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Abstract In this paper, the authors develop new global perturbation techniques for

detecting the persistence of transversal homoclinic orbits in a more general nondegenerated

system with action-angle variable. The unperturbed system is assumed to have saddle-

center type equilibrium whose stable and unstable manifolds intersect in one dimensional

manifold, and does not have to be completely integrable or near-integrable. By constructing

local coordinate systems near the unperturbed homoclinic orbit, the conditions of existence

of transversal homoclinic orbit are obtained, and the existence of periodic orbits bifurcated

from homoclinic orbit is also considered.
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1 Introduction

In this paper we study the following singular perturbation system with action-angle variable

ż = f(z, I) + εgz(z, I, θ, λ, ε),

İ = εgI(z, I, θ, λ, ε), (1.1)

θ̇ = ω,

where (z, I, θ) ∈ Rn ×Rm × T l, λ ∈ Rk, 0 ≤ ε≪ 1, |λ| ≪ 1, and gz, gI are 2π periodic in each

component of their l dimensional θ variable. The existence and transversality of homoclinic

orbits of the above systems have extensively been studied in recent years (see [1–6] and the

references theirin), where they use geometrical singular perturbation theory and the theory

of invariant manifolds to get conditions for the existence of transversal homoclinic orbit of

completely or near-integrable Hamilton system. In this paper we develop a different method

to solve the same problem for more general system (1.1). First we make a suitable Cr (r ≥ 3)

transformation in a small neighborhood U of equilibrium to flatten the local stable , unstable

and center manifolds, so that system has a simple normal form near the equilibrium, and

moreover we can get the expression of its solutions near the equilibrium using Silnikov coordinate

variables. Then we establish the local coordinate system in a small tangular neighborhood

of unperturbed homoclinic orbit. Thus we can construct Poincaré map induced by system

solutions which can be expressed as an identical transformation summing a Melnikov function
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approximately. Using the Melnikov function we give some sufficient conditions to guarantee

the existence of transversal homoclinic orbit and the existence of periodic orbit bifurcated from

homoclinic orbit. The main method used in this paper is initially employed in [7, 8], and then

extended to the study of homoclinic bifurcation in fast variable space by [9].

2 The Geometrical Structure of Unperturbed and Perturbed System

Consider the Cr (r ≥ 3) system (1.1) and the corresponding unperturbed system

ż = f(z, I), (2.1a)

İ = 0, (2.1b)

θ̇ = ω. (2.1c)

We make the following assumptions:

(H1) There exists I0 ∈ Rm, such that system (2.1a) has a hyperbolic equilibrium z0 = z(I0)

and a homoclinic orbit Γ = {r̂(t) | r̂(±∞) = z0, t ∈ R}. The unstable manifold Wu and stable

manifold W s of z0 are n1-dimensional and n2-dimensional, respectively, with n1 + n2 = n.

Moreover the linearization Dfz(z0, I0) at the equilibrium z0 has simple real eigenvalues λ1,

−λ2 such that the remaining eigenvalues of Dfz(z0, I0) satisfy either Reλ > a > λ1 > 0, or

Reλ < −b < −λ2 < 0 for some positive numbers a, b. For any p ∈ Γ,

(H2)

dim(Wu ∩W s) = dim(TpW
u ∩ TpW

s) = 1.

Span{Tr̂(t)W
u, Tr̂(t)W

s, e−} = Rn, t ≥ T ≫ 1,

Span{Tr̂(t)W
u, Tr̂(t)W

s, e+} = Rn, t ≤ −T ≪ −1, · · ·

where e± = lim
t→±∞

˙̂r(t)

| ˙̂r(t)|
, e+ ∈ Tx0W

s and e− ∈ Tx0W
u are unit eigenvectors corresponding to

−λ2 and λ1, respectively.

Hypothesis (H2) is equivalent to the following strong inclination property:

Tr̂(t)W
u → Tx0W

uu ⊕ e+, t→ +∞,

Tr̂(t)W
s → Tx0W

ss ⊕ e−, t→ −∞.

From the assumption (H1), it is easy to see system (2.1) possesses an l dimensional invariant

torus

M = {(z, I, θ) | z = z0, I = I0, θ ∈ T l}

and a homoclinic manifold

Γ̃0 = {(x, I, θ) | x = r̂(t), I = I0, θ = θ0 + ωt, θ0 ∈ T l, t ∈ R},

Γ̃0 → M as t → ±∞. Now we consider the bifurcations of homoclinic manifold Γ̃0 under

small perturbations. For convenience, we first restrict system (1.1) into the z − I space with

θ = θ0 + ωt, and regard θ0 as a parameter.

