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1 Introduction

Consider a system, where units have random magnitude entering according to a homo-

geneous or nonhomogeneous Poisson process, staying for a random period of time, and then

departing, while in the system, a unit’s magnitude may change with time. Moreover, a unit’s

length of stay (lifetime) in the system may depend on its initial magnitude.

Let Tk, k = 1, 2, · · · be the arrival time sequence. Suppose that the kth entering unit at

time Tk, has a lifetime Lk, and a magnitude Xk(s) at time Tk + s, for s ≥ 0. We call the kth

unit active (present in the system) at time t if Tk ≤ t < Tk + Lk. Suppose that

(A1) the unit’s arrival time sequence {Tk, k ≥ 1} is generated by a nonhomogenous Poisson

process {N(t), t ≥ 0}, which has continuous intensity function λ(t);

(A2) (X( · ), L), (X1( · ), L1), (X2( · ), L2), · · · is an i.i.d. sequence of random pairs, and in-

dependent of the process {N(t), t ≥ 0}, where {X(t), t ≥ 0} is a monotone (nonincreasing or

nondecreasing) process;

(A3) P (0 ≤ L ≤ ∞) = 1 and P (L > 0) > 0.

At time t ≥ 0, the size of the active population is

S(t) =

N(t)
∑

k=1

I(Tk ≤ t < Tk + Lk),

and the proportion of the active population with magnitude exceeding y is

θ(y; t) = (
1

S(t)
)

N(t)
∑

k=1

I(Tk ≤ t < Tk + Lk, Xk(t − Tk) > y).
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When P (L = ∞) = 1 (units never leave the system) Anisimov [2] proved some weak limit

theorems for evolving accumulation process, which are sums of the form
∑

k≥1

Xk(t−Tk)I(Tk ≤ t)

in the above notations. In Rothmann and Russo [5, 6], assuming that a unit’s magnitude

remains constant for the duration of its life, and that the arrival time sequence is fixed or the

interarrival time sequence is i.i.d., they obtained some specific limits about the mean magnitude

and percentiles within the active population. In Rothmann and Russo [7, 8], they discussed these

limits further when the arrival time sequence is generated by a Poisson process.

Define the lower function λL(s) = inf
t≥s

λ(t) for s > 0. Rothmann and Russo [8] proved the

following theorems.

Theorem A Suppose that the conditions (A1), (A2), (A3) hold with X a nonincreasing

process. If
λ(s)
log s → ∞, and

λL(s)
λ(s) → 1, then

S(t)

ES(t)
−→ 1 a.s .

∣

∣

∣
θ(y; t) −

∫ t

0 P (L > s, X(s) > y)λ(t − s)ds
∫ t

0
P (L > s)λ(t − s)ds

∣

∣

∣
−→ 0 a.s .

Theorem B Suppose that the conditions (A1), (A2), (A3) hold with X a nonincreasing

process. If for some positive α, we have 0 ≤ λ(t) ≤ α + tα for all t > 0, λL(s)
λ(s) → 1, and

( λ(t)

log t

)

∫ t

0

P (L > s)ds → ∞,

then the conclusions of Theorem A remain true.

However, in storage of counters, insurance risk theory, reliability theory, counter models, etc,

it is also of interest to study the limiting behavior of the sum process
{ N(t)

∑

k=1

Xk(t−Tk), t ≥ 0
}

of all unit magnitudes present in the system at time t (cf. Karlin and Taylor [3], or Rothmann

and Russo [8]). In this paper, we investigate a version of such system and show some laws of

large numbers about the sum process. We assume:

(C1) The unit’s arrival time sequence {Tk, k ≥ 1} is generated by a homogenous or nonho-

mogenous Poisson process {N(t), t ≥ 0}, which has continuous intensity function λ(t).

(C2) (X, X1, X2, · · · ) is an i.i.d. sequence of nonnegative random variables, and independent

of the process {N(t), t ≥ 0}.
(C3) The kth entering unit has a magnitude Xk at time Tk, and then shrinks with time

at the rate h(t − Tk), a function of the time staying in the system. Here h(t) is a nonnegative

nonincreasing function for t ≥ 0 with h(0) = 1, and h(t) = 0 for t < 0.

Under (C1)–(C3), the process that keeps track of the total magnitude of all units present

in the system at time t is

SN(t)(t) =

N(t)
∑

k=1

h(t − Tk)Xk.

Now, we give our results as follows.
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Let µ = EX , µr = EXr for r > 0. Define for all t ≥ 0 and 0 < r < ∞

m(t) =

∫ t

0

λ(s)ds, Lr(t) =

∫ t

0

hr(t − s)λ(s)ds.

Then we have

Theorem 1.1 Suppose that conditions (C1), (C2), (C3) are satisfied, and that µr < ∞ for

some r > 1. If

L1(t) → ∞ as t → ∞, (1.1)

lim inf
t2→∞

t1−t2→∞

L1(t1)

L1(t2)
≥ 1, (1.2)

lim inf
t→∞

L1(t)
r′

m(t)
> 0 (1.3)

for some 1 ≤ r′ < r ≤ 2 or 1 ≤ r′ < 2 ≤ r, then

SN(t)(t)

L1(t)
→ µ a.s . as t → ∞. (1.4)

Remark 1.1 From the proof of the theorem we shall know that conditions 1 ≤ r′ < r ≤ 2

or 1 ≤ r′ < 2 ≤ r can be replaced by 1 ≤ r′ ≤ r ≤ 2 or 1 ≤ r′ ≤ 2 ≤ r respectively, if we replace

(1.3) by lim inf
t→∞

L1(t)
r′

m(t) logβ m(t)
> 0 with β satisfying β > r′

r−1 .

