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1 Introduction

Let S be a Riemann surface with genus p and n ≥ 1 punctures. We assume that 3p−3+n > 0.

Let a be a puncture of S, and Moda
S be the subgroup of the mapping class group ModS that

consists of elements fixing the puncture a. This means that every element θ in Moda
S can be

projected to an element χ in the mapping class group ModeS , where S̃ = S ∪ {a}, under the

forgetful map defined by filling in the puncture a. Let

i : Moda
S → ModeS

denote the projection carrying θ to χ.

Throughout the paper we consider the situation that χ is induced by an irreducible self-map

f of S̃. Here by the term “irreducible” we mean that it does not leave invariant any system of

non-contractible, homotopically independent and simple disjoint loops on S̃. Following Bers [3],

every mapping class can be considered an action on the corresponding Teichmüller space T (S̃)

and thus it can be classified as an elliptic, parabolic, hyperbolic or pseudo-hyperbolic modular

transformation. In [3], Bers proved that χ is induced by an irreducible map if and only if it is

hyperbolic, in which case, we can find a point in T (S̃) so that χ can be induced by a so called

absolutely extremal Teichmüller mapping on a surface that represents the point.

In [7], Kra investigated the problem of characterizing all possible mapping classes in Moda
S

that project to a mapping class in ModeS with a given type. He showed that if χ ∈ ModeS is

hyperbolic or pseudo-hyperbolic, then i−1(χ) consists of only hyperbolic or pseudo-hyperbolic

elements. He also showed that θ ∈ i−1(χ) is hyperbolic whenever χ is hyperbolic and S̃ can

be deformed so that χ and θ are induced by the same absolutely extremal mapping that fixes

a. All these results were obtained by using Bers’ classification for elements of ModeS as well as
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the remarkable Royden’s theorem (see [12, 5]) which states that the Kobayashi metric and the

Teichmüller metric on T (S̃) are the same.

In this paper, we continue to study this problem. We show that if S̃ is a compact Riemann

surface without boundary, or if S̃ is non-compact and f fixes no punctures of S̃, then i−1(χ)

consists of hyperbolic elements whenever χ is hyperbolic. Furthermore, we give a necessary and

sufficient condition for an element θ ∈ i−1(χ) to be hyperbolic in the case that f fixes some

punctures of S̃. Among other things, by utilizing a careful analysis given in Marden and Strebel

[8] on lifts of an absolutely extremal Teichmüller mapping to the universal cover, we show that

if f fixes some punctures of S̃, then there are infinitely many hyperbolic and infinitely many

pseudo-hyperbolic mapping classes in the union
⋃

n≥1

{i−1(χn)}.

Main results are stated in Section 3.

2 Preliminaries

In this section we review some well-known facts and basic properties of Teichmüller Theory.

More details can be found in [2, 3, 7, 8].

Let R be a Riemann surface of finite type (p, n), 2p − 2 + n > 0. Let q be a meromorphic

quadratic differential on R that may have simple poles at some punctures of R. A horizontal

(resp. vertical) trajectory is an smooth arc along which q(z)dz2 > 0 (resp. q(z)dz2 < 0) except

at zeros of q. Following Bers [3], let r be the order of q at a point P (r = −1 if P is a puncture

of R and q has a simple pole at P ). There is a natural local parameter z at P , z(P ) = 0, such

that

q(z) =
(r + 2

2

)2

zrdz2 near P.

Teichmüller’s theorem asserts that if R1 and R2 are two diffeomorphic Riemann surfaces, and

f : R1 → R2 is a quasiconformal map, then in the homotopy class of f there is a unique

quasiconformal map h : R1 → R2, called Teichmüller mapping if it is not conformal, whose

complex dilation satisfies

µh(z) = k
q(z)

|q(z)|
, k < 1,

for a meromorphic quadratic differential on R1 which may have simple poles at punctures of

R1. q is called the initial differential of h. If h : R1 → R2 is a Teichmüller mapping with initial

differential q and dilatation

K =
1 + k

1 − k
,

then there is a unique meromorphic quadratic differential q′ on R2, called terminal differential

of h, such that ∫∫

R1

|q| =

∫∫

R2

|q′|

and the order r of q at a point P is the order of q′ at h(P ). The mapping h−1 is also a

Teichmüller mapping with initial and terminal quadratic differentials −q′ and −q, respectively.

In the case that R1 = R2 = R, a Teichmüller self-mapping h of R is called absolutely

extremal (also the term stable is used) if its terminal quadratic differential coincides with its

initial differential up to a positive constant multiple. For every irreducible self-map of R, Bers

[3] showed that there is a conformal structure µ(R) such that the map can be realized as an

absolutely extremal Teichmüller mapping on µ(R).
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The Teichmüller space is defined as a set of equivalence classes of all conformal structures

µ(R) equipped with quasiconformal homeomorphism w : R → µ(R), where

(w : R → µ(R)) ∼ (w′ : R → µ′(R)),

if there is a conformal map (isometry) w0 : µ(R) → µ′(R) so that w0 ◦ w is isotopic to w′.