Make the transformation

z → z + z0, I → I + I0,
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so that system (1.1) is changed into

ż = f̃(z, I) + εg̃z(z, I, θ, λ, ε),

İ = εg̃I(z, I, θ, λ, ε).
(2.2)

with f̃(0, 0) = 0, θ = θ0 + ωt. We need a further assumption for (2.2):

(H3) g̃z(0, 0, θ, λ, ε) = 0, g̃I(0, 0, θ, λ, ε) = 0, Re (σ(DI g̃
I(0, 0, θ, λ, 0))) 6= 0,

g̃I(z, I, θ, λ, ε) = g̃I
1(z, I) + εg̃I

2(z, I, θ, λ, ε).

Based on center manifold theorem, system (2.2) has a local Cr center manifold W c
loc : X =

Xc(I, θ, λ, ε) satisfying

Xc(0, 0, 0, 0) = 0, Xc
I (0, 0, 0, 0) = −f̃−1

X (0, 0)f̃I(0, 0).

Under the hypothesis (H3), the autonomous part of system (2.2) is

ż = f̃(z, I), İ = εg̃I
1(z, I). (2.3)

The hyperbolicity of g̃I
1 suggests that we can decompose I space into I = (I1, I2) ∈

Rm1 ×Rm2 , m1 +m2 = m, DI g̃
I(0, 0, θ, λ, 0) = diag(C1(λ),−C2(λ)), where Re (σ(C1(λ))) > 0,

Re (σ(−C2(λ))) < 0. Then the second equation of system (2.2) can be decomposed into

İ1 = εg11(z, I) + ε2g12(z, I, θ, λ, ε),

İ2 = εg21(z, I) + ε2g22(z, I, θ, λ, ε).
(2.4)

In the following, we use (z, I) = (x, y, I) to denote the variables belonging to the unstable, stable

and center subspace, respectively, for the autonomous system (2.3). Taking a neighborhood U0

of the origin small enough, then up to a linear transformation (see [9]), we can flatten the stable,

unstable and center manifolds of (2.3) so that system (2.2) becomes the following Cr−1 system

ẋ1 = f11(x, y, I, θ, λ, ε), ẏ1 = f21(x, y, I, θ, λ, ε),

ẋ2 = f12(x, y, I, θ, λ, ε), ẏ2 = f22(x, y, I, θ, λ, ε),

İ1 = εg1(x, y, I, θ, λ, ε), İ2 = εg2(x, y, I, θ, λ, ε)

(2.5)

and the system (2.5) has the following form in U0

ẋ1 = [λ1 + · · · ]x1 +O(|y|) ·O(|x2|) + εgz
1(z, θ, λ, ε),

ẏ1 = [−λ2 + · · · ]y1 +O(|x|) ·O(|y2|) + εgz
2(z, θ, λ, ε),

ẋ2 = [A2 + · · · ]x2 + (O(|y|))x1 +O(x2
1) + εgz

3(z, θ, λ, ε),

ẏ2 = [−B2 + · · · ]y2 + (O(|x|))y1 +O(y2
1) + εgz

4(z, θ, λ, ε),

İ1 = ε[(C1(λ) + · · · )I1 + (O(|x|) +O(|y|)) ·O(|I2|)] + ε2gI
5 ,

İ2 = ε[(−C2(λ) + · · · )I2 + (O(|x|) +O(|y|)) ·O(|I1|)] + ε2gI
6 ,

(2.6)

where Re(σ(A2)) > a, Re(σ(−B2)) < −b, z = (x, y, I), σ(∗) means all eigenvalues of the matrix

(∗) and due to (H3) we know gz
i = O(z), gI

j = O(z), i = 1, 2, 3, 4, j = 5, 6.

Remark 2.1 There is a technique problem in [9], the C∞ bump functions hu and hcs

defined on the open cones will cause the discontinuous of the vector field at O. Therefore, we

should modify the definition of the bump functions so that hu and hcs are defined on balls

centered at O.
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3 Poincaré Map

Our study will be based on the analysis of the poincaré map defined on some local

transversal section of Γ, so we need to set up a local coordinate system near Γ. Denote

f = (f11, f21, f12, f22), r(t) = (r̂(t), 0) = (x1(t), y1(t), x2(t), y2(t), 0), where 0 means the ori-

gin of the I space. Choose a neighborhood U0 small enough, and T large enough such

that r(±T ) ∈ U , x1(−T ) = δ > 0, y1(T ) = δ > 0, where δ is sufficiently small such that

{(x, y, I) : |x|, |y|, |I| < 3δ
2 } ⊂ U0.

