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1 Introduction

Let µ be a non-negative measure on R
d which only satisfies the following growth condition

that there exists a positive constant C0 such that

µ(B(x, r)) ≤ C0r
n (1.1)

for all x ∈ R
d and r > 0, where B(x, r) = {y ∈ R

d : |y−x| < r}, n is a fixed number and 0 < n ≤

d. We call the Euclidean space R
d endowed with the usual Euclidean distance and the measure

satisfying (1.1) a non-homogeneous space, since the measure µ is not necessary to satisfy the

doubling condition which is a key assumption in the analysis on spaces of homogeneous type.

Here, we recall that µ is said to satisfy the doubling condition if there exists some positive

constant C such that µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ suppµ and r > 0. Recently,

considerable attention has been paid to Calderón-Zygmund operator theory in non-homogeneous

spaces and many classical results have been proved still valid in non-homogeneous spaces (see

[2, 6–11]). The motivation for developing the analysis on non-homogeneous spaces and some

examples of non-doubling measures can be found in [16]. We only point out that the analysis
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on non-homogeneous spaces played an essential role in solving the long-standing Painlevé’s

problem by Tolsa in [14].

The purpose of this paper is to investigate the relation between the boundedness of com-

mutators with Lipschitz functions, which include commtators generated by Calderón-Zygmund

operators and Lipschitz functions, in Lebesgue spaces or the Hardy space H1(µ) and some

endpoint estimates for them.

To this end, we first introduce the Lipschitz function in non-homogeneous spaces of Garćıa-

Cuerva and Gatto in [1].

Definition 1.1 Let β > 0 and b ∈ L1
loc (µ). We say that b belongs to the space Lip (β, µ)

if there is a constant C > 0 such that

|b(x) − b(y)| ≤ C|x − y|β (1.2)

for µ-almost every x and y in the support of µ. The minimal constant C appeared in (1.2) is

the Lip (β, µ) norm of b and is denoted simply by ‖b‖Lip (β).

Let b ∈ Lipβ(µ) for 0 < β ≤ 1 and K be a function on R
d × R

d \ {(x, y) : x = y} that

satisfies

|K(x, y)| ≤ C|x − y|−n for x 6= y, (1.3)

and if |x − y| ≥ 2|x − x′|,

|K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| ≤ C
|x − x′|δ

|x − y|n+δ
, (1.4)

where δ ∈ (0, 1] and C > 0 are positive constants independent of x, x′ and y. We define the

commutator Tb associated with the Lipschitz function b and the kernel K satisfying (1.3) and

(1.4) as follows. For any bounded function f with compact support and µ-a.e. x /∈ supp (f),

Tbf(x) =

∫

Rd

[b(x) − b(y)]K(x, y)f(y) dµ(y). (1.5)

Obviously, the commutator generated by the Calderón-Zygmund operator and Lipschitz func-

tion satisfies (1.5) (see [5]). Moreover, the boundedness of Calderón-Zygmund commutators

with Lipschitz functions in Lebesgue spaces and the Hardy space H1(µ), and some endpoint

estimates for them can also be found in [5]. In this paper, we will prove the boundedness of

commutators defined by (1.5) in Lebesgue spaces and the Hardy space H1(µ) is equivalent to

some endpoint estimates satisfied by them. We point out that our result is new even when µ is

the d-dimensional Lebesgue measure.

Before stating our result, we need to recall some necessary notation and definitions.

Throughout this paper, by a cube Q ⊂ R
d, we mean a closed cube with sides parallel to the

axes and centered at some point of supp (µ). For any cube Q ⊂ R
d, we denote its length by

l(Q) and denote its center by xQ. Let α > 1 and β > αn. We say that Q is a (α, β)-doubling

cube if µ(αQ) ≤ βµ(Q), where αQ denotes the cube with the same center as Q and having the

length αl(Q). It was pointed out by Tolsa in [12] that for any x ∈ supp (µ) and c > 0, there

exists some (α, β)-doubling cube Q centered at x with l(Q) ≥ c. On the other hand, if β > αd,

then for µ - a.e. x ∈ R
d, there exists a sequence of (α, β)-doubling cubes {Qi}i∈N centered at
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x with l(Qi) → 0 as i → ∞. In the sequel, for definiteness, if α and β are not specified, by a

doubling cube we mean a (2, 2d+1)-doubling cube. Especially, for any given cube Q, we denote

by Q̃ the smallest doubling cube in the family {2iQ}i≥0. Given two cubes Q ⊂ R in R
d, set

KQ, R = 1 +

NQ, R∑

i=1

µ(2iQ)

l(2iQ)n
,

where NQ, R is the smallest positive integer i such that l(2iQ) ≥ l(R).

