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Abstract Consider a system where units have random magnitude entering according to a
homogeneous or nonhomogeneous Poisson process, while in the system, a unit’s magnitude
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1 Introduction

Consider a system, where units have random magnitude entering according to a homo-
geneous or nonhomogeneous Poisson process, staying for a random period of time, and then
departing, while in the system, a unit’s magnitude may change with time. Moreover, a unit’s
length of stay (lifetime) in the system may depend on its initial magnitude.

Let T,k = 1,2,--- be the arrival time sequence. Suppose that the kth entering unit at
time T}, has a lifetime Ly, and a magnitude Xy(s) at time T} + s, for s > 0. We call the kth
unit active (present in the system) at time ¢ if T, <t < Ty + Li. Suppose that

(A1) the unit’s arrival time sequence {T}, k > 1} is generated by a nonhomogenous Poisson
process {N(t),t > 0}, which has continuous intensity function A(t);

(A2) (X(-),L),(X1(+),L1),(X2("),La), -~ is an i.i.d. sequence of random pairs, and in-
dependent of the process {N(t),t > 0}, where {X(¢),t > 0} is a monotone (nonincreasing or
nondecreasing) process;

(A3) P(0O<L<o0)=1and P(L>0)>0.

At time t > 0, the size of the active population is
N(t)
S(t) =Y I(Tp <t <Ty+ L),
k=1
and the proportion of the active population with magnitude exceeding y is
N(t)

e(y;t) = (%) Z I(Tk <t<T+ Lk,Xk(t — Tk) > y)
k=1
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When P(L = co0) = 1 (units never leave the system) Anisimov [2] proved some weak limit

theorems for evolving accumulation process, which are sums of the form Y X (t—T))I(Tk < 1)
k>1

in the above notations. In Rothmann and Russo [5,6], assuming that a unit’s magnitude
remains constant for the duration of its life, and that the arrival time sequence is fixed or the
interarrival time sequence is i.i.d., they obtained some specific limits about the mean magnitude
and percentiles within the active population. In Rothmann and Russo [7, 8], they discussed these
limits further when the arrival time sequence is generated by a Poisson process.

Define the lower function Az (s) = }gf A(t) for s > 0. Rothmann and Russo [8] proved the

following theorems.

Theorem A Suppose that the conditions (Al), (A2), (A3) hold with X a nonincreasing

process. If 1)(‘3 SZ )‘)\L(S)

— 00, and — 1, then

S(t)
ES(t)

6(y:1) -

—1 a.s.

fg P(L > 5,X(5) >y)\(t — s)ds
fot P(L > s)\(t — s)ds

Theorem B Suppose that the conditions (Al), (A2), (A3) hold with X a nonincreasing

process. If for some positive o, we have 0 < A(t) < a+ ¢ for all t > 0, )‘)\L(—(:)) — 1, and

()\(t)) /t P(L > s)ds — oo,
0

logt
then the conclusions of Theorem A remain true.

However, in storage of counters, insurance risk theory, reliability theory, counter models, etc,
it is also of interest to study the limiting behavior of the sum process { Nz(f) Xp(t—Ty), t > 0}
of all unit magnitudes present in the system at time ¢ (cf. Karlin and Tg&llor [3], or Rothmann
and Russo [8]). In this paper, we investigate a version of such system and show some laws of
large numbers about the sum process. We assume:

(C1) The unit’s arrival time sequence {1}, k > 1} is generated by a homogenous or nonho-
mogenous Poisson process {N(t),t > 0}, which has continuous intensity function A(t).

(C2) (X, X4, Xo,-+)isaniid. sequence of nonnegative random variables, and independent
of the process {N(¢),t > 0}.

(C3) The kth entering unit has a magnitude X}, at time T), and then shrinks with time
at the rate h(t — T), a function of the time staying in the system. Here h(t) is a nonnegative
nonincreasing function for ¢ > 0 with ~(0) = 1, and h(t) =0 for ¢ < 0.