Denote

A(t) =
( ∂f

∂(x, y, I)
(r(t), 0), ε

∂(g1, g2)

∂(x, y, I)
(r(t), 0)

)T ∣∣∣
ε=0

.

Consider the linear variational system of (2.5)|ε=0

Ż = A(t)Z (3.1)

and its adjoint system

Ż = −A∗(t)Z. (3.2)

Now we choose a fundamental solution matrix of (3.1) U(t) = (u1(t), u2(t), · · · , u6(t)) satisfying

u1(t) ∈ (Tr(t)W
u + Tr(t)W

s)c ∩ (Tr(t)W
c
loc)

c,

u2(t) = −
ṙ(t)

|ṙ(T )|
∈ Tr(t)W

u ∩ Tr(t)W
s,

u3(t) ∈ Tr(t)W
u, u4(t) ∈ Tr(t)W

s,

u5(t), u6(t) ∈ Tr(t)W
c
loc.

Notice that when ε = 0, İ ≡ 0. So similar to [7], we get

Lemma 3.1 There exist suitable u1(t), u3(t), · · · , u6(t) such that

U(T ) =




u11 0 u31 0 u51 0
u12 1 u32 0 u52 0
0 0 u33 0 u53 0
u14 u24 u34 Id u54 0
0 0 0 0 Id 0
0 0 0 0 0 Id



, U(−T ) =




0 u21 0 u41 0 u61

1 0 0 u42 0 u62

u13 u23 Id u43 0 u63

0 0 0 u44 0 u64

0 0 0 0 Id 0
0 0 0 0 0 Id



,

where u21 < 0, detuii 6= 0, moreover for T ≫ 1 and j 6= i, |uiju
−1
ii | ≪ 1, i = 1, 2, 3, 4, |u24| ≪ 1,

|u23| ≪ |u21|.

Proof Let Z = (z1, · · · , z6)
∗ be the solution of (3.1). Based on ∂(εg1,εg2)

∂(x,y,I) = 0 as ε = 0, we

have

ż5 = 0, ż6 = 0.

If we take u5(−T ) = (0, 0, 0, 0, Id, 0)∗, and u6(T ) = (0, 0, 0, 0, 0, Id)∗, then it follows that

u5(T ) = (u51, · · · , u54, I, 0)∗, u6(−T ) = (u61, · · · , u64, 0, I)
∗.

That u21 < 0 and the existence of u3(t) and u4(t) with the given expressions at ±T are clear if

we notice that Γ leaves the origin along the positive x1− axis and that u3(−T ) and u4(T ) can
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be taken as (0, 0, Id, 0, 0, 0)∗ and (0, 0, 0, Id, 0, 0)∗, respectively. The inequalities det u33 6= 0

and u44 6= 0 follow directly from the strong inclination property.

Based on (H2), we take u0(t) ∈ (Tr(t)W
u + Tr(t)W

s)c ∪ (Tr(t)W
c
loc)

c satisfying u0(−T ) =

(0, 1, 0, 0, 0, 0)∗, u0(T ) = (ũ11, · · · , ũ14, 0, 0)∗. Now let u1(t) = u0(t) − u13u3(t), u13 = ũ13u
−1
33 .

Then we have u1(t) ∈ (Tr(t)W
u + Tr(t)W

s)c ∪ (Tr(t)W
c
loc)

c, and u1(−T ) = (0, 1, u13, 0, 0, 0)∗,

u1(T ) = (u11, u12, 0, u14, 0, 0)∗, where u1i = ũ1i − ũ13u
−1
33 u3i, i = 1, 2, 4. Since u1(T ) ∈

(Tr(T )W
u + Tr(T )W

s)c ∪ (Tr(T )W
c
loc)

c, we must have u11 6= 0.

The others can be proved similarly to [7, 9].

Denote Ψ(t) = (ψ∗
1 , · · · , ψ

∗
6) = U−1∗(t). Then Ψ(t) is a fundamental solution matrix of

(3.2). By using Ψ∗(t)U(t) = Id, the invariance of Tr(t)W
u + Tr(t)W

s and Tr(t)W
c, and the

hypothesis (H2), it is easy to see

exp(µ|t|)ψ1(t) ∈ (Tr(t)W
u + Tr(t)W

s)c ∩ (Tr(t)W
c
loc)

c → 0, t→ ±∞, ∀ 0 ≤ µ < min{λ1, λ2}.

