z)
1
4 an(z))σ3



 ωAi(ωf̃∗(z)) Ai(f̃∗(z))

ω2 Ai′(ωf̃∗(z)) Ai′(f̃∗(z))



 (4.51)
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for z ∈ III, where f∗(z) and f̃∗(z) are defined by

f∗(z) :=
[3
2
nφ∗n(z)

] 2
3

, f̃∗(z) :=
[3
2
nφ̃∗n(z)

] 2
3

, (4.52)

and an(z) is the analytic function in C \ [α∗
n, β

∗
n] given by

an(z) :=
(z − β∗

n)
1
4

(z − α∗
n)

1
4

. (4.53)

In view of the relations between V ∗(z) and R∗(z) given in (4.38), a reasonable parametrix

of the RHP for R∗ is

R̃∗(z) :=

{
e

1
2
(n−k0)l∗nσ3Q∗(z)r2,n(z)−

1
2
σ3 , z ∈ II ∪ IV,

e
1
2
(n−k0)l̃∗nσ3Q∗(z)r1,n(z)

1
2

σ3 , z ∈ I ∪ III.
(4.54)

From these definitions, it is easy to verify that

R̃∗
+(x) = R̃∗

−(x)



 1 0

r1,n(x) 1



 , x ∈ (0, σn),

R̃∗
+(x) = R̃∗

−(x)



1 r2,n(x)

0 1



 , x ∈ (σn, 1),

and that R̃∗(z) satisfies the large -z behavior given in (R∗
c). The only difference between R∗(z)

and R̃∗(z) is that there are new jump matrices on (−∞, 0) ∪ (1,∞) and the vertical line Γ. In

the subsequent analysis, we will show that all these jump matrices tend to the identity matrix

as n→ ∞.

4.3 Uniform asymptotic expansions

Define the matrix

S(z) := e−
1
2
(n−k0)l∗nσ3R∗(z)(R̃∗(z))−1e

1
2
(n−k0)l∗nσ3 . (4.55)

From the construction of R̃∗(z), it is easy to see that

S+(x) = S−(x), x ∈ (0, 1).

Furthermore, it can be verified that S(z) is a solution to the RHP:

(Sa) S(z) is analytic for z ∈ C \ (−∞, 0] ∪ [1,∞) ∪ Γ;

(Sb) for z ∈ (−∞, 0] ∪ [1,∞) ∪ Γ,

S+(z) = S−(z)JS(z), (4.56)

where

JS(z) := e−
1
2
(n−k0)l

∗
nσ3R̃∗

−(z)(R̃∗
+(z))−1e

1
2
(n−k0)l∗nσ3 ; (4.57)
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(Sc) for z ∈ C \ (−∞, 0] ∪ [1,∞) ∪ Γ,

S(z) = I +O
(1

z

)
as z → ∞;

(Sd) as z → 0 and z → 1,

S(z) = O



1 1

1 1



 .

We consider only the case on the line Γ, since the discussions for the other cases on the cuts

(−∞, 0) and (1,∞) are very similar. Let Γ± ≡ Γ ∩ C±. For z ∈ Γ+, we recall the asymptotic

expansions of the Airy functions in [1, p. 448]

Ai(f∗(z)) ∼ 1

2
√
π

(f∗(z))−
1
4 e−nφ∗

n(z)
∞∑

k=0

(−1)kck (nφ∗n(z))−k,

Ai′(f∗(z)) ∼ − 1

2
√
π

(f∗(z))
1
4 e−nφ∗

n(z)
∞∑

k=0

(−1)kdk (nφ∗n(z))−k,

Ai(ω2f∗(z)) ∼ e
iπ
6

2
√
π

(f∗(z))−
1
4 enφ∗

n(z)
∞∑

k=0

ck (nφ∗n(z))−k,

Ai′(ω2f∗(z)) ∼ −e
− iπ

6

2
√
π

(f∗(z))
1
4 enφ∗

n(z)
∞∑

k=0

dk ((n− k0)φ
∗
n(z))−k,

(4.58)

where c0 = d0 = 1 and for k = 1, 2, · · · ,

ck =
Γ(3k + 1

2 )

54kk!Γ(k + 1
2 )
, dk = −6k + 1

6k − 1
ck.

Corresponding results can be given for Ai(f̃∗(z)), Ai′(f̃∗(z)), Ai(ω2f̃∗(z)) and Ai′(ω2f̃∗(z)).