Denote [µ] the equivalence class of µ(R). Ahlfors identifies a natural complex structure on

T (R), so T (R) becomes a complex manifold with dimension 3p− 3 + n.

The Teichmüller distance between two points [µ] and [µ′] in T (R) is defined by

〈[µ], [µ′]〉 =
1

2
log K(h),

where h : µ(R) → µ′(R) is the (unique) extremal quasiconformal map in the isotopy class of

w′ ◦ w−1, and K(h) ≥ 1 is the dilatation of h.

Let f be a self-map of R. f naturally defines a mapping class χ that can be regarded as an

action on the corresponding T (R). χ acts on T (R) effectively when R is not in the list: (2, 0),

(1, 2), (1, 1), (0, 4) and (0, 3). Denote

a(χ) = inf
[µ]∈T (R)

〈[µ], χ([µ])〉.

χ is called hyperbolic if a(χ) > 0 and there is a point x0 ∈ T (R) such that a(χ) = 〈x0, χ(x0)〉;

pseudo-hyperbolic if a(χ) > 0 but no such x0 can be found.

Let χ be hyperbolic, and let R be a representative of x0. Then χ is induced by an absolutely

extremal map h on R (see [3]). Assume that q is the associated quadratic differential on R.

From Marden and Strebel [8], q has no critical trajectories connecting any two critical points.

In particular, every trajectory of q on R is dense. Also, for any two points x and y ∈ R fixed

by h, we let α be an arc connecting x and y such that α\{x, y} ⊂ R and α is not contractible.

Then h(α) is not homotopic to α on R.

Let H
2 denote the hyperbolic plane {z ∈ C; Im z > 0}. Each conformal structure µ(R) on

R determines a global quasiconformal automorphism wµ of Ĉ = C ∪ {∞} that fixes 0, 1, ∞

and is conformal on H2 = {z ∈ C; Im z < 0}. wµ(H2) is a Jordan domain (quasidisk) that only

depends on the equivalence class [µ]. The Bers fiber space F (R) is defined as a collection of

pairs endowed with a product structure:

F (R) = {([µ], z); [µ] ∈ T (R), z ∈ wµ(H2)}.

There is a natural projection π : F (R) → T (R) defined by sending point ([µ], z) to [µ]. π is

holomorphic. From [2, Lemma 6.3], each point x in F (R) is represented as ([µ], wµ(a)) for a

fixed but arbitrarily chosen point a ∈ R. Let R′ = R\{a}. There is a map

ϕ : F (R) → T (R′)

defined by sending x to the equivalence class of the conformal structure on R′ determined by

([µ], wµ(a)). [2, Theorem 9] asserts that ϕ is a biholomorphic map (isomorphism) that respects

π and the forgetful map ι : T (R′) → T (R). That is, π = ϕ ◦ ι. See [2] for more details.

Every self-map f on R can be lifted to an automorphism f̂ : H2 → H2 under the universal

covering

̺ : H
2 → R. (2.1)
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Let G denote the covering group of (2.1). Bers [2] introduced the group mod R that consists

of equivalence classes [f̂ ] of f̂ where two lifts f̂ and f̂ ′ : H2 → H2 are equivalent if they induce

the same automorphism (by conjugation) on the covering group G. Since every lift of f is

quasiconformal and it naturally extends to ∂H2, the above statement is equivalent to that

f̂ |∂H2 = f̂ ′|∂H2 . In this manner, G ∼= π1(R, a) is regarded as a normal subgroup of mod R so

that

mod R / G

is isomorphic to ModR, the mapping class group of R. Every element [f̂ ] of mod R acts on

F (R) via:

[f̂ ] ([µ], z) = ([ν], wν ◦ f̂ ◦ (wµ)−1(z)), (2.2)

where ν is the Beltrami coefficient of wµ ◦ f̂−1. In particular, for every g ∈ G,

g ([µ], z) = ([µ], gµ(z)), where gµ = wµ ◦ g ◦ (wµ)−1. (2.3)

Every element in modR acts effectively and fiber-preservingly on F (R), while element in G maps

each fiber of F (R) to itself. The group modR is isomorphic to Moda
R′ under the isomorphism

ϕ∗ : mod R → Moda
R′ defined as

mod R ∋ [f̂ ]
ϕ∗

7−→ ϕ ◦ [f̂ ] ◦ ϕ−1 ∈ Moda
R′ .

We return to our original case, that is, R = S̃ and R′ = S, where S and S̃ are defined in the

introduction. Let χ be a hyperbolic mapping class in ModeS and be induced by a self-map f of

S̃. Without loss of generality we may assume that S̃ is the surface on which f is an absolutely

extremal Teichmüller mapping. Lift f to a self-map f∗ of H2 under (2.1) for R = S̃. Let

θ = ϕ∗([f∗]). θ ∈ Moda
S . Note that every lift of f is of the form:

g1 ◦ f∗ ◦ g2, g1, g2 ∈ G.