For easy application, instead of using ui as coordinate vectors directly, we take

vi(t) = ui(t), i = 1, 2, 3, 4,

and

v5(t) = (0, 0, 0, 0, Im1×m1 , 0), v6(t) = (0, 0, 0, 0, 0, Im2×m2).

Clearly the I components of v1, v2, v3, v4 are all zero. In the following , we regard

(
v1,−

ṙ

|ṙ(T )|
, v3, v4, v5, v6

)

as a local coordinate system of (2.5) along Γ, which will be used to establish the poincaré map

induced by the flow of (2.5) defined in some tubular neighborhood of homoclinic orbit Γ in the

next section. Denote

s(t) = r(t) +
∑

i6=2

vi(t)ni. (3.3)

Let

S0 = {(x, y, I) = s(T ) : |ni| < δ}, S1 = {(x, y, I) = s(−T ) : |ni| < δ}.

It is easy to see S0 and S1 are two poincaré sections at r(T ) and r(−T ) , respectively. Let δ be

small enough so that S0, S1 ⊂ U .

3.1 Establishment of the regular map F1

First we use the flow of (2.5) to establish the regular map F1: S1 → S0. Set

(x1, y1, x2, y2, I1, I2)
∗ = s(t), t ∈ [−T, T ].

Then substituting it into (2.5) with the I component satisfying (2.4), we get

(ṙ(t) +
∑

i6=2

v̇i(t)ni) +
∑

i6=2

vi(t)ṅi

= ṙ(t) +A(t)
∑

i6=2

vi(t)ni + ε(fε(r(t), α̂, 0), g̃I(r(t), α̂, 0))∗ +O(2),
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where α̂ = (θ, λ), θ = θ0 + ωt. Multiplying the above equations by ψ∗
1 , ψ∗

3 , ψ∗
4 , respectively, we

have

ṅi = εψ̃∗
i [fε(r(t), α̂, 0)] +O(2),

ṅj = εg(r(t), α̂, 0) +O(2),
(3.4)

where ψ̃i is the x− y component of ψi, i = 1, 3, 4, j = 5, 6, g = (g1, g2)
∗. Now integrating two

sides of (3.4) from −T to T , we have

n1(t) = n1(−T ) + ε

∫ t

−T

ψ̃∗
1fε(r(s), α̂, 0)]ds+ h.o.t.,

n3(t) = n3(−T ) + ε

∫ t

−T

ψ̃∗
3fε(r(s), α̂, 0)]ds+ h.o.t.,

n4(t) = n4(−T ) + ε

∫ t

−T

ψ̃∗
4fε(r(s), α̂, 0)]ds+ h.o.t.,

n5(t) = n5(−T ) + ε

∫ t

−T

g1(r(s), α̂, 0)ds+ h.o.t.,

n6(t) = n6(−T ) + ε

∫ t

−T

g2(r(s), α̂, 0)ds+ h.o.t.,

where the higher order terms h.o.t. include O(ε2), O(n2
i (−T )), O(εni(−T )), etc. If we denote

Mi(T, α) =

∫ T

−T

ψ∗
i fε(r(t), α̂, 0)]dt, i = 1, 3, 4,

M5(T, α) =

∫ T

−T

g1(r(t), α̂, 0)dt, M6(T, α) =

∫ T

−T

g2(r(t), α̂, 0)dt,

where α = (θ0, λ), then the regular map F1 : S1 → S0,

q1(n1(−T ), n3(−T ), n4(−T ), n5(−T ), n6(−T )) → q2(n1(T ), n3(T ), n4(T ), n5(T ), n6(T ))

can be expressed in the following form

n1(T ) = n1(−T ) + εM1(T, α) + h.o.t.,

n3(T ) = n3(−T ) + εM3(T, α) + h.o.t.,

n4(T ) = n4(−T ) + εM4(T, α) + h.o.t.,

n5(T ) = n5(−T ) + εM5(T, α) + h.o.t.,

n6(T ) = n6(−T ) + εM6(T, α) + h.o.t.

(3.5)

We call (M1(T, α), M3(T, α), M4(T, α), M5(T, α), M6(T, α)) the Melnikov functions.

3.2 Establishment of the singular map F2

Now we consider the map induced by the flow (2.6) in U0

F2 : S0 → S1, q0(x10, y10, x20, y20, I10, I20) → q1(x11, y11, x21, y21, I11, I21).