Using the coefficient KQ, R, Tolsa in [12] introduced the function space RBMO(µ) with the

non-doubling measure µ.

Definition 1.2 Let ρ > 1 be some fixed constant. We say that a function f ∈ L1
loc (µ)

belongs to the space RBMO(µ) if there exists some constant C > 0 such that for any cube

Q ⊂ R
d,

1

µ(ρQ)

∫

Q

∣∣∣f(y) − m eQ(f)
∣∣∣ dµ(y) ≤ C,

and for any two doubling cubes Q ⊂ R,

|mQ(f) − mR(f)| ≤ CKQ, R,

where for any cube Q ⊂ R
d, mQ(f) denotes the mean of f over the cube Q, that is,

mQ(f) =
1

µ(Q)

∫

Q

f(y) dµ(y).

The minimal constant C > 0 as above is defined to be the RBMO(µ) norm of f and is denoted

by ‖f‖∗.

Tolsa proved in [12] that the definition of RBMO(µ) is independent of chosen constant ρ,

and that the space RBMO(µ) is the dual of the Hardy space H1(µ). To state the definition of

the Hardy space H1(µ) of Tolsa in [12, 15], we first recall the definition of the “grand” maximal

operator MΦ of Tolsa in [15].

Definition 1.3 Given f ∈ L1
loc (µ), we set

MΦf(x) = sup
ϕ∼x

∣∣∣∣
∫

Rd

f(y)ϕ(y) dµ(y)

∣∣∣∣ ,

where the notation ϕ ∼ x means that ϕ ∈ L1(µ) ∩ C1(Rd) and satisfies

( i ) ‖ϕ‖L1(µ) ≤ 1,

( ii ) 0 ≤ ϕ(y) ≤ 1
|y−x|n for all y ∈ R

d, and

(iii) |∇ϕ(y)| ≤ 1
|y−x|n+1 for all y ∈ R

d, where ∇ = ( ∂
∂x1

, · · · , ∂
∂xd

).

Based on [12, Theorem 1.2], Tolsa defined the Hardy space H1(µ) as follows.

Definition 1.4 The Hardy space H1(µ) is the set of all functions f ∈ L1(µ) satisfying that∫
Rd f dµ = 0 and MΦf ∈ L1(µ). Moreover, the norm of f ∈ H1(µ) is defined by

‖f‖H1(µ) = ‖f‖L1(µ) + ‖MΦf‖L1(µ).
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Here is the main result of this paper.

Theorem 1.1 Let b ∈ Lip(β, µ) for 0 < β ≤ 1. Let K be a function on R
d × R

d \ {(x, y) :

x = y} satisfying (1.3) and (1.4) and the commutator Tb be as in (1.5). Then there exists

a constant C > 0 such that for all bounded function f with compact support, the following

statements are equivalent:

( I ) if 1 < p < n
β and 1

q = 1
p − β

n ,

‖Tbf‖Lq(µ) ≤ C‖b‖Lip(β)‖f‖Lp(µ);

( II ) for all λ > 0,

µ({x ∈ R
d : |Tbf(x)| > λ}) ≤ C‖b‖Lip(β)

{
λ−1‖f‖L1(µ)

}n/(n−β)
;

(III)

‖Tbf‖∗ ≤ C‖b‖Lip(β)‖f‖Ln/β(µ);

(IV)

‖Tbf‖Ln/(n−β)(µ) ≤ C‖b‖Lip(β)‖f‖H1(µ).

Throughout this paper, C denotes a positive constant that is independent of the main

parameters involved but whose value may differ from line to line. Constants with subscripts,

such as C0, do not change in different occurrences. For any index p ∈ [1, ∞], we denote by p′

its conjugate index, namely, 1
p + 1

p

′
= 1. For A ∼ B, we mean that there is a constant C > 0

such that C−1B ≤ A ≤ CB. Similar is A . B.

2 Proof of Theorem 1.1

We begin with the atomic characterization of the Hardy space H1(µ) (see [12, 15]).