But f∗ ◦ g2 = Φ(g2) ◦ f∗, where Φ : G → G is the isomorphism induced by f∗ by conjugation.

Thus every lift of f is of the form:

g ◦ f∗, g ∈ G. (2.4)

So every element in i−1(χ) is of the form ϕ∗(g) ◦ θ.

Write g = gα1

1 ◦gα2

2 ◦· · ·◦gαr
r , where αi are integers and Γ = {g1, · · · gr} is a set of generators

(may not be distinct) of G. Each element of Γ is either parabolic or simple hyperbolic.

From [7, 11, Theorem 2], each mapping class ϕ∗(gi) is induced by either a spin about a,

or a Dehn twist along a loop bounding a punctured disk enclosing a and another puncture

depending on whether or not gi is simple hyperbolic or parabolic. More precisely, when gi is

simple hyperbolic and corresponds to a simple closed geodesic α on S̃, ϕ∗(gi) is induced by a

spin t−1
α′′ ◦ tα′ , where tc is the Dehn twist along a simple loop c and α′ and α′′ are two parallel

simple loops on S so that both loops are homotopic to α on S̃. When gi is parabolic, ϕ∗(gi)

is induced by a simple Dehn twist along a loop on S that bounds a 2-punctured disk on S

containing a and the other puncture of S̃ determined by the conjugacy class of gi under (2.1).

3 Main Results

We see from the previous section that every element in i−1(χ) ⊂ Moda
S is obtained from a

“canonical” mapping class θ followed by a chain of spins or twists. We now further assume that
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f : S̃ → S̃ fixes at least one puncture ζ of S̃. Let f∗ : H2 → H2 be the lift of f with f∗(ζ∗) = ζ∗,

where ζ∗ ∈ ∂H2 satisfies ̺(ζ∗) = ζ. That is, ζ∗ is the fixed point of a parabolic element T of G.

Let {T } denote the conjugacy class of T in G. [f∗] is determined by the boundary value f∗|∂H2

and defines a modular transformation on F (S̃). It determines an element ϕ∗([f∗]) in i−1(χ).

Recall that ϕ∗([f∗]) is denoted by θ.

The main results of this paper are the following:

Theorem 3.1 Let χ ∈ ModeS be a hyperbolic mapping class, and let f : S̃ → S̃ be a

representative of χ.

(1) If either S̃ is a compact Riemann surface without boundary, or S̃ is non-compact and

f fixes no punctures of S̃, then every element in i−1(χ) ⊂ Moda
S is hyperbolic.

(2) If S̃ is of finite type and f fixes a puncture of S̃, then an element θ̂ = ϕ∗([f̂ ]) ∈ Moda
S is

pseudo-hyperbolic if and only if as an element of mod S̃, [f̂ ] commutes with a parabolic element

of G.

By (2.4) we notice that θ̂ can always be written as ϕ∗(g) ◦ θ. Let Eζ ⊂ ∂H2 denote the set

{g(ζ∗) ∈ ∂H
2; for all g ∈ G}. (3.1)

Eζ is a dense subset of ∂H2 and consists of fixed points of elements in the conjugacy class {T }

of T .

As a consequence of Theorem 3.1, we obtain:

Corollary 3.1 Assume that χ ∈ ModeS is a hyperbolic mapping class induced by a map f

that fixes a puncture of S̃. Let f̂ be a lift of f . Then f̂ |∂H2 has no fixed points in Eζ for any

puncture ζ of S̃ if and only if ϕ∗([f̂ ]) ∈ i−1(χ) is a hyperbolic mapping class.

Proof Suppose that there is a parabolic element T ∈ G such that T ◦ [f̂ ] = [f̂ ] ◦ T . Here

both elements are considered elements of mod S̃. Let ζ∗ denote its fixed point. Choose a

sequence ([0], zn) ∈ H2 ⊂ F (S̃) such that zn → ζ∗. We have

T ◦ [f̂ ]([0], zn) = [f̂ ] ◦ T ([0], zn).

From (2.2) and (2.3),

T ◦ [f̂ ]([0], zn) = ([ν], T ν(wν ◦ f̂(zn))) and [f̂ ] ◦ T ([0], zn) = ([ν], wν ◦ f̂(T (zn))),

where ν is the Beltrami coefficient of f−1 and T ν = wν ◦ T ◦ (wν)−1. We thus obtain

T ν(wν ◦ f̂(zn)) = wν ◦ f̂(T (zn)) for all n. (3.2)

Let n → ∞, from (3.2), we get T ◦ f̂(ζ∗) = f̂(ζ∗). This implies that f̂(ζ∗) is also fixed by T .

But T is parabolic which has a unique fixed point in ∂H2. We conclude that f̂(ζ∗) = ζ∗.