Under (C1)—(C3), the process that keeps track of the total magnitude of all units present

in the system at time ¢ is
N(t)

Sny(t) = Z h(t — Ty) Xy

k=1

Now, we give our results as follows.
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Let p=EX, pur = EX" for r > 0. Define for all ¢ > 0 and 0 < r < o0

t

m(t):/ox(s)ds, Lr(t)z/()'hr(t—s)x(s)ds.
Then we have

Theorem 1.1 Suppose that conditions (C1), (C2), (C3) are satisfied, and that . < oo for
somer > 1. If

Li(t) — 00 ast— oo, (1.1)
lim inf Li(th)
to—00 Ll(tQ)

t1—to—o0

Li(t)”

> 1, (1.2)

htrgégf () >0 (1.3)
for some 1 <1’ <r<2o0rl1<r <2<r, then
S t
git()t()) — a.s. ast— oo. (1.4)

Remark 1.1 From the proof of the theorem we shall know that conditions 1 <7/ <7 < 2
orl1 <7’ <2< rcanbereplaced by 1 <7’ <r <2orl <7 <2< rrespectively, if we replace

(1.3) by lim inf m > 0 with § satisfying 8 > L .

Remark 1.2 We can see that conditions (1.2) and (1.3) of Theorem 1.1 is reasonable from

the following two examples.

Example 1.1 Let \(¢) = \t**,t > 0 for some oy > —1, and

1 for0<t<e,
h(t) = t\ @2
(—) fort>e
e
for some —1 < s < 0. Moreover, we assume a1 + o + 1 > 0. Then
)\ta1+1
m(t) = — 00 ast — 00,
ap +1

Li(t) = de™*2B(a1 + 1, + 1)t0rHe2tl 4 p(poataztly  gs ¢ o0,

and therefore

(a1+1)/(a1+a2+1)(t) (AB(ar + 1,00 + 1))((11+1)/(041+(¥2+1)

lim inf =L = > 0,
fee m(t) 0t1A+1
Lq(t
limine 21 > 1,
to—00 Ll(tQ)
t1—to—o0

which implies that conditions (1.1)—(1.3) in Theorem 1.1 are satisfied. Hence (1.4) holds true.

Example 1.2 If take

A for 0 <t <e,
Alt) =
Alogt)*r fort>e
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for some o > —1 instead of A(t) = At®*, ¢ > 0 for some a; > —1, we have also the conclusion
as in Example 1.1

Theorem 1.2 Suppose that conditions (C1), (C2), (C3) and (1.2) are satisfied, and that
there exists a constant M such that Ee®X < M for some a > 0. If

m(t) o0 ast— oo

and
—— >0 (1.5)

for some 0 < 1" <1, then
SN(t)(t)
-
Ly(2)

a.s. ast— oo.

The following is a result about moment convergence.

Theorem 1.3 Suppose that conditions (C1), (C2), (C3) and (1.1),(1.2) are satisfied. If
Ly < 00 for 1 <r <2, then
Snw(t) o
—_—
La(t)

as t — oo.

If, in addition,

(m(t))(rﬂ)/(rfl)
Li(t)

—0 ast— oo, (1.6)

then the conclusion is also true for r > 2.

We are also interested in the case 0 < r < 1, and conjecture that the similar results are true
under suitable conditions. As an example, we give a result, which can easily be obtained from
[1, Theorem 2.3].

Theorem 1.4 Suppose that conditions (C1), (C2), (C3) are satisfied. If p, < oo for some

0<r<1andm(t)— oo ast — oo, then

t t
SN(t)() —0 as ast— oo and SN(t)()

(V)T (m ()

—0 a.s. ast— oo.

Throughout the paper, C' denotes an absolute constant; ¢, denotes a constant depending
only on 7. The values C' and ¢, may vary from line to line.