Definition 2.1 Let ρ > 1 and 1 < p ≤ ∞. A function b ∈ L1
loc (µ) is called a p-atomic

block if

(1) there exists some cube R such that supp (b) ⊂ R,

(2)
∫

Rd b dµ = 0,

(3) for j = 1, 2, there are functions aj supported on cube Qj ⊂ R and numbers λj ∈ R

such that b = λ1a1 + λ2a2, and

‖aj‖Lp(µ) ≤
{
[µ(ρQj)]

1−1/p KQj , R

}−1

.

Then we define

|b|H1, p
atb (µ) = |λ1| + |λ2|.

We say that f ∈ H1, p
atb (µ) if there are p-atomic blocks {bi}i∈N such that

f =
∞∑

i=1

bi with

∞∑

i=1

|bi|H1, p
atb (µ) < ∞.
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The H1, p
atb (µ) norm of f is defined by

‖f‖H1, p
atb (µ) = inf

{∑

i

|bi|H1, p
atb (µ)

}
,

where the infimum is taken over all the possible decompositions of f in atomic blocks.

It was proved by Tolsa in [12, 15] that the definition of H1, p
atb (µ) is independent of chosen

constant ρ > 1. For 1 < p ≤ ∞, the atomic Hardy spaces H1, p
atb (µ) are just the Hardy space

H1(µ) with equivalent norms.

To prove Theorem 1.1, we need to introduce the Calderón-Zygmund decomposition in [12, 13]

as follows.

Lemma 2.1 For 1 ≤ p < ∞, consider f ∈ Lp(µ) with compact support. For any λ > 0(
with λ >

2d+1‖f‖L1(µ)

‖µ‖ if ‖µ‖ < ∞
)
, there exists a sequence of cubes {Qj} with bounded

overlaps, that is,
∑
j

χQj (x) ≤ C < ∞, such that

(a)
1

µ(2Qj)

∫

Qj

|f(x)|p dµ(x) >
λp

2d+1
;

(b)
1

µ(2ηQj)

∫

ηQj

|f(x)|p dµ(x) ≤
λp

2d+1
for any η > 2;

(c) |f(x)| ≤ λ µ-a. e. on R
d
∖⋃

j

Qj ;

(d) for each fixed j, let Rj be the smallest (6, 6n+1)-doubling cube of the form 6iQj, i ≥ 1.

Set wj =
χQjP

i

χQi
. Then there is a function ϕj with supp ϕj ⊂ Rj and some positive constant C

satisfying

∫

Rd

ϕj(x) dµ(x) =

∫

Qj

f(x)wj(x) dµ(x) and
∑

j

|ϕj(x)| ≤ Cλ.

Moreover, if p = 1,

‖ϕj‖L∞(µ)µ(Rj) ≤ C

∫

Qj

|f(x)| dµ(x),

and if 1 < p < ∞,

{∫

Rj

|ϕj(x)|p dµ(x)
}1/p

[µ(Rj)]
1/p′

≤
C

λp−1

∫

Qj

|f(x)|p dµ(x).

The following lemma plays an important role in the proof of Theorem 1.1 and its proof can

be found in [4].

Lemma 2.2 Let T be a linear operator which is bounded from Lp0(µ) into RBMO(µ) and

from H1(µ) into weak Lp′

0(µ). Then T extends boundedly from Lp(µ) into Lq(µ), where 1 <

p < p0 < ∞ and 1
q = 1

p − 1
p0

.

Now we turn to the proof of Theorem 1.1.

Proof of Theorem 1.1 By the homogeneity, we may assume that ‖b‖Lip(β) = 1.



72 X. L. Fu, Y. Meng and D. C. Yang

(I)⇒(II) Without loss of generality, we may assume that ‖f‖L1(µ) = 1.

It is easy to see that the conclusion (II) holds if λ ≤
2d+1‖f‖L1(µ)

‖µ‖ when ‖µ‖ < ∞. Then

we assume that λ >
2d+1‖f‖L1(µ)

‖µ‖ if ‖µ‖ < ∞. For f and any fixed λ >
2d+1‖f‖L1(µ)

‖µ‖ , applying

Lemma 2.1 with λ replaced by λq0 with q0 = n
n−β , we obtain that with the same notation as in

Lemma 2.1, f = g + h, where

g(x) = f(x)χRd\∪jQj
(x) +

∑

j

ϕj(x),

h(x) = f(x) − g(x) =
∑

j

[wj(x)f(x) − ϕj(x)] =
∑

j

hj(x).