Conversely, if f̂ and T share the same fixed point ζ∗ ∈ ∂H2, there is an integer n such that

[f̂ ] ◦ T ◦ [f̂ ]−1 = T n. (3.3)

From [7, 11, Theorem 2], ϕ∗(T n) = (ϕ∗(T ))n is a power of the Dehn twist along the boundary

∂D of a punctured disc D enclosing a and another puncture ζ. Thus ϕ∗([f̂ ])◦ϕ∗(T )◦ϕ∗([f̂ ])−1

keeps ϕ∗([f̂ ])(∂D) invariant. From (3.3), ϕ∗([f̂ ])(∂D) = ∂D. Therefore, ϕ∗([f̂ ]) is reduced by

∂D.
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Remark 3.1 From the same argument as in Corollary 3.1, we see that the canonical

mapping class θ = ϕ∗([f∗]) is a pseudo-hyperbolic mapping class reduced by a simple loop c

that is the boundary of a punctured disk D enclosing a and the puncture ζ of S̃ determined by

T . S\D = S̃\D is the single component on which ϕ∗([f∗]) is irreducible and is obtained from

the map f : S̃ → S̃ by blowing up the puncture ζ.

Corollary 3.2 Assume that f fixes a puncture of S̃. Then there are infinitely many

pseudo-hyperbolic mapping classes in i−1(χ).

Proof To see that there are infinitely many pseudo-hyperbolic mapping classes in i−1(χ),

we notice that for each fixed point x∗ in Eζ , there is an element γ ∈ G such that γ(ζ∗) = x∗.

Consider f̃x = γ ◦ f∗ ◦ γ−1. f̃x is also a lift of f with f̃x(x∗) = x∗. By the same argument in

Theorem 3.1, ϕ∗([f̃x]) is pseudo-hyperbolic. Suppose that there are x∗, y∗ ∈ Eζ with x∗ 6= y∗,

such that f̃x = f̃y. This would imply that there is a lift f̃ = f̃x of f that has two fixed points

lying in Eζ . [8, Lemma 5.4] claims that this is impossible.

It follows that there is an injection of Eζ into a set F of lifts of f . Since Eζ contains infinitely

many elements, so does F . This proves the corollary.

The question as to whether there are always hyperbolic mapping classes in i−1(χn) for each

n has not been answered and will be pursued elsewhere. However, if S̃ is compact, Theorem

3.1 asserts that i−1(χ) consists of hyperbolic mapping classes. If S̃ has some punctures, we can

prove:

Theorem 3.2 Assume that f fixes a puncture of S̃. Then there is an integer N , depending

only on the mapping class χ, such that i−1(χn) contains infinitely many hyperbolic mapping

classes whenever n ≥ N . In particular, there are infinitely many hyperbolic mapping classes in

the union
⋃

n≥1

{i−1(χn)}.

Remark 3.2 Let us now consider a special case that χ is induced by a composition of

Dehn twists. Let α and β be two simple loops on S̃ such that α ∪ β fills S̃ in the sense that

S̃\{α∪ β} is a union of disks and punctured disks. Let tc denote the simple Dehn twist as well

as its mapping class along a simple loop c. [6, Theorem III.3] asserts that for any non-negative

integers m1 and m2, the composition t−m2

β ◦ tm1
α is a hyperbolic mapping class. In this case, one

can prove that the fiber i−1(t−m2

β ◦ tm1
α ) contains infinitely many hyperbolic mapping classes.

The proof appears in [15].

Remark 3.3 It was shown in [7] that for any finite type Riemann surface with genus

p ≥ 2, there is an integer n so that i−1(χn) contains a hyperbolic mapping class. Our approach

is different than [7] and is valid for all cases including p = 1.

Theorem 3.2 follows from:

Theorem 3.3 For every hyperbolic element g ∈ G, there is an integer N , depending on g

and the mapping class of f , such that for n ≥ N , g ◦ (f∗)n has a unique fixed point z in ∂H2,

but z does not belong to Eζ for any puncture ζ of S̃, where Eζ is defined in (3.1).

Proof of Theorem 3.2 By Theorem 3.3, for large n, g ◦ (f∗)n does not commute with

any parabolic elements of G. By Theorem 3.1, θ0 = ϕ∗(g ◦ [f∗]n) = ϕ∗(g) ◦ θn is a hyperbolic

mapping class in i−1(χn). Once θ0 is found, the set

{ϕ∗(g′) ◦ θ0 ◦ ϕ∗(g′)−1; g′ ∈ G} ⊂ i−1(χ)
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consists of infinitely many hyperbolic mapping classes. Theorem 3.2 is proved.

4 Parabolic Elements and 2-punctured Disks

In this section we assume that S̃ has some punctures. That is, G contains some parabolic

elements. Theorem 2 of [7, 11] asserts that for every parabolic element T0 of G, ϕ∗(T0) ∈ Moda
S

is a Dehn twist along a boundary of a topological disk D on S that encloses a and another

puncture determined by the conjugacy class of T0 under (2.1). The converse is stated in the

following lemma.

Lemma 4.1 Let c be the boundary of an arbitrary topological disk D ⊂ S that encloses a and

another puncture ζ of S. Then there is a parabolic element T0 of G such that ϕ∗(T0) ∈ Moda
S

is induced by the Dehn twist along c. Moreover, T0 corresponds to the puncture ζ under (2.1)

if ζ is regarded as a puncture of S̃.