Notice that F2 is not well defined at W s ∩ S0, where the x-component is zero, but we can

extend F2 to W s ∩S0 continuously so that F2(W
s ∩S0) ⊂Wu ∩S1 and F (0, δ, 0, δy, I10, I20) =

(0, δ, 0, δx, I11, I21) as ε = 0.
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First we assume λ1 < λ2. Let τ(ρ) be the flying time from q0 ∈ S0 to q1 ∈ S1. We can get

the following expression by variation of constants formula

x1(t) = eλ1(ε)(t−T−τ)
[
x11 + ε

∫ t

T+τ

eλ1(−s+T+τ)g̃1ds
]

+ h.o.t.,

y1(t) = e−λ2(ε)(t−T )
[
y10 + ε

∫ t

T

eλ2(s−T )g̃2ds
]

+ h.o.t.,

x2(t) = eA2(ε)(t−T−τ)x21 + x̂2(t) +O(ε) + h.o.t.,

y2(t) = e−B2(ε)(t−T )y20 + ŷ2(t) +O(ε) + h.o.t.,

I1(t) = eǫC1(λ)(t−T−τ)I11 + h.o.t.,

I2(t) = e−εC2(λ)(t−T )I20 + h.o.t.,

where

T ≤ t ≤ T + τ,

g̃1 = [O(x2) +O(y1) +O(y2) +O(I)],

g̃2 = [O(x1) +O(x2) +O(y2) +O(I)],

x̂2(t) = O(|x11|) ·O(|y|) +O(x2
11),

ŷ2(t) = O(|y10|) ·O(|x|) +O(y2
10),

O(|y|) = O(|y10|) +O(|y20|),

O(|x|) = O(|x11|) +O(|x21|).

In order to guarantee the differentiability of the map at the origin, we set s = e−λ1(ε)τ ,

which is called Silnikov time (see [10]). Notice that s → 0 as τ → +∞. Thus we obtain the

singular map F2 of (2.5) defined by Silnikov variables (x21, y20, I11, I20, s) in U . The expression

of F2 is given by

x10 = x1(T ) ≈ sx11 + ε
−b1

λ1 + λ2
y10,

y11 = y1(T + τ) ≈ sλ2/λ1y10 + ε
b2

λ1 + λ2
x11,

x20 = x2(T ) ≈ sA2/λ1x21 +O(|x11|) ·O(|y0|) +O(x2
11),

y21 = y2(T + τ) ≈ sB2/λ1y20 +O(|y10|) ·O(|x1|) +O(y2
10),

I10 = I1(T ) ≈ sεC1(λ)/λ1I11,

I21 = I2(T + τ) ≈ sεC2(λ)/λ1I20,

(3.6)

where b1 = ∂g̃1

∂y1
|0 and b2 = ∂g̃2

∂x1
|0.

Now we use (3.3) to seek the new coordinate of q0 and q1 in the new coordinate system. Let

q0 = (x10, y10, x
∗
20, y

∗
20, I

∗
10, I

∗
20)

∗ = r(T ) + Z(T )(n10, 0, n
∗
30, n

∗
40, n

∗
50, n

∗
60)

∗,

q1 = (x11, y11, x
∗
21, y

∗
21, I

∗
11, I

∗
21)

∗ = r(−T ) + Z(−T )(n1, 0, n
∗
3, n

∗
4, n

∗
5, n

∗
6)

∗,
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where Z(t) = (v1(t), v2(t), v3(t), · · · , v6(t)). Then, based on r(T ) = (0, δ, 0∗, δ∗y , 0
∗, 0∗)∗ ,

r(−T ) = (δ, 0, δ∗x, 0
∗, 0∗, 0∗)∗, (|δ∗x|, |δ

∗
y | ≪ δ), we have

(n10, 0, n30, n40, n50, n60)
∗ = Z−1(T )(x10, y10 − δ, x20, y20 − δy, I10, I20)

∗,

(n1, 0, n3, n4, n5, n6)
∗(−T ) = Z−1(−T )(x11 − δ, y11, x21 − δx, y21, I11, I21)

∗,
(3.7)

which are equivalent to

n10 = u−1
11 (x10 − u31u

−1
33 x20), n30 = u−1

33 x20,

n40 = y20 − δy − u14u
−1
11 x10 + (u14u

−1
11 u31 − u34)u

−1
33 x20,

n50 = I10, n60 = I20, y10 ≈ δ

(3.8)

and

n1(−T ) = y11 − u42u
−1
44 y21,

n3(−T ) = x21 − δx − u13y11 + (u13u42 − u43)u
−1
44 y21,

n4(−T ) = u−1
44 y21,

n5(−T ) = I11, n6(−T ) = I21, x11 ≈ δ.