2 Proofs
We begin with some lemmas before the proofs of theorems.
Lemma 2.1 Suppose that conditions (C1), (C2), (C3) are satisfied. Then for any t > 0,

N(t)
Sney(t) and > h(t — Uy(t)) Xy have the identical distribution, where {U(t), Up(t),k > 1} is a
k=1



The Limiting Behavior for Observations 127
sequence of 1.i.d. random variables with common density function fy(s) = %, 0<s<t, and
independent of N(t) and {Xx,k > 1}.
Proof By the definition of Tk, for given ¢ > 0, we have
{T, <t} ={N(t) > k}
and thus by the increment independence of a Poisson process, for all 0 < s < ¢,k < n, we have

P{N(s) > k, N(t) = n}

P{T; <s|N(t)=n}=

P{N(t) = n}
é:k P{N(s) =i,N(t) = N(s) =n —i}
P{N(t) = n}
3 Chm()!(m(t) = m(s))""
(m(®)"

Hence the conditional density function of T} under the condition {N(t) = n} is given by

Jraiv=ny (s [ 1)
i (GCIA(s)(m(s)) = (m(t) — m(s))" =" — (n —i)CEA(s)(m(s))* (m(t) — m(s))" 1)

_i=k
- (m(#)"

B n! m(s)\ k-1 m(s)\"* A(s)

a (k—l)!(n—k)!(m(t)) (1‘ m(t)) m@py 0=t (2.1)

Let U(t), Uk(t), k > 1 be as in the lemma. Then from well known results on order statistics
and (2.1) we have that the conditional distribution of T}, Ts, - - - , T}, under the condition { N (t) =
n} is just the same as the distribution of sequential order statistics U (t), U2)(t), -, UG (t)
generated by Uy (t),Us(t),- - ,Uyn(f). So we have

P{Sy(t) <z} = Z P{Snw(t) <z | N(t) = n} - PIN(t) = n}

tnqg

{ Z h(t —Tp) Xy <2 | N(t) = n} P{N(t) = n}

1 k=1

{th—U(k) )Xy, < 2| N(t) = }-P{N(t):n}

n

n

Mgibnﬁg

h(t — Up(t) Xy < z | N(t) = n} P{N(t) =n}
k=1

3
Il
_

Mz,l

A3

Since N (t) is a Poisson process, it is easy to show the following lemma.

t—Uk Xk <x}. (2.2)
k=1

Lemma 2.2 Suppose that m(t) — oo as t — co. Then

N(t
L—>1 a.s. ast— oo.
m(t)
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Lemma 2.3 Fizt> 0. If m(t) > 1, then E(N(t)") < ¢, (m(t))" for all r > 0.

Proof First let r be a positive integer n. The characteristic function of the random variable
N(t) is G(s) = exp{m(t)(e!* — 1)}. Then we can conclude that for any integer n > 1, the nth
derivative of G(s)

n—1
G (s) = im(t)e'® Z Cck PG (). (2.3)
k=0

In fact, (2.3) is obvious for n = 1,2. Assuming that it holds for all integers not larger than

n — 1, we have

n—2
G"(s) = (G0 (s))' = (im(t)e'* Y Oh_it G2 (s))
k=0
n—2 n—2
= im(t) (i€ Y Ch "G F 2 (s) + 0 3 Ch it GR I (s))
k=0 k=0
n—1 n—2
= im(t)e” (3 CEZRFGU D (5) 4+ 3 Ch it G (s))
k=0

k=0

n—1
= im(t)e'* Z CsflikG("_k_l)(s).
k=0

Then (2.3) is proved.
Now from (2.3) we can show that
E(N(1)" = |G™(0)] < (m(#))" + 2™ (m(t))"~".

This is obvious for n = 1,2,3. We assume that it holds for integers which are not larger than
n—1 (n >4). Then by (2.3) and the induction hypothesis, we have

E(N(#)" < m(t) i CE_ ((m(t))" 1 4 20012 (i (1)) —h=2)
k=0

< ((m(t))" + 27D ()" ) + 277 207D (mt))
< (m(B)" + 2" (m(t)"
Choosing ¢, = on’ + 1, we obtain the conclusion when r is a positive integer.

For any non-integer r > 0, there exists a positive integer n such that n — 1 < r < n. It is

clear that
E(N(t)" < (B(N(@#)")"< @0+ 4 1)(m(1))".