Proof We define a flow in T (S) obtained from pinching the loop c to a cusp. Let x0 be

represented by S, let {xi} ⊂ T (S) be a sequence on the flow such that xi tends to ∂T (S) and

let ci be the loop on Si corresponding to c. Let yi = ϕ−1(xi) ∈ F (S̃). {yi} lies in a single fiber

H2 since the forgetful map ι sends each xi to a fixed point (origin) in T (S̃) represented by S̃.

For each yi there is an element gi in G so that {gi(yi)} lies in a fundamental domain

∆ ⊂ H2 of G. {gi(yi)} cannot lie in a compact subset of ∆. Since there are only finitely many

conjugacy classes of parabolic elements of G, by selecting a subsequence if necessary, we assume

that {gi(yi)} tends to a fixed point of a parabolic element T ′ of G. We have

ρ(gi(yi), T ′(gi(yi))) → 0, as i → ∞, (4.1)

where ρ is the Poincaré metric on H2. Since ϕ : F (S̃) → T (S) is holomorphic, the restriction

ϕ|H2 : H2 → T (S) is holomorphic. From (4.1), we get

〈ϕ∗(gi)(xi), ϕ∗(T ′)ϕ∗(gi)(xi)〉 → 0.

This implies that ϕ∗(T ′) is induced by the Dehn twist along ϕ∗(gi)(ci). Let T0 = gi ◦ T ′ ◦ g−1
i .

It follows that ϕ∗(T0) is the mapping class induced by the Dehn twist along ci. Lemma 4.1 is

proved.

Let c be a simple loop on S. From the same process described in Lemma 4.1, we obtain a

sequence {xi} ⊂ T (S) as well as a sequence of loops {ci}, ci ⊂ Si. Let c̃i is the image loop of ci

on S̃i under the forgetful map ι : T (S) → T (S̃). Let l(ci) denote the hyperbolic length of the

closed geodesic homotopic to ci on Si. Similarly, let l(c̃i) denote the hyperbolic length of the

closed geodesic homotopic to c̃i on S̃i.

Lemma 4.2 Under the situation as above, and in addition we assume that c̃ is non-

contractible on S̃, then l(c̃i) → 0. In particular, x̃i tends to the boundary ∂T (S̃).

Proof Let θ0 be the mapping class of S induced by a simple Dehn twist along c. Since

l(ci) tends to zero,

〈xi, θ0(xi)〉 → 0, as i → ∞. (4.2)

But θ0 projects to a Dehn twist tc̃i
along the loop c̃i. If l(c̃i) does not tend to zero, the

Mumford-Bers theorem [10, 4] asserts that {x̃i} lies in a compact subset of T (S̃). It follows

that

〈x̃i, tc̃i
(x̃i)〉 > M (4.3)
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for a constant M > 0.

Since π ◦ ϕ−1 : T (S) → T (S̃) is holomorphic, it is distance non-increasing. From (4.2), as

i → ∞,

〈x̃i, tc̃i
(x̃i)〉 = 〈π ◦ ϕ−1(xi), tc̃i

(π ◦ ϕ−1(xi))〉

= 〈π ◦ ϕ−1(xi), π ◦ ϕ−1(θ0(xi))〉 ≤ 〈xi, θ0(xi)〉 → 0.

This contradicts (4.3). The lemma is proved.

5 Absolutely Extremal Teichmüller Mappings and Their Lifts

In this section we review some known facts about an absolutely extremal Teichmüller map-

ping on S̃ and its lifts to H2. More details can be found in [8]. Let f : S̃ → S̃ be an absolutely

extremal Teichmüller mapping that fixes a point ζ, ζ being either a puncture or a regular point.

Let f∗ : H2 → H2 be the lift such that f∗(ζ∗) = ζ∗, where ζ∗ ∈ H2∪∂H2 be such that ̺(ζ∗) = ζ

(̺ is defined in (2.1)). ζ∗ ∈ ∂H2 if and only if ζ is a puncture of S̃. Recall that Eζ is defined

in (3.1).

The differential q, associated to the absolutely extremal Teichmüller mapping f on S̃, lifts

to q∗ via

q∗(z) = q(̺(z))̺′(z)2. (5.1)

q∗ defined in (5.1) is a holomorphic function of H
2. It is easy to check that q∗ satisfies

q∗(g(z))g′(z)2 = q∗(z), for all g ∈ G.

From the analysis of Marden and Strebel [8], if ζ∗ ∈ H2, there are 2(r + 2) critical rays (both

horizontal and vertical) originated from ζ∗ that divide H2 into 2(r + 2) triangular regions

∆1, · · · , ∆2(r+2), where each ∆i is bounded by a horizontal critical ray αi, a vertical critical ray

βi, and the part [ξi, ηi] of ∂H2 determined by the endpoints ξi and ηi of αi and βi, respectively.

Note that both ξi and ηi are not fixed points of elements of G.