Now we set out to derive the asymptotic expansion of JS(z) for z ∈ Γ+. From (4.54) and

(4.57), we have

JS(z) =


 1 i

−1 i




−1 (f∗(z)
1
4

an(z)

)σ3


Ai(f∗(z)) −ω2 Ai(ω2f∗(z))

Ai′(f∗(z)) −ωAi′(ω2f∗(z))


 r2,n(z)−

1
2
σ3

× r1,n(z)−
1
2
σ3


−ω2 Ai(ω2f̃∗(z)) Ai(f̃∗(z))

−ωAi′(ω2f̃∗(z)) Ai′(f̃∗(z))




−1 ( 1

f̃∗(z)
1
4 an(z)

)σ3

×


i 1

i −1


 e−

1
2
(n−k0)l̃∗nσ3e

1
2
(n−k0)l

∗
nσ3 .

Coupling (4.32) and the well-known formula (10.4.12) in [1, p. 446]

ωAi(f̃∗(z))Ai′(ω2f̃∗(z)) − ω2 Ai′(f̃∗(z))Ai(ω2f̃∗(z)) =
1

2πi
,
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we get

JS(z) =(−1)n−k0πi



 1 −1

−i −i




(f∗(z)

1
4

an(z)

)σ3



Ai(f∗(z)) −ω2 Ai(ω2f∗(z))

Ai′(f∗(z)) −ωAi′(ω2f∗(z))





× r2,n(z)−
1
2

σ3r1,n(z)−
1
2
σ3



 Ai′(f̃∗(z)) −Ai(f̃∗(z))

ωAi′(ω2f̃∗(z)) −ω2 Ai(ω2f̃∗(z))





×
( 1

f̃∗(z)
1
4 an(z)

)σ3



i 1

i −1



 .

Substituting the expansions in (4.58) into the last equation and taking into account Proposition

4.1, we readily see that

JS(z) ∼ 1

4


 1 −1

−i −i


 an(z)−σ3






∞∑

j=0


 (−1)jcj icj

(−1)j+1dj idj



( 1

nφ∗n(z)

)j






×





∞∑

k=0


(−1)k+1idk (−1)k+1ick

dk −ck



( 1

nφ̃∗n(z)

)k



 an(z)−σ3


i 1

i −1


 .

Straightforward calculation yields

JS(z) ∼ 1

4



 1 −1

−i −i



 an(z)−σ3







 0 −2i

2i 0



+

∞∑

m=1

∑

j+k=m

M∗
j,k(z)

nm





× an(z)−σ3



 i 1

i −1



 for z ∈ Γ+, (4.59)

where

M∗
j,k(z) = i


[(−1)m+1 + 1]cjdk [(−1)m+1 − 1]cjck

[(−1)m + 1]djdk [(−1)m − 1]djck



( 1

φ∗n(z)

)j( 1

φ̃∗n(z)

)k

. (4.60)

Thus, we obtain

JS(z) ∼ I +
∞∑

m=1

Jm(z)

nm
, (4.61)

where

Jm(z) =
1

4


 1 −1

−i −i


 an(z)−σ3

∑

j+k=m

M∗
j,k(z) an(z)−σ3


 i 1

i −1


 . (4.62)

From (4.60) and (4.62), it can be easily shown that

Jm(z) = O
( 1

(φ∗n(z))m

)
= O

( 1

zm

)
, m = 1, 2, · · · , as z → ∞. (4.63)



30 D. Dai and R. Wong

This, in particular, infers that the expansion in (4.61) is uniformly valid for all z ∈ Γ+. Similar

results hold for z ∈ Γ− ∪ (−∞, 0) ∪ (1,∞). Therefore, formally we have

S(z) ∼ I +

∞∑

k=1

Sk(z)

nk
as n→ ∞, (4.64)

where

Sk(z) =
1

2πi

(∫

Γ

+

∫ 0

−∞
+

∫ ∞

1

)[ k∑

j=1

(Sk−j)−(t)Jj(t)
] dt

t− z
(4.65)

for z ∈ C \ Γ ∪ (−∞, 0] ∪ [1,∞), with S0(z) = I. By induction, it can be verified that for

k = 1, 2, · · · ,

Sk(z) = O
( 1

|z|
)

as z → ∞.

Using the usual method of successive approximation, we can show that the formal expansion

in (4.64) is actually uniformly valid for z ∈ C \ Γ ∪ (−∞, 0] ∪ [1,∞). Thus, we arrive at our

second main result stated below.

Theorem 4.1 Let rn(z), l∗n and f∗(z) be defined in (3.7), (4.26) and (4.52), respectively.