This completes the proof of Lemma 2.3.

Applying Lemmas 2.1-2.3, we can obtain some moment estimates of the random weighted
sum Sy (4 (t) in terms of the moments of X and L,.(t). By the definition

Lo(t) = EN(t)h"(t — U(t)) = m(t)ER"(t — U(t)).
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Lemma 2.4 Suppose that conditions (C1), (C2), (C3) are satisfied and that p, > 0. Then
we have

(1) ElSnw®)]" < prLe(t) for 0 <r <1

—~

(ii) E|Snw(t) — ( VER(t —U®®))|" < cppurLir(t) for 1 <r < 2.
Further, if m(t) > 1, then
(iil) B[Sy (t) — ( VER(t —UW)|" < copr (m(t))"/*7 Li(t) for r > 2.

Proof We prove only (ii) and (iii), the proof of (i) is similar. By Lemma 2.1 we have
E|Sn () — uN()ER(t = U(#))["

=Y E{lSnw(t) = NOER(t —=U@®)"X | N(t) = n} - P{N(t) = n}
n=1

=> E{’ f:(h(t — Up(t)) Xy, — Eh(t — Uk(t))Xk]T} - P{N(t) =n}.

o)
=1 k=1

If 1 <r < 2, then it follows by the moment inequality for sums of independent random variables
that
E|Sn(t) — uN()Eh(t — U@))["

< ¢ Y nElh(t—U®)X|"- P{N(t) = n} = crpir Lp(t).

n=1

Similarly, for r > 2, by Lemmas 2.1 and 2.3 and the moment inequality (see [4, p.62]) we have
E|SN(f)(t) — uN () Eh(t = U(1))]"

- ZE’ Z (t — Un(0)Xi — Eh(t — Up(0)Xs| - P{N(t) = n}

<ec Z n"/2E|h(t — U(t))X|" - P{N(t) = n}

— CTMlTLr(t)E(N(t))T/Q
m(t)

< Crliy (m(t))T/Q_lLr (t).

Lemma 2.5 (See [4]) Let Xi,---,X, be independent random variables and write S, =

n
> Xi. Suppose there exist positive constants g1, ,gn and T such that
k=1

EetXk Se%gktZ, k=1,---,n

for0<t<T. Let G= > gr. Then for 0 <z <GT
k=1

P(|Sy| > z) < 272126
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Lemma 2.6 Let Xq,---,X, be independent random variables with means zero and write
n

Sp = >, Xg. If there exist constants by, > 0 and a > 0 such that w for alln > 2,
k=1
then for all x > 0, we have

2

P{|S,| > zv/n} < 2exp{ - — rn }
2 > by + 2ax/n
E=1

Proof Fixz >0, and let T' = WL Then for any 0 <t < T < = by the conditions,
2 br+ax\/n
we have
E(th t|Xk| bit?
Be'r = <1 <14+
¢ nzz:o + Z o —an
bkt2( > by + ax\/ﬁ)
<1+ kzln , k=1,---,n.
25 by
k=1
Write N
bk( > bk + aa:\/ﬁ) n
gk = kzln , G= = bk—l—ax\/_
> bk k:l k=1
k=1

By Lemma 2.5, we have

END { 2?n }
P{|S,| > zy/n} < 2expq — =2exp{ — — :
{ 2G } 2 kz::1 by, + 2ax/n

Proof of Theorem 1.1 Case (i) 1 <r <2.
By the Markov inequality and Lemma 2.4, we have

P{ISx(®) = kN ER(E - U®)| > epLa ()} < 2N ) — N ERE Z UE)F

(epLy(t))"
Crpir Ly (1) Cr (2.4)
T (epLa(®)” T (L)t
Choose a nondecreasing sequence {t,,n > 1} satisfying
m(tn) = nr/(rfl)y (25)
by (2.5) and condition (1.3)
Ly(t,) > Cn™/ =", (2.6)

Then, by (2.4), (2.6), Lemma 2.2 and the Borel-Cantelli lemma, we obtain

N Eh(t, — Ut )X, 1 &5 an—ee (2.7)
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From (2.5) and (2.6), we have

m(tn) — m(tn_1) _ n/ =1 — (n — 1)/ 1)