In the case that ζ∗ ∈ ∂H2, the situation is slightly different. Let T be a parabolic element

of G that fixes ζ∗. All the critical rays originated from ζ∗ constitute the set
⋃

i∈Z

T i(Σ),

where Σ consists of r + 2 horizontal critical rays and r + 2 vertical critical rays. These 2(r + 2)

rays alternate and are labeled counterclockwise. By [8, Lemma 5.4] again, we know that except

for ζ∗, all other end points of T i(Σ), i ∈ Z, are not fixed by elements of G. All these rays divide

H2 into countably many triangular regions that are relabeled as:

· · · , ∆−1, ∆0, ∆1, · · · . (5.2)

We denote by [ξi, ηi] the closed interval ∆i ∩ ∂H2. For each i ∈ Z, ∆i ∪ ∆i+1 is a triangular

region which is either bounded by horizontal critical rays αi, αi+1, or vertical critical rays

βi, βi+1.

Let f∗ be the lift of f that fixes ζ∗. Since f keeps each critical arc on S̃ invariant and ∆i is

bounded by a horizontal critical ray and a vertical critical ray, f∗ keeps each triangular region

∆i (defined in (5.2)) invariant. It was shown in [8] that

(f∗)n(z) → ξi and (f∗)−n(z) → ηi, (5.3)
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whenever n → ∞ and z ∈ ∆i ∪ (ξi, ηi) (where (ξi, ηi) denotes the open interval (∆i ∩ ∂H2)\

{ξi, ηi}). The convergence is uniform if z is bounded away from βi ∪ {ηi}, or from αi ∪ {ξi},

respectively.

Let ∆i ∪ ∆i+1 be a triangular region bounded by αi and αi+1. (Similar discussion applies

when ∆i ∪∆i+1 is bounded by vertical critical rays.) ∆i ∪∆i+1 may contain other pre-images

of critical points of f . From each of these preimages we follow the same procedure to draw

horizontal critical rays and we thus obtain all the pre-images of horizontal critical trajectories

of q on S̃. These rays are mutually disjoint in H2, and so are their end points on ∂H2.

The totality of these rays divide H2 into countably many simply connected regions ∆′
1, ∆

′
2,

· · · . The tessellation {∆′
i} satisfies the following properties:

(i) For i 6= j, either ∆′
i and ∆′

j are disjoint or they are adjacent along a horizontal critical

ray.

(ii) Either f∗ or any element g ∈ G sends a ∆′
i to another ∆′

j and ∆′
i = ∆′

j if and only if

its closure contains a fixed point of f∗.

Note that for each i ∈ Z, f∗(∆i∪∆i+1) = ∆i∪∆i+1 and for every g ∈ G, either g(∆i∪∆i+1)

contains ∆i ∪∆i+1, or is contained in ∆i ∪∆i+1, or is disjoint from ∆i ∪∆i+1. Note also that

the endpoint ξi of αi is a fixed point of f∗ but not a fixed point of any element of G.

6 Proof of Theorem 3.1

Let θ̂ = ϕ∗(g ◦ [f∗]). Suppose that g ◦ [f∗] commutes with a parabolic element T of G.

From [7, 11, Theorem 2], ϕ∗(T ) is induced by a spin whose inner loop is contractible to a

puncture x of S̃. So ϕ∗(T ) can be realized as a Dehn twist tc′ along a loop c′ on S, where c′

bounds a topological disk that encloses a and x. Let fθ̂ be a representative of θ̂ and consider

h = fθ̂ ◦ tc′ ◦ f−1

θ̂
. Obviously, h leaves fθ̂(c

′) invariant. By hypothesis h is isotopic to tc′ . So

fθ̂(c
′) is homotopic to c′ and hence θ̂ is pseudo-hyperbolic.

Conversely, we assume that χ ∈ ModeS is hyperbolic and θ̂, i(θ̂) = χ, is pseudo-hyperbolic.

There is a loop system

C = {c1, . . . , ck}, k ≥ 1, (6.1)

of non-contractible, homotopically independent and homotopically disjoint simple loops such

that fθ̂(C) = C, where again fθ̂ : S → S is a representative of θ̂. There is an integer N such

that fN

θ̂
stabilizes each component of S\C as well as each loop in C and that each component

map is either the identity or irreducible. Let P1, · · · , Pr, r ≥ 1, be the components of S\C.

We define a smooth flow in T (S) that is obtained from pinching the loops in (6.1) to cusps.

Let {xi} ⊂ T (S) be any discrete instances on the flow such that xi → ∂T (S) as i → ∞. Let Si

represent xi, let Pi,j , j = 1, · · · , r, be the corresponding components on Si.