The asymptotic expansion of the monic polynomial πN,n(z) is given by

πN,n(z) =
√
π rn(z)−

1
2 e

1
2
(n−k0)l

∗
n [Ai(f∗(z))A∗(z, n) + Ai′(f∗(z))B∗(z, n)], (4.66)

where A∗(z, n) and B∗(z, n) are analytic functions of z in C \ [1,∞) and Re z > α.

Similarly, with l̃∗n and f̃∗(z) defined in (4.27) and (4.52),

πN,n(z) =
(−1)N−1

2

√
π rn(z)−

1
2 e

1
2
(n−k0)l̃

∗
n

× {[cos(Nπz) Bi(f̃∗(z)) − sin(Nπz)Ai(f̃∗(z))]Ã(z, n)

+ [cos(Nπz) Bi′(f̃∗(z)) − sin(Nπz)Ai′(f̃∗(z))]B̃(z, n)}, (4.67)

where Ã(z, n) and B̃(z, n) are analytic functions of z in C \ (−∞, 0] and Re z < β.

Furthermore, A∗(z, n) and B∗(z, n) have the asymptotic expansions

A∗(z, n) ∼ f∗(z)
1
4

an(z)

[
1 +

∞∑

k=1

A∗
k(z)

nk

]
, B∗(z, n) ∼ an(z)

f∗(z)
1
4

[
− 1 +

∞∑

k=1

B∗
k(z)

nk

]
, (4.68)

and Ã(z, n), B̃(z, n) have the asymptotic expansions

Ã(z, n) ∼ f̃∗(z)
1
4 an(z)

[
1 +

∞∑

k=1

Ãk(z)

nk

]
, B̃(z, n) ∼ 1

f̃∗(z)
1
4 an(z)

[
1 +

∞∑

k=1

B̃k(z)

nk

]
. (4.69)

All four expansions hold uniformly for z in their respective regions of analyticity.

Proof From the definition of S(z) in (4.55), we have

R∗(z) = e
1
2
(n−k0)l

∗
nσ3S(z)e−

1
2
(n−k0)l∗nσ3R̃∗(z).
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For any matrix X , we shall denote by Xij the (i, j) element in X . The above formula then

gives

R∗
11(z) = S11(z)R̃

∗
11(z) + S12(z)R̃

∗
21(z)e

(n−k0)l
∗
n

and

R∗
12(z) = S11(z)R̃

∗
12(z) + S12(z)R̃

∗
22(z)e

(n−k0)l
∗
n .

First, let us consider z in the half plane on the right side of Γ. Recalling the definition of

R̃∗(z) in (4.54), one obtains

R∗
11(z) =

√
π r2,n(z)−

1
2 e

1
2
(n−k0)l∗n [Ai(f∗(z))A∗(z, n) + Ai′(f∗(z))B∗(z, n)], (4.70)

where

A∗(z, n) =
f∗(z)

1
4

an(z)
(S11(z) − iS12(z)) and B∗(z, n) =

an(z)

f∗(z)
1
4

(−S11(z) − iS12(z)).

From (4.2) and (4.6), it also follows that

πN,n(z) = Y11(z) = R∗
11(z)

k0−1∏

j=0

(z − xN,j).

This, together with the fact that

rn(z) = r2,n(z)

k0−1∏

j=0

(z − xN,j)
−2 (4.71)

(see (3.3) and (4.11)), gives us the main result (4.66). From the asymptotic expansion of S(z)

in (4.64), we immediately obtain (4.68).

Next, let us consider z in the half plane on the left of Γ, and restrict it to the region I

indicated in Figure 6. From (4.54), we have

R∗
11(z) =

√
π r1,n(z)

1
2 e

1
2
(n−k0)l̃

∗
n [e−

1
6
πi Ai(ω2f̃∗(z))Ã(z, n) − e

1
6
πi Ai′(ω2f̃∗(z))B̃(z, n)]

and

R∗
12(z) =

√
π r1,n(z)−

1
2 e

1
2
(n−k0)l̃

∗
n [−iAi(f̃∗(z))Ã(z, n) − iAi′(f̃∗(z))B̃(z, n)],

where

Ã(z, n) = f̃∗(z)
1
4 an(z)(S11(z) + iS12(z))

and

B̃(z, n) =
1

f̃∗(z)
1
4 an(z)

(S11(z) − iS12(z)).