By Lemma 2.1, we can obtain the following properties:

(A)
1

µ(2Qj)

∫

Qj

|f(x)| dµ(x) >
λq0

2d+1
;

(B) |f(x)| ≤ λq0 , µ - a.e. x ∈ R
d
∖⋃

j

Qj ;

(C)

∫

Rj

ϕj(x) dµ(x) =

∫

Qj

f(x)wj(x) dµ(x);

(D) ‖ϕj‖L∞(µ)µ(Rj) .

∫

Qj

|f(x)| dµ(x);

(E)
∑

j

|ϕj(x)| . λq0 .

By (B) and (D), we easily obtain

‖g‖L1(µ) . ‖f‖L1(µ) . 1. (2.1)

From (B) and (E), it follows that for µ - a. e. x ∈ R
d,

|g(x)| . λq0 . (2.2)

Choose 1 < p1 < n
β and 1

q 1
= 1

p1
− β

n . The boundedness of Tb from Lp1(µ) into Lq1(µ), (2.1)

and (2.2) give us that

µ
({

x ∈ R
d : |Tbg(x)| > λ

})
. λ−q1

∫

Rd

|Tbg(x)|q1 dµ(x) . λ−q1‖g‖q1

Lp1(µ)

. λ−q1λq0(p1−1)q1/p1‖f‖
q1/p1

L1(µ) . λ−q0 . (2.3)

The facts (A) and
∑
j

χQj (x) . 1 tell us that

µ
( ⋃

j

2Qj

)
. λ−q0

∫

Rd

|f(y)| dµ(y) . λ−q0 . (2.4)

Noting that f = g +h, from (2.3) and (2.4), we deduce that the proof of (II) can be reduced to

proving that

µ
({

x ∈ R
d
∖⋃

j

2Qj : |Tbh(x)| > λ
})

. λ−q0 . (2.5)
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Let θ be a bounded function satisfying ‖θ‖
Lq′

0(µ)
≤ 1 and supp θ ⊂ R

d
∖⋃

j

2Qj. Then

∫

Rd
∖S

j

2Qj

|Tbh(x)θ(x)| dµ

≤
∑

j

∫

Rd\2Rj

|Tbhj(x)θ(x)| dµ(x) +
∑

j

∫

2Rj\2Qj

|Tbhj(x)θ(x)| dµ(x)

= F1 + F2.

Recall that hj = wjf − ϕj . This together with (C) gives us that

∫

Rd

hj(x) dµ(x) = 0.

By this fact, (1.2)–(1.4) and the Hölder inequality, we have

F1 ≤
∑

j

∫

Rd\2Rj

∫

Rd

|θ(x)||[b(x) − b(y)]K(x, y) − [b(x) − b(xRj )]K(x, xRj )|

× |hj(y)| dµ(y) dµ(x)

≤
∑

j

∫

Rd\2Rj

∫

Rd

|θ(x)||[b(x) − b(y)][K(x, y) − K(x, xRj )]||hj(y)| dµ(y) dµ(x)

+
∑

j

∫

Rd\2Rj

∫

Rd

|θ(x)||[b(xRj ) − b(y)]K(x, xRj )||hj(y)| dµ(y) dµ(x)

.
∑

j

∫

Rd

|hj(y)| dµ(y)

∞∑

i=1

∫

2i+1Rj\2iRj

l(Rj)
δ

l(2iRj)n+δ−β
|θ(x)| dµ(x)

+
∑

j

∫

Rd

|hj(y)| dµ(y)

∞∑

i=1

∫

2i+1Rj\2iRj

l(Rj)
β

l(2iRj)n
|θ(x)| dµ(x)

. ‖θ‖
Lq′

0(µ)

∑

j

∫

Qj

|f(y)| dµ(y)
[ ∞∑

i=1

2−iδ +

∞∑

i=1

2−iβ
]

. 1.