The component maps fN

θ̂
|Pi,j

on Pi,j , if not the identity, is isotopic to a Teichmüller mapping

with dilatation Ki,j . Since fN

θ̂
is reduced by (6.1), from [3], each Ki,j remains bounded during

the pinching process mentioned above. Hence there is a constant K such that Ki,j ≤ K as

i → ∞, j = 1, · · · , k. It follows that

〈xi, θ̂
N (xi)〉 ≤

1

2
logK, i → ∞. (6.2)

Let x̃i = π ◦ ϕ−1(xi) ∈ T (S̃). Since π ◦ ϕ−1 = ι : T (S) → T (S̃) is the forgetful map, The

representative S̃i of x̃i is obtained from Si by filling in the puncture a. Let

R(S̃) = T (S̃) / ModeS
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denote the Riemann moduli space of S̃, and let ̟ : T (S̃) → R(S̃) be the natural projection.

Let Λ ⊂ R(S̃) and Λ′ ⊂ T (S̃) denote the point sets {̟ ◦ π ◦ ϕ−1(xi)} and {π ◦ ϕ−1(xi)},

respectively. There are two cases to consider.

Case 1 Λ is not compact in R(S̃). From Mumford’s theorem [10, 4], there are non-

contractible loops denoted by αi on S̃i such that li = l(αi) → 0 as i → ∞. This implies that

for sufficiently large i there is a small number δi, depending only on S̃i, such that

li < δi < 2bi,

where bi is chosen so that

sinh bi =
1

2 sinh li
2

.

See [9] or [3]. Since χ is hyperbolic, it is induced by an extremal Teichmüller mapping fi. By

[3, Lemma 3], the dilatation

K(fi) ≥
(δi

li

) 1
3p−3+n

. (6.3)

Since li → 0, and δi is chosen to be proportional to log ( 1
li

), from (6.3), there is a constant M

such that

K(fi) ≥
[M

li

(
log

1

li

)] 1
3p−3+n

→ ∞, as li → 0. (6.4)

But fi is the extremal map that induces χ. It follows from (6.4) that

〈x̃i, χ
N (x̃i)〉 ≥ 〈x̃i, χ(x̃i)〉 =

1

2
log K(fi) → ∞. (6.5)

On the other hand, since π ◦ ϕ−1 : T (S) → T (S̃) is holomorphic, it is distance non-increasing.

So by (6.2),

〈x̃i, χ
N (x̃i)〉 = 〈π ◦ ϕ−1(xi), χN ◦ (π ◦ ϕ−1(xi))〉

= 〈π ◦ ϕ−1(xi), π ◦ ϕ−1(θ̂N (xi))〉 ≤ 〈xi, θ̂
N (xi)〉 ≤

1

2
logK.

This contradicts (6.5). So this case cannot happen.

Remark 6.1 Case 1 can also be settled by observing that fN

θ̂
projects to the map fN on

S̃. We adopt a different approach here since the method can also be used to handle various

situations including the case that fN is trivial or a Dehn twist. See [14] for a similar argument.

Case 2 Λ is compact. In this case, there is a subsequence {x̃i} ⊂ Λ′, which may tend to

the boundary ∂T (S̃), such that S̃i has no short closed geodesics. Let yi = ϕ−1(xi) be such that

π(yi) = x̃i. By construction, {xi} lies in the flow defined by a pinching process.

By Lemma 4.2, every loop c̃j , j = 1, · · · , k, is contractible on S̃, and in this case all loops cj

in (6.1) bound disks Dj ⊂ S that enclose a and another puncture xj . However, this case does

not occur when S̃ is closed.

Now we assume that S̃ is not closed and k ≥ 2. In this case, xj are also punctures of S̃

and xj is not contained in Dj′ whenever j 6= j′. But both Dj and Dj′ enclose a. This implies

that cj intersects with cj′ . This contradicts the fact that all loops in (6.1) are homotopically

disjoint.

We conclude that if S̃ is not closed and θ̂ is pseudo-hyperbolic, then k = 1 which says that

(6.1) consists of a single loop, say c1, that bounds a topological disk D ⊂ S enclosing a and
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another puncture x. x can also be regarded as a puncture of S̃. In particular, fθ̂ is reduced by

c1 and is a component map with fθ̂(c1) = c1. By Lemma 4.1, there is a parabolic element T0

in G such that ϕ∗(T0) ∈ Moda
S can be realized as the Dehn twist along c1.

Since θ̂ is reduced by c1, ϕ∗(T0) commutes with θ̂. Recall that θ̂ = ϕ∗(g◦ [f∗]). We conclude

that T0 commutes with g ◦ [f∗]. Theorem 3.1(2) is proved.

Since ι ◦ ϕ∗ = π, the loop c1 bounds only x on S̃ when a is filled in. We see that T0

corresponds to the puncture x of S̃. By using the same argument of Corollary 3.1, we see that

T0 and g◦ [f∗] share the same fixed point x∗ ∈ ∂H2 with ̺(x∗) = x. This implies that f : S̃ → S̃

fixes x, and this contradicts the hypothesis (1) of Theorem 3.1. This completes the proof of

Theorem 3.1.

7 Existence of Hyperbolic Mapping Classes

The aim of this section is to prove Theorem 3.3. Suppose that g ◦ (f∗)n has a fixed point z

in ∂H2 for a large n. Certainly, for any i, z 6= ξi since ξi is a fixed point of f∗ but not fixed by

g (see [8, Lemma 5.4]).