Li(tn) = Crr /(= 1yr) —0 asn— oo (2.8)
Moreover, write
tn o
Laftn) = Latn) = [ o = NG+ [ (hltn =) = bty — DA
tn—1 0
=il +1,. 2.9)

Noting the following facts:
(a) for any € > 0, there exists N > 1 such that L;(¢,) > (1 —€)Li(t,—1) for all n > N by

condition (1.2);
o A(s)ds

ln tn— _ m(tp)—m(tn— .
(b) Li(tn) S Li(tn) - ( L(t,j) 1) — 0 by (28),
(c) I, <0;
we have
Ll(tn)
——— —1 asn— oo. 2.10
Li(tp-1) ( )

Further, when ¢,,_1 < t < ¢,, noting that h(t) is nonincreasing for all ¢ > 0 , we have

N(tn) N(tn-1) N(tn)
Sn(t) < Z h(t —Ty) Xy < Z h(tn—1 — Ti) Xk + Z X,
k=1 k=1 k=N (tn—1)+1
N(tn-1) N(tn) N(tn)
Sy ()= > h(t=Te)Xe > > h(ty —Te)Xe — > X (2.11)
k=1 k=1 k=N (tn_1)+1
tn tn —1 tn
Li(t) < / h(t — s)\(s)ds = / h(t — s)A(s)ds + / h(t — s)A(s)ds
0 0 tn—1

< /0 h(tn—1 — s)A\(s)ds —|—/ A(s)ds = Ly (tp—1) + (m(tn) — m(tn-1)),

‘M@)2174h&—sM@M&:A%h@—sM@MS—/W‘Mt—QMQ%

th—1

EA imwﬂu@@—/ Ms)ds = La(b) — (mt) —m(tn_1).  (2.12)

tn—1

And by the properties of the Poisson process and the independence between { X,k > 1} and
{N(t),t > 0}, we have

N(tn) N(tn)=N(tn-1)
P{‘ S (X - EXk)‘ > 5L1(tn)} - P{‘ S (X EXk)‘ > 5L1(tn)}
k=N (tn_1)+1 k=1
N(tn)=N(tn_1) r
E’ X — EXp)
k=1

(2.13)
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In the same way as the proof of Lemma 2.4, we have

N(tn)

E‘ S (X EXk)‘T < erpir E(N(tp) — N(tno1)) = erpir(mltn) — m(ta_1)). (2.14)
k=N (tn_1)+1

And then by (2.5), (2.6), (2.8), (2.13), (2.14) and the Borel-Cantelli lemma, we have

Ni) Xy Nﬁ’ Xy, — EX),
k=N (tn_1)+1 La(tn) k=N (tn-1)+1 La(tn)
N(tn) = N(tn_1) m(tn) —m(tn_1)
+ - . — 0 as. asn—oo. (2.15
M ) = (far) L1 (tn) (219)

Therefore, it follows by (2.7), (2.11), (2.12) and (2.15) that

N(tn_1) N(tn)
Yo h(tp—1 —Ti) Xk + > Xk
Sy (t) k=1 k=N (tn_1)+1 as N
L) Li(tn) — (m(tn) — m(ta1)) s ’
N(tn) N(tn)
>0 h(tn—1 —Ti) Xk — > Xk

1 k=N(tp—1)+1 a.s.
— W as n — 0Q,

Sny(t) Sk
Li(t) — Li(tn) + (m(tn) — m(tn-1))

which completes the proof of Theorem 1.1 in the case of 1 < r < 2.
Case (ii) r > 2.
By Lemma 2.4, we have
P{Sno(t) — kN (OBt — U®)| = enLa(1)}
_ ElSnw(t) ~ iN ()Rt~ U0)I

(enLa(t))"
r/2—1 r/2—1
Choose a nondecreasing sequence {t,} satisfying
m(t,) = n’. (2.17)
By (2.17) and condition (1.3), we get
Li(t,) > Cn®/"". (2.18)

Then we just follow the same procedure as the proof in the case (i) with (2.4)—(2.6) replaced
by (2.16)—(2.18) respectively, and the proof is completed.