On the other hand, (1.2), (1.3), the Hölder inequality and (1.1) lead to

F2 ≤
∑

j

∫

2Rj\2Qj

|θ(x)||Tb(wjf)(x)| dµ(x) +
∑

j

∫

2Rj

|θ(x)| |Tbϕj(x)| dµ(x)

.
∑

j

∫

2Rj\2Qj

|θ(x)|

|x − xQj |
n−β

dµ(x)

∫

Qj

|f(y)| dµ(y) +
∑

j

{∫

2Rj

|Tbϕj(x)|q0 dµ(x)
}1/q0

.
∑

j

∫

Qj

|f(y)| dµ(y)
{ N2Qj, 2Rj∑

i=1

∫

2i+1Qj\2iQj

1

|x − xQj |
(n−β)q0

dµ(x)
}1/q0

+
∑

j

{∫

2Rj

|Tbϕj(x)|q2 dµ(x)
}1/q2

[µ(2Rj)]
1/q0−1/q2
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.
∑

j

∫

Qj

|f(y)| dµ(y)[K2Qj , 2Rj ]
1/q0 +

∑

j

‖ϕj‖Lp2(µ)[µ(2Rj)]
1/q0−1/q2

.
∑

j

∫

Qj

|f(y)| dµ(y) +
∑

j

‖ϕj‖L∞(µ)µ(2Rj)

. 1,

where we have chosen p2 and q2 such that 1 < p2 < n
β and 1

q 2
= 1

p2
− β

n . And we have also

used the following simply fact that

[K2Qj , 2Rj ]
1/q0 ≤ K2Qj , 2Rj . 1.

The estimates for F1 and F2 indicate (2.5) and this finishes the proof of (I) ⇒ (II).

(II)⇒(III) For any cube Q, let

hQ = mQ(Tb[fχRd\ 4
3Q]).

To prove Tbf ∈ RBMO(µ), we only need to verify that for any cube Q,

1

µ(3
2Q)

∫

Q

|Tbf(x) − hQ| dµ(x) . ‖f‖Ln/β(µ), (2.6)

and for any cubes Q ⊂ R,

|hQ − hR| . KQ, R‖f‖Ln/β(µ). (2.7)

In fact, by (2.6), it is easy to see that if Q is doubling, then

|mQ(Tbf) − hQ| .
1

µ(3
2Q)

∫

Q

|Tbf(x) − hQ| dµ(x) . ‖f‖Ln/β(µ). (2.8)

Moveover, for any cube Q, KQ, eQ . 1, and then by (2.6), (2.7) and (2.8), we obtain that

1

µ(3
2Q)

∫

Q

|Tbf(x) − m eQ(Tbf)| dµ(x)

≤
1

µ(3
2Q)

∫

Q

|Tbf(x) − hQ| dµ(x) + |hQ − h eQ| + |m eQ(Tbf) − h eQ|
. ‖f‖Ln/β(µ). (2.9)

On the other hand, for any doubling cubes Q ⊂ R, from (2.7) and (2.8), it follows that

|mQ(Tbf) − mR(Tbf)| ≤ |mQ(Tbf) − hQ| + |hQ − hR| + |hR − mR(Tbf)| . ‖f‖Ln/β(µ),

which together with (2.9) indicates that Tbf ∈ RBMO(µ) and

‖Tbf‖∗ . ‖f‖Ln/β(µ).

Now we verify (2.6). Decompose

1

µ(3
2Q)

∫

Q

|Tbf(x) − hQ| dµ(x)

≤
1

µ(3
2Q)

∫

Q

|Tb(fχ 4
3Q)(x)| dµ(x) +

1

µ(3
2Q)

∫

Q

|Tb(fχ
Rd\ 4

3Q)(x) − hQ| dµ(x)

= H + I.
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From the Kolmogorov inequality that for 0 < p < q and any function f ≥ 0,

‖f‖Lq, ∞(µ) ≤ sup
E

‖fχE‖Lp(µ)

‖χE‖Ls(µ)
. ‖f‖Lq, ∞(µ),

where Lq, ∞(µ) is just weak Lq(µ), 1
s = 1

p − 1
q , and the supremum is taken for all measurable

sets E with 0 < µ(E) < ∞ (see [3, p. 485]), and the condition (II) of Theorem 1.1, it follows

that

H .
1

µ(3
2Q)

‖χQ‖Ln/β(µ)‖Tb(fχ 4
3 Q)‖Lq0, ∞(µ) .

[µ(Q)]β/n

µ(3
2Q)

‖fχ 4
3 Q‖L1(µ) . ‖f‖Ln/β(µ).