Let x and y be the attracting and repelling fixed points of g. If z lies in (ξk, ξk+1) with

x, y /∈ (ξk, ξk+1), then g(ξk, ξk+1) is disjoint from (ξk, ξk+1) while f∗([ξk, ξk+1]) = [ξk, ξk+1].

Hence, for every n, g ◦ (f∗)n cannot have a fixed point in [ξk, ξk+1]. This is a contradiction.

If z lies in (ξk, ξk+1) and (ξk, ξk+1) contains the attracting fixed point x of g, without loss

of generality we assume that x ∈ (ξk, ηk). If z = x, then g(z) = z while by (5.3), for large n,

(f∗)n(z) → ξk 6= z. So g ◦ (f∗)n cannot fix z. If z ∈ (x, ηk), from (5.3) again, (f∗)n(z) → ξk. In

particular, for n sufficiently large, (f∗)n(z) lies in a small neighborhood of ξk. Hence (f∗)n(z)

lies in (ξk, x). Since x is the attracting fixed point of g, g ◦ (f∗)n(z) also lies in (ξk, x). But z

lies in (x, ηk). So z cannot be a fixed point of g ◦ (f∗)n. Finally, let z ∈ (ηk, ξk+1). Once again

using (5.3), we get that (f∗)n(z) → ξk+1, as n → ∞. Observe that f∗ keeps the closed interval

[ηk, ξk+1] invariant. As a real Möbius transformation, g maps (ηk, ξk+1) to the open interval

g(ηk, ξk+1) so that one of the following must hold:

( i ) g(ηk, ξk+1) contains (ηk, ξk+1),

( ii ) g(ηk, ξk+1) is contained in (ηk, ξk+1),

(iii) g(ηk, ξk+1) is disjoint from (ηk, ξk+1).

In case (iii), g ◦ (f∗)n has no fixed point lying in (ηk, ξk+1). In case (i), (ηk, ξk+1) contains the

repelling fixed point of g. From (5.3), (f∗)n(z) moves away from z. Since (ηk, ξk+1) contains

the repelling fixed point of g, g ◦ (f∗)n(z) moves farther away from z. In particular, g ◦ (f∗)n

has no fixed point in (ηk, ξk+1). In case (ii), (ηk, ξk+1) contains the attracting fixed point of g,

and we must have x ∈ (ηk, ξk+1). This is impossible.

To see that for large n, g ◦ (f∗)n has a fixed point lying in the open interval (ξk, x), we

choose an open interval Ud0
= (ξk, d0), d0 < x. Since x is the attracting fixed point of g,

g(Ud0
) = (d1, d2), where d1 and d2 ∈ (ξk, x). Let d = x − d2. Fix a small δ, 0 < δ < d. From

(5.3), for large n ≥ N , g ◦ (f∗)n(x′) lies in Ud0
whenever x′ ∈ Uδ := {x′′; x−x′′ < δ}. It follows

that

|(f∗)n(x′) − x′| > |(f∗)n(x′) − g ◦ (f∗)n(x′)|.

But when x′ lies in Ud0
for d0 sufficiently small, from (5.3) again,

|(f∗)n(x′) − x′| < |(f∗)n(x′) − g ◦ (f∗)n(x′)|.

Since g ◦ (f∗)n is continuous on ∂H2, by the intermediate-value theorem, there is a point

z ∈ (ξk, x) such that g ◦ (f∗)n(z) = z.
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Next we show that the fixed point z of g ◦ (f∗)n does not lie in Eζ (defined in (3.1)) for any

puncture ζ of S̃. Suppose that for some large n, g ◦ (f∗)n has a fixed point ζ0 ∈ (ξk, x) ∩ Eζ

that is a fixed point of a parabolic element T0 of G. T0 ∈ {T } but T0 is distinct from T . We

have (g ◦ (f∗)n) ◦ T0 ◦ (g ◦ (f∗)n)−1 = T m
0 for some integer m, or

(f∗)n ◦ T0 ◦ (f∗n)−1 = g−1 ◦ T m
0 ◦ g. (7.1)

For a fixed horodisk D0 of T0 at ζ0, the Euclidean area of the horodisk h(D0), h ∈ G, can be

used to describe how far the parabolic element h ◦ T0 ◦ h−1 ∈ {T0} is from T0. Without loss of

generality, we let g be defined by sending any point z′ in H2 to λz′, λ > 1. In this case, 0 is

the repelling fixed point of g and ∞ is the attracting fixed point of g. The element g−1 ◦T m
0 ◦ g

has a horodisk g−1(D0) with the Euclidean area:

∼ O(
1

λ2
).

On the other hand, from (5.3), for any z′ ∈ (ξk, x), (f∗)n(z′) → ξk. Hence the (Euclidean) area

of (f∗)n(D0) can be made to be arbitrarily small, and this would contradict (7.1).

We conclude that for sufficiently large n, g ◦ (f∗)n has no fixed point in Eζ . Theorem 3.3 is

proved.
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