Proof of Theorem 1.2 Let Yy (¢t) = h(t — U(t)) Xk, Zik(t) = Yi(t) — EYy(t). Then by the
cr-inequality we have

_ 2EX} - L(t)

B|Zp(0)]" < 2" HE ()" + (BYR()") < 2"E(Yi(t)" < @) (2.19)
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and by the condition Ee®Xk < M we have

0 o0 Mn!
EX] = n/ 2" P{X}, > x}dr < nM/ 2" ey = —n.
0 0

an

So from (2.19) and (2.20), by Lemma 2.6 with b, = SMLIU) and q = 2 we have

m(t)a?

eu\/_Ll(t))
ZZ > e;le < m(t)
k ( = T 16M Ly (t) 4€uL1(t)
k=1 m(t)a? m(t)a
)2
L (1)
< 2exp "n
{1y+w m()
<9 { Ce? nL1 }

|
|
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(2.20)

(2.21)

Since there exists a constant ¢ such that 1 —exp(—z) > cx for 0 < z <z, given any 0 < ¢ < 1,

it follows from Lemma 2.1 and (2.21) that

Sn)(t)
P N(t)lévli(zft—U(t))_llzg}

- i P{}f:(h(t — Up(t)) Xy — Bh(t — Uk(t))Xk)’ > %ﬁ(ﬂ} P{N(t) = n}
n=1 k=1

082L1 (t)
m(t)

< 2exp{ - m(t)(l — exp ( -
Now we choose a nondecreasing sequence {t,,,n > 1} such that
m(t,) = n.

Then from condition (1.5), we have

Ly (tn) > C(logn)*/™".

)) } <2 eXp{—C&QLl(t)}.

(2.22)

(2.23)

(2.24)

Further, noting that N (¢,,)— N (t,_1) has a Poisson distribution with mean one and Ee®Xx < M

for all £ > 1, we have

N(tn) N(t’ﬂ)

P{ Z Ll(:n) > 5} < Eexp{a Z Xk} ~exp{—aeLq(tn)}

k:N(tn71)+1 k:N(tnfl)Jrl

< M exp{—Cae(logn)"/""},
which implies

N(tn)

— 0 as. asn— oo.

k=N (tn_1)+1 La(tn)

(2.25)
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Then we just follow the same procedure as the proof of Theorem 1.1(i) with (2.4), (2.6), (2.15)
replaced by (2.22)—(2.25) respectively, and the proof is completed.

Proof of Theorem 1.3 (i) Case 1 <r < 2.
By Lemma 2.4, as t — oo, we have

BlSn@ (@) — uN@)ER(t - U™ _ crprLe(t)
Li(t) - L@

— 0. (2.26)

Moreover, we have

EluN@E(t = U(t)) — pm@)Eh({t — U{))["
Li(t)
_ WEIN() —m(b)]" _ p(BIN(t) —m(t)*)/?
m’ (1) - m’ (1)

=p'm 2 ({t) -0 ast—oo.  (2.27)

By (2.26) and (2.27), ¢,-inequality and Lemma 2.2, the proof is completed.

(i) Case r > 2.
By Lemma 2.4 and condition (1.6), as t — oo, we have

E|Snw(t) — uN(t)Eh(t — U(t))|" § enpir (m(8))> VLo (1)
Li(t) - Li(t)

— 0. (2.28)

Moreover, by the Holder inequality, Lemma 2.3 and ¢,-inequality, we have

EluN@)Eh(t —U(t)) — pm@)EL({ - U@))["

Li(t)
_WEIN@) —m@)]" _ p (EIN() —m(t)*)2(EIN () —m(t)P0—)1 2
m"(t) - m"(t)
=coul"m~ Y3 (t) - 0 ast — oo. (2.29)

By (2.28), (2.29), ¢,-inequality and Lemma 2.2, the proof is completed.
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