To estimate I, by (1.2)–(1.4), the Hölder inequality and (1.1), we first have that for any x, y ∈ Q,

|Tb(fχ
Rd\ 4

3Q)(x) − Tb(fχ
Rd\ 4

3 Q)(y)|

≤

∫

Rd\ 4
3Q

|[b(x) − b(z)]K(x, z) − [b(y) − b(z)]K(y, z)||f(z)| dµ(z)

≤

∫

Rd\ 4
3Q

|[b(x) − b(z)][K(x, z) − K(y, z)]||f(z)| dµ(z)

+

∫

Rd\ 4
3Q

|[b(x) − b(y)]||K(y, z)||f(z)| dµ(z)

.

∞∑

i=1

∫

2i 4
3Q\2i−1 4

3 Q

|x − y|δ

|x − z|n+δ−β
|f(z)| dµ(z) +

∞∑

i=1

∫

2i 4
3Q\2i−1 4

3Q

|x − y|β

|y − z|n
|f(z)| dµ(z)

. ‖f‖Ln/β(µ)

{ ∞∑

i=1

2−iδ

l(2i 4
3Q)n−β

[
µ
(
2i 4

3
Q

)]1−β/n

+
∞∑

i=1

l(Q)β

l(2i 4
3Q)n

[
µ
(
2i 4

3
Q

)]1−β/n}

. ‖f‖Ln/β(µ).

Therefore,

I . ‖f‖Ln/β(µ).

The estimates for H and I lead to (2.6) immediately.

Now we check (2.7) for chosen {hQ}Q. Let N1 = NQ, R + 1. Write

|hQ − hR| = |mQ(Tb[fχRd\ 4
3 Q]) − mR(Tb[fχRd\ 4

3R])|

≤ |mQ(Tb[fχ2Q\ 4
3Q])| + |mQ(Tb[fχ2N1Q\2Q])| + |mR(Tb[fχ2N1Q\ 4

3 R])|

+ |mQ(Tb[fχRd\2N1Q]) − mR(Tb[fχRd\2N1Q])|

= J1 + J2 + J3 + J4.

An argument similar to the estimate for H tells us that

J1 . ‖f‖Ln/β(µ) and J3 . ‖f‖Ln/β(µ).

Some calculations completely similar to the estimate for I lead to

J4 . ‖f‖Ln/β(µ).
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Finally, we estimate J2. By (1.2), (1.3) and the Hölder inequality, we obtain that for any x ∈ Q,

|Tb(fχ2N1Q\2Q)(x)| .
{ N1−1∑

i=1

∫

2i+1Q\2iQ

1

|x − z|(n−β)q0
dµ(z)

}1/q0

‖f‖Ln/β(µ)

.
{ N1−1∑

i=1

µ(2i+1Q)

l(2i+1Q)n

}1/q0

‖f‖Ln/β(µ) . KQ, R‖f‖Ln/β(µ).

Then

J2 . KQ, R‖f‖Ln/β(µ).

The estimates for J1, J2, J3 and J4 yield (2.7) and thus this completes the proof of (II)⇒(III).

(III)⇒(IV) We first verify that for any cube Q and any bounded function a supported on

Q,
∫

Q

|Tba(x)|q0 dµ(x) . ‖a‖q0

L∞(µ) [µ(2Q)]
q0 . (2.10)

We consider the following two cases.

Case I l(Q) ≤ diam( supp (µ))
20 . By the condition (III) of Theorem 1.1 and [12, Corollary

3.5], we have

∫

Q

|Tba(x) − m eQ(Tba)|q0 dµ(x) . ‖a‖q0

Ln/β(µ)
µ(2Q) . ‖a‖q0

L∞(µ)[µ(2Q)]q0 .

Thus, to prove (2.10), it suffices to verify

|m eQ(Tba)| . ‖a‖L∞(µ)[µ(2Q)]β/n. (2.11)

Let x0 ∈ supp (µ) be the point (or one of the points) in R
d \ (5Q)◦ which is closest to Q,

where (5Q)◦ is the set of all interior points of 5Q. We denote dist(x0, Q) by d0. Assume

that x0 is a point such that some cube with side length 2−id0 and centered at x0, i ≥ 2, is

doubling. Otherwise, we choose y0 in supp (µ)∩B
(
x0,

l(Q)
100

)
such that this is true for y0, and we

interchange x0 with y0 (see [12, pp. 136–137]). We denote by R a cube concentric with Q with

side length max{10d0, l(Q̃)}. It is easy to check K eQ, R . 1. Let Q0 be the biggest doubling

cube centered at x0 with side length 2−id0, i ≥ 2. Then Q0 ⊂ R with KQ0, R . 1, and it is

easy to check that

|mQ0(Tba) − m eQ(Tba)| . ‖Tba‖∗ . ‖a‖Ln/β(µ) . ‖a‖L∞(µ)[µ(Q)]β/n. (2.12)