(3.9)

Now based on (3.5)–(3.9), we can establish the poincaré map of (2.5) near Γ

F = F1 ◦ F2 : q0 ∈ S0 → q2 ∈ S0,

F (n10, n30, · · · , n60) → (n1(T ), n3(T ), · · · , n6(T )),

which is given by

n1(T ) = δs
λ2
λ1 + εM1(T, α) + ε

b2

λ1 + λ2
x11 + h.o.t.,

n3(T ) = x21 − δx − δu13s
λ2
λ1 + εM3(T, α) +O(ε) + h.o.t.,

n4(T ) = u−1
44 s

B2
λ1 y20 + δs

λ2
λ1 O(|x1|) + εM4(T, α) +O(ε) + h.o.t.,

n5(T ) = I11 + εM5(T, α) + h.o.t.,

n6(T ) = s
εC2(T,λ)

λ1 I20 + εM6(α) + h.o.t.

(3.10)

And its associated successor function

G(s, x21, y20, I11, I20) = (G1, G3, · · · , G6) = (F − I)(n10, n30, · · · , n60) (3.11)

is given by

G1 = δs
λ2
λ1 − u−1

11 δs+ εM1(T, α) + ε
b1 + b2

λ1 + λ2
δ + h.o.t.,

G3 = x21 − δx − δu13s
λ2
λ1 − u−1

33 δsO(|y0|) + εM3(T, α) +O(ε) + h.o.t.,

G4 = −y20 + δy + u14u
−1
11 δs+ εM4(T, α) +O(ε) + h.o.t.,

G5 =
(
Id− s

εC1(λ)

λ1

)
I11 + εM5(T, α) + h.o.t.,

G6 =
(
s

εC2(λ)

λ1 − Id
)
I20 + εM6(T, α) + h.o.t.

(3.12)

It is easy to see system (2.5) has homoclinic orbit (resp. periodic orbit) near Γ if and only if

G = 0 has solution satisfying s = 0 (resp. s > 0).
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4 Existence of Transversal Homoclinic Orbit

In this section, we use the above successor function to study the existence and transversality

of homoclinic orbit. Consider the equation

G(s, x21, y20, I11, I20) = 0. (4.1)

Due to (3.12), equation (4.1)|s=0 is equivalent to

εK(α) +O(ε2) = 0,

x21 − δx + εM3(T, α) +O(ε) + h.o.t. = 0,

− y20 + δy + εM4(T, α) +O(ε) + h.o.t. = 0,

I11 + εM5(T, α) + h.o.t. = 0,

− I20 + εM6(T, α) + h.o.t. = 0,

(4.2)

where K(α) = M1(T, α) + b1+b2
λ1+λ2

δ. If there is an α = α0 = (θ0, λ0) such that K(α0) =

0,Kλ(α0) 6= 0, then by the implicit function theorem, we can claim that there is a (k −

1) dimensional surface λ = λ(θ0, ε), when λ = λ(θ0, ε) and 0 < ε ≪ 1. System (2.2)

has a homoclinic orbit Γ̃ε satisfying Γ̃ε → Γ × {I = 0} as ε → 0+. And the coordinates

{(x1(t), y1(t), x2(t), y2(t), I1(t), I2(t))} on Γ̃ε satisfy x1(−T ) ≈ δ, y1(T ) ≈ δ, x2(−T ) = x̂21,

y2(T ) = ŷ20, I1(−T ) = Î11, I2(T ) = Î20, where x̂21, ŷ20, Î11, Î20 are the unique solutions of

the last four equations of (4.2) as λ = λ(θ0, ε), respectively.

Remark 4.1 In case λ1 > λ2 , we take s = e−λ2τ , similar results can be obtained.

Then for system (1.1), we obtain

Theorem 4.1 Suppose that hypotheses (H1)–(H3) are valid. If there is an α = α0 = (θ0, λ0)

such that K(α0) = 0,Kλ(α0) 6= 0, then there exists a (k − 1)-dimensional parameter surface

λ = λ(θ0, ε) satisfying λ(θ0, 0) = λ0, such that system (1.1) has a unique 1-homoclinic orbit

Γε : Γ̃ε × T l
θ0

near Γ×{I = I0}× T l for λ = λ(θ0, ε) and 0 < ε≪ 1, where T l
θ0

= {θ ∈ T l : θ =

θ0 + ωt}.

Obviously, the orbit Γε is homoclinic to the l dimensional invariant torus M .

Next we use the corresponding tangent map of F to study the transversality problem for

the homoclinic orbit.