Similarly, for z ∈ III,

R∗
11(z) =

√
π r1,n(z)

1
2 e

1
2
(n−k0)l̃∗n [e

1
6
πi Ai(ωf̃∗(z))Ã(z, n) − e−

1
6
πi Ai′(ωf̃∗(z))B̃(z, n)]
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and

R∗
12(z) =

√
π r1,n(z)−

1
2 e

1
2
(n−k0)l̃

∗
n [−iAi(f̃∗(z))Ã(z, n) − iAi′(f̃∗(z))B̃(z, n)].

From (4.5), we know that H11(z) has different expressions in different parts of regions I and III.

Let us first consider regions Ω∆
+ and Ω∆

− shown in Figure 4. For z ∈ Ω∆
+ , we have from (4.5)

H11(z) = R∗
11(z) +

1

2
e−iNπ(1−z)eNνz

N−1∏
j=k0

(z − xN,j)

k0−1∏
j=0

(z − xN,j)

R∗
12(z)

= −1

2

√
π r2,n(z)−

1
2 e

1
2
(n−k0)l̃∗n{(e−iNπ(1−z) + eiNπ(1−z))

× [e−
1
6
πi Ai(ω2f̃∗(z))Ã(z, n) − e

1
6
πi Ai′(ω2f̃∗(z))B̃(z, n)]

+ i e−iNπ(1−z)[Ai(f̃∗(z))Ã(z, n) + Ai′(f̃∗(z))B̃(z, n)]}. (4.72)

In view of the well-known formula of the Airy functions (see [1, p. 446])

Bi(z) = ±i[2e∓1
3
πi Ai(ω±1z) − Ai(z)], (4.73)

equation (4.72) can be rewritten as

H11(z) =
(−1)N−1

2

√
π r2,n(z)−

1
2 e

1
2
(n−k0)l̃∗n

× {[cos(Nπz) Bi(f̃∗(z)) − sin(Nπz)Ai(f̃∗(z))]Ã(z, n)

+ [cos(Nπz) Bi′(f̃∗(z)) − sin(Nπz)Ai′(f̃∗(z))]B̃(z, n)}. (4.74)

Similarly, for z ∈ Ω∆
− ,

H11(z) = R∗
11(z) −

1

2
eiNπ(1−z)eNνz

N−1∏
j=k0

(z − xN,j)

k0−1∏
j=0

(z − xN,j)

R∗
12(z)

= −1

2

√
π r2,n(z)−

1
2 e

1
2
(n−k0)l̃

∗
n{(e−iNπ(1−z) + eiNπ(1−z))

× [e
1
6

πi Ai(ωf̃∗(z))Ã(z, n) − e−
1
6
πi Ai′(ωf̃∗(z))B̃(z, n)]

− i eiNπ(1−z)[Ai(f̃∗(z))Ã(z, n) + Ai′(f̃∗(z))B̃(z, n)]}. (4.75)

Again by (4.73), we get exactly the same formula given in (4.74). On account of (4.2) and

(4.71), one now easily gets the main result (4.67) for z ∈ Ω∆
± ∪ (0, σn). Using the asymptotic

formula of S(z) in (4.64) again, we obtain (4.69).

Now, we show that the asymptotic expansion of H11(z) in (4.74) holds for z in I and III,

rather than for z only in Ω∆
± . Recall that, in our analysis the choice of Ω∆

± is quite arbitrary

and these regions may be large. Moreover, from the relation between R∗(z) and H(z) in (4.7),
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we know that H11(z) = R∗
11(z) for z ∈ I ∪ III \Ω∆

±. In contrast to the expansions in (4.72) and

(4.75), for z outside Ω∆
± the terms

∓ i

2

√
π r2,n(z)−

1
2 e

1
2
(n−k0)l̃

∗
ne∓iNπ(1−z)[Ai(f̃∗(z))Ã(z, n) + Ai′(f̃∗(z))B̃(z, n)] (4.76)

do not appear. Note that, due to the quantity e∓iNπ(1−z), these two terms are exponentially

small as n goes to infinity in comparison with the other term in (4.72) and (4.75), respectively.

This suggests that the region of validity of the expansion given in (4.74) can be extended to

z ∈ I ∪ III. As a consequence, (4.67) holds for z ∈ C \ (−∞, 0] and Re z < σ.

So far we have established the asymptotic expansions of πN,n(z) in the form of (4.66) and

(4.67) only for z > σ and z < σ, respectively. Recall that the choice of σn in (4.1) is also

somewhat arbitrary, as long as α < σ < β and σ 6= c. Hence, by choosing appropriate σn, we

can make the regions of validity of (4.66) and (4.67) bigger. Indeed, the expansion (4.66) is

valid as long as Re z > α, and the expansion (4.67) is valid for Re z < β.

This completes the proof of Theorem 4.1.
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