Note that dist(Q0, Q) ∼ d0 and l(Q) < d0. This together with (1.2) and (1.3) tells us that for

y ∈ Q0,

|Tba(y)| .
µ(Q)

dn−β
0

‖a‖L∞(µ) . [µ(Q)]β/n‖a‖L∞(µ).

Therefore,

|mQ0(Tba)| . [µ(Q)]β/n‖a‖L∞(µ). (2.13)
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The estimates (2.12) and (2.13) lead to (2.11) in this case.

Case II l(Q) > diam ( supp (µ))
20 . We may assume Q is centered at some point of supp (µ)

and l(Q) ≤ 4diam( supp (µ)). Then Q ∩ supp (µ) can be covered by a finite number of cubes,

{Qj}
J
j=1, centered at points of supp (µ) with side length l(Q)

200 . It is quite easy to check that J

only depends on d. We set

aj =
χQj

J∑
i=1

χQi

a.

Since (2.11) is true, if we replace Q by 2Qj which contains the support of aj , by (1.2) and (1.3),

we have

∫

Q

|Tba(x)|q0 dµ(x) .

J∑

j=1

∫

Q\2Qj

|Tbaj(x)|q0 dµ(x) +

J∑

j=1

∫

2Qj

|Tbaj(x)|q0 dµ(x)

.

J∑

j=1

∫

Q\2Qj

[ ∫

Qj

|aj(y)|

|x − y|n−β
dµ(y)

]q0

dµ(x) +

J∑

j=1

‖aj‖
q0

L∞(µ)[µ(4Qj)]
q0

.

J∑

j=1

‖aj‖
q0

L∞(µ)

[µ(Qj)]
q0

l(Qj)n
µ(Q) +

J∑

j=1

‖aj‖
q0

L∞(µ)[µ(4Qj)]
q0

. J‖a‖q0

L∞(µ)µ(2Q)q0 .

Thus (2.11) also holds in this case.

To prove (IV), by the standard argument, it is enough to verify that

‖Tbh‖Lq0(µ) . |h|H1,∞
atb (µ) (2.14)

for any atomic block h with supp (h) ⊂ R, h =
2∑

j=1

λjaj , where the aj ’s are functions as in

Definition 2.1 satisfying the following size condition that

‖aj‖L∞(µ) ≤ [µ(4Qj)]
−1K−1

Qj , R. (2.15)

Write
∫

Rd

|Tbh(x)|q0 dµ(x) =

∫

2R

|Tbh(x)|q0 dµ(x) +

∫

Rd\2R

|Tbh(x)|q0 dµ(x) = L1 + L2.

To estimate L1, further decompose

L1 .

2∑

j=1

|λj |
q0

∫

2Qj

|Tbaj(x)|q0 dµ(x) +

2∑

j=1

|λj |
q0

∫

2R\2Qj

|Tbaj(x)|q0 dµ(x) = L11 + L12.

From (2.10) and (2.15), it follows that

L11 .

2∑

j=1

|λj |
q0‖aj‖

q0

L∞(µ) [µ(4Qj)]
q0 .

2∑

j=1

|λj |
q0 .
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For L12, by (1.2), (1.3) and (2.15), we have

L12 .

2∑

j=1

|λj |
q0

NQj, R∑

i=1

∫

2i+1Qj\2iQj

{∫

Qj

|[b(x) − b(y)]|

|x − y|n
|aj(y)| dµ(y)

}q0

dµ(x)

.

2∑

j=1

|λj |
q0

NQj, R∑

i=1

∫

2i+1Qj\2iQj

{∫

Qj

|aj(y)|

|x − y|n−β
dµ(y)

}q0

dµ(x)

.

2∑

j=1

|λj |
q0

NQj, R∑

i=1

µ(2i+1Qj)

l(2i+1Qj)(n−β)q0
‖aj‖

q0

L∞(µ) [µ(Qj)]
q0

.