By the transversality theory, if we want to prove the stable and unstable manifolds intersect

transversely, we only need to prove that their tangent spaces at the intersection points can span

the whole space. It follows from the above discussion that, to show the transversality of Γε,

it suffices to show that the stable manifolds W s
ε (M) and center-unstable manifolds W cu

ε (M)

intersect transversaly when they are restricted at the section S0 × T l.

Owing to the discussion in Sections 2 and 3, we see that, at the intersection point (q0, θ) of

W s
ε (M) and W cu

ε (M) restricted in the section S0 ×T l , their tangent spaces have the following

expressions

T(q0,θ)W
s
ε (M) = span{v4(T ) +O(ε), v7(T )}

and

T(q0,θ)W
cu
ε (M) =

(
∂F1

∂q1
, ∂F1

∂θ0

0 Id

)
T(q1,θ)W

cu
ε (M),
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where v7(T ) = (0, 0, 0, 0, 0, 0, Id)∗ means the l dimensional unit line vectors, T(q1,θ)W
cu
ε (M) is

the tangent space of W cu
ε (M) restricted in S1 ×T l at the intersection point(q1, θ) with S1×T l,

which satisfies

T(q1,θ)W
cu
ε (M) = span{v3(−T ) +O(ε), v5(−T ), v6(−T ), v7(T )}.

In order to prove W s
ε (M) and W cu

ε (M) intersect transversaly, we need to modify the Poincaré

map F1: S1 → S0 defined by (3.5), so that it can reflect the dependent relation to the coordinate

of original variable q1.

Based on (3.3) and (3.7), we know

q2 = r(T ) + Z(T )(n1(T ), 0, n3(T )∗, n4(T )∗, n5(T )∗, n6(T )∗)∗,

q1 = r(−T ) + Z(−T )(n1(−T ), 0, n3(−T )∗, n4(−T )∗, n5(−T )∗, n6(−T )∗)∗,

which suggests the following expression of F1 in the original coordinate system

q2 = F1(q1) = r(T ) + Z(T )[Z−1
∗ (−T )(q1 − r(−T )) + εM(T, α) + h.o.t.], (4.3)

where

M = (M1, 0,M
∗
3 ,M

∗
4 ,M

∗
5 ,M

∗
6 )∗,

r(T ) ≡ (0, δ, 0∗, δ∗y , 0
∗, 0∗)∗,

r(−T ) ≡ (δ, 0, δ∗x, 0
∗, 0∗, 0∗)∗,

Z−1
∗ (−T ) =




0 1 0 −u42u
−1
44 0 0

0 0 0 0 0 0
−u23u

−1
21 −u13 Id w 0 0

0 0 0 u−1
44 0 0

0 0 0 0 Id 0
0 0 0 0 0 Id



,

where w = (u13u42 + u−1
21 u23u41 − u43)u

−1
44 . Consequently we get

T(q0,θ)W
cu
ε (M) =

(
Z(T )Z−1

∗ (−T ) +O(ε) εZ(T )∂M
∂θ0

0 Id

)
T(q1,θ)W

cu
ε (M).

Let

P =

(
Z−1(T ) 0

0 Id

)
.

It is obvious that the transversality of T(q0,θ)W
s
ε (M) and T(q0,θ)W

cu
ε (M) restricted in the section

S0 × T l is invariant under the action of P . If we notice that v4(T ) and v7(T ) are also invariant

under the action of P , while v3(−T ), v5(−T ), v6(−T ) and v7(T ) are invariant under the action

of P

(
∂F1
∂q1

,
∂F1
∂θ0

0 Id

)
, then by simple calculation we get

span{PT(q0,θ)W
s
ε (M), PT(q0,θ)W

cu
ε (M)}

= span{εv0, v3(−T ) +O(ε), v4(T ) +O(ε), v5(−T ) +O(ε), v6(−T ) +O(ε), v7(T )}

= span{εv0, w3 +O(ε), · · · , wn+m +O(ε), v7(T )},
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where v0 = (∂M1

∂θ0
, 0, 0, 0, 0, 0, 0)∗ means l line vectors, their first components are ∂M1

∂θ01
, · · · , ∂M1

∂θ0l

respectively; wi means the i unit basis in the n+m+ l dimensional space, 3 ≤ i ≤ n+m.

Due to (0, 1, 0, 0, 0, 0)∗ ≈ v2(T ) 6∈ S0, we get the following result immediately.

Theorem 4.2 If the conditions of Theorem 4.1 hold, and
∂M1(T,α0)

∂θ0
has at least one

nonzero component, then the homoclinic orbit Γε obtained in Theorem 4.1 is transversal.