2∑

j=1

|λj |
q0KQj , R‖aj‖

q0

L∞(µ) [µ(Qj)]
q0

.

2∑

j=1

|λj |
q0 .

The estimates for L11 and L12 tell us that

L1 . |h|q0

H1,∞
atb (µ)

.

On the other hand, from the fact
∫

Rd h dµ = 0, (1.2), (1.3) and (1.4), it follows that

L2 .

∞∑

k=1

∫

2k+1R\2kR

∣∣∣[b(x) − mR(b)]

∫

R

[
K(x, y) − K(x, xR)

]
h(y) dµ(y)

∣∣∣
q0

dµ(x)

+
∞∑

k=1

∫

2k+1R\2kR

∣∣∣
∫

R

[mR(b) − b(y)]K(x, y)h(y) dµ(y)
∣∣∣
q0

dµ(x)

.

∞∑

k=1

∫

2k+1R\2kR

∣∣∣l(2kR)β

∫

R

|y − xR|
δ

|x − y|n+δ

( 2∑

i=1

|λi||ai(y)|
)

dµ(y)
∣∣∣
q0

dµ(x)

+

∞∑

k=1

∫

2k+1R\2kR

∣∣∣
l(R)β

l(2kR)n

∫

R

( 2∑

i=1

|λi||ai(y)|
)

dµ(y)
∣∣∣
q0

dµ(x)

.
( 2∑

i=1

|λi|
)q0

∞∑

k=1

l(2kR)q0(β−n−δ)l(R)δq0µ(2k+1R)

+
( 2∑

i=1

|λi|
)q0

∞∑

k=1

l(2kR)−q0nl(R)βq0µ(2k+1R)

.
( 2∑

i=1

|λi|
)q0

.

Combining the estimates for L1 and L2 yields (2.14) and this completes the proof of

(III)⇒(IV).

(IV)⇒(I) First we claim that for any cube Q and any function f ∈ L1(µ) with supp (f) ⊂
4
3Q and any x ∈ Q,

1

µ(3
2Q)

∫

Q

|Tbf(y)| dµ(y) . ‖f‖Ln/β(µ). (2.16)
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We also consider two cases.

Case A l(Q) ≤ diam( supp (µ))
20 . We consider the same construction as the one in (III)⇒(IV).

Let Q, Q0 and R be the same as there. We have known that Q, Q0 ⊂ R, KQ, R . 1, KQ0, R . 1

and dist(Q0, Q) ≥ l(Q). Recall also that Q0 is doubling.

Let

g = f + CQ0χQ0 ,

where CQ0 is a constant such that
∫

Rd g dµ = 0. Then g is an atomic block supported in R. It

is easy to check

‖g‖
H

1, n/β
atb (µ)

.
[
µ
(3

2
Q

)]1/q0

‖f‖Ln/β(µ).

This and the fact that H
1, n/β
atb (µ) = H1(µ) imply that

‖g‖H1(µ) .
[
µ
(3

2
Q

)]1/q0

‖f‖Ln/β(µ). (2.17)

For y ∈ Q, we have

|Tb (CQ0χQ0) (y)| .
|CQ0 |µ(Q0)

dist(Q, Q0)n−β
. ‖f‖Ln/β(µ). (2.18)

Then by the Hölder inequality, the condition (V) of Theorem 1.1 and (2.17), we obtain that

∫

Q

|Tbg(y)| dµ(y) =
{ ∫

Q

|Tbg(y)|q0 dµ(y)
}1/q0

µ(Q)1−1/q0

. µ(Q)1−1/q0‖g‖H1(µ) . µ
(3

2
Q

)
‖f‖Ln/β(µ). (2.19)

The estimates (2.18) and (2.19) indicate (2.16).

Case B l(Q) > diam( supp (µ))
20 . By an argument similar to the proof of (2.10) in the case of

l(Q) > diam( supp (µ))
20 , we can prove that (2.16) also holds.

Now we turn to prove (I). By Lemma 2.2, we only need to verify that Tb is bounded from

Ln/β(µ) into RBMO(µ). Repeating the proof of (2.6) and (2.7) step by step with replacing the

weak (L1(µ), Ln/(n−β)(µ)) type estimate of Tb by (2.16) when estimating H, we can prove that

Tb is bounded from Ln/β(µ) into RBMO(µ). This finishes the proof of (V)⇒(I) and, therefore,

the proof of Theorem 1.1.
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