Remark 4.2 The above method can be applied to study the existence of transversal

homoclinic orbit of the more general system

ẋ = f(x, I) + εgx(x, I, θ, λ, ε),

İ = εgI(x, I, θ, λ, ε),

θ̇ = Ω(x, I) + εgθ(x, I, θ, λ, ε).

5 Existence of Multi-pulse Orbit

Now we consider the solutions of G = 0 satisfying s > 0. Since

G̃ =
∂G(s, x21, y20, I11, I20)

∂(s, x21, y20, I11, I20)

is degenerated at (s, x21, y20, I11, I20) = 0 and ε = 0, thus we can not use implicit function

theorem to get the solutions of G = 0. But it follows from (3.12) that the second and third

equations of (4.1): G3 = 0, G4 = 0 always have a unique solution x̃21 = x21(s, ε), ỹ20 = y20(s, ε)

as ε, s sufficiently small. Substituting it into G1 = 0, G5 = 0 and G6 = 0, we see G = 0 is

equivalent to G1 = 0, G5 = 0 and G6 = 0. In case λ2 > λ1 and K(α) 6= 0, it suffices to consider

the following equations

δs
λ2
λ1 − u−1

11 δs+ εK(α) + h.o.t. = 0,

(Id− s
εC1(λ)

λ1 )I11 + εM5(T, α) + h.o.t. = 0,

(s
εC2(λ)

λ1 − Id)I20 + εM6(T, α) + h.o.t. = 0.

(5.1)

Now if u11K(α) > 0, then G1 = 0 has a unique solution s = εδ−1u11K(α) + h.o.t. > 0,

Which also means s = O(ε). Using Taylor formula, sεC1(λ)/λ1 and s−εC2(λ)/λ1 can be expressed

approximately as follows

Id− sεC1/λ1 ≈ −ελ−1
1 C1 ln s, Id− s−εC2/λ1 ≈ ελ−1

1 C2 ln s.

Then from the last two equations of (5.1), we can get

I11 =
λ1C

−1
1 M5(T, α)

ln s
+O(ln−2 s),

I20 = −
λ1C

−1
2 M6(T, α)

ln s
+O(ln−2 s).

Thus system (1.1) has an orbit near Γ × {I0} × T l as following

Γ̃ε = {(x1(t), y1(t), x2(t), y2(t), I1(t), I2(t), θ(t)) : t ∈ R}
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and

Γ̃ε → Γ × {I0} × {θ0 + ωt : t ∈ R}, ε→ 0,

which satisfies

x1(−T ) ≈ δ, y1(T ) ≈ δ, x2(−T ) = x̃21, y2(T ) = ỹ20,

I1(−T ) = I11, I2(T ) = I20, θ(t) = θ0 + ωt,

x1(T0) = x1(0), y1(T0) = y1(0), x2(T0) = x2(0), y2(T0) = y2(0),

I1(T0) = I1(0), I2(T0) = I2(0),

where

T0 = 2T + τ = 2T − λ−1
1 ln(εδ−1u11K(α)) +O(ε).

When λ2 < λ1, we substitute s by sλ1/λ2 in (5.1). It is easy to see when K(α) < 0, G1 = 0 has

a unique solution s = −εδ−1K(α) + h.o.t. > 0; while when K(α) > 0, G1 = 0 has no solution

satisfying s > 0. Then we can discuss the existence of Γ̃ε in a similar way as above.

In general, Γ̃ε is not a periodic orbit or quasi-periodic orbit, it may be an orbit tangling

several circle around Γ × {I0} × T l, we call it the multi-pulse orbit.

As a summation, we get the following conclusion

Theorem 5.1 If the hypotheses (H1)–(H3) hold, λ1 6= λ2, K(α) 6= 0, then the following is

true

(1) In case λ2 > λ1, u11K(α) < 0 or λ2 < λ1, K(α) > 0, system (1.1) has no 1-homoclinic

orbit and 1-periodic orbit near Γ × {I = I0} × T l;

(2) In case λ2 > λ1, u11K(α) > 0 or λ2 < λ1, K(α) < 0, system (1.1) has a multi-pulse

orbit Γ̃ε(θ0) near Γ × {I = I0} × T l.

Remark 5.1 When the l components of ω = (ω1, ω2, · · · , ωl) are all not zero, it is easy to

see Γ̃ε is 1-periodic if and only if there exist positive numbers k1, · · · , kl such that

T0 =
2k1π

ω1
= · · · =

2klπ

ωl
. (5.2)
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