Remark 1.2 We can see that conditions (1.2) and (1.3) of Theorem 1.1 is reasonable from

the following two examples.

Example 1.1 Let λ(t) = λtα1 , t ≥ 0 for some α1 > −1, and

h(t) =







1 for 0 ≤ t ≤ e,
( t

e

)α2

for t ≥ e

for some −1 < α2 < 0. Moreover, we assume α1 + α2 + 1 > 0. Then

m(t) =
λtα1+1

α1 + 1
→ ∞ as t → ∞,

L1(t) = λe−α2β(α1 + 1, α2 + 1)tα1+α2+1 + o(tα1+α2+1) as t → ∞,

and therefore

lim inf
t→∞

L
(α1+1)/(α1+α2+1)
1 (t)

m(t)
=

(λβ(α1 + 1, α2 + 1))(α1+1)/(α1+α2+1)

λ
α1+1

> 0,

lim inf
t2→∞

t1−t2→∞

L1(t1)

L1(t2)
≥ 1,

which implies that conditions (1.1)–(1.3) in Theorem 1.1 are satisfied. Hence (1.4) holds true.

Example 1.2 If take

λ(t) =

{

λ for 0 ≤ t ≤ e,

λ(log t)α1 for t ≥ e
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for some α1 > −1 instead of λ(t) = λtα1 , t ≥ 0 for some α1 > −1, we have also the conclusion

as in Example 1.1

Theorem 1.2 Suppose that conditions (C1), (C2), (C3) and (1.2) are satisfied, and that

there exists a constant M such that EeαX ≤ M for some α > 0. If

m(t) → ∞ as t → ∞

and

lim inf
t→∞

Lr′′

1 (t)

log m(t)
> 0 (1.5)

for some 0 < r′′ < 1, then
SN(t)(t)

L1(t)
→ µ a.s. as t → ∞.

The following is a result about moment convergence.

Theorem 1.3 Suppose that conditions (C1), (C2), (C3) and (1.1), (1.2) are satisfied. If

µr < ∞ for 1 < r ≤ 2, then
SN(t)(t)

L1(t)

Lr

−→ µ as t → ∞.

If, in addition,

(m(t))(r−2)/(r−1)

L2
1(t)

→ 0 as t → ∞, (1.6)

then the conclusion is also true for r > 2.

We are also interested in the case 0 < r ≤ 1, and conjecture that the similar results are true

under suitable conditions. As an example, we give a result, which can easily be obtained from

[1, Theorem 2.3].

Theorem 1.4 Suppose that conditions (C1), (C2), (C3) are satisfied. If µr < ∞ for some

0 < r < 1 and m(t) → ∞ as t → ∞, then

SN(t)(t)

(N(t))1/r
→ 0 a.s. as t → ∞ and

SN(t)(t)

(m(t))1/r
→ 0 a.s. as t → ∞.

Throughout the paper, C denotes an absolute constant; cr denotes a constant depending

only on r. The values C and cr may vary from line to line.

2 Proofs

We begin with some lemmas before the proofs of theorems.

Lemma 2.1 Suppose that conditions (C1), (C2), (C3) are satisfied. Then for any t ≥ 0,

SN(t)(t) and
N(t)
∑

k=1

h(t− Uk(t))Xk have the identical distribution, where {U(t), Uk(t), k ≥ 1} is a
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sequence of i.i.d. random variables with common density function fU (s) = λ(s)
m(t) , 0 < s < t, and

independent of N(t) and {Xk, k ≥ 1}.

Proof By the definition of Tk, for given t ≥ 0, we have

{Tk < t} = {N(t) ≥ k}

and thus by the increment independence of a Poisson process, for all 0 < s < t, k ≤ n, we have

P{Tk < s | N(t) = n} =
P{N(s) ≥ k, N(t) = n}

P{N(t) = n}

=

n
∑

i=k

P{N(s) = i, N(t) − N(s) = n − i}

P{N(t) = n}

=

n
∑

i=k

Ci
n(m(s))i(m(t) − m(s))n−i

(m(t))n
.

Hence the conditional density function of Tk under the condition {N(t) = n} is given by

fTk|{N(t)=n}(s | t)

=

n
∑

i=k

(iCi
nλ(s)(m(s))i−1(m(t) − m(s))n−i − (n − i)Ci

nλ(s)(m(s))i(m(t) − m(s))n−i−1)

(m(t))n

=
n!

(k − 1)!(n − k)!

(m(s)

m(t)

)k−1(

1 − m(s)

m(t)

)n−k λ(s)

m(t)
, 0 < s < t. (2.1)

Let U(t), Uk(t), k ≥ 1 be as in the lemma. Then from well known results on order statistics

and (2.1) we have that the conditional distribution of T1, T2, · · · , Tn under the condition {N(t) =

n} is just the same as the distribution of sequential order statistics U(1)(t), U(2)(t), · · · , U(n)(t)

generated by U1(t), U2(t), · · · , Un(t). So we have

P{SN(t)(t) < x} =

∞
∑

n=1

P{SN(t)(t) < x | N(t) = n} · P{N(t) = n}

=

∞
∑

n=1

P
{

n
∑

k=1

h(t − Tk)Xk < x | N(t) = n
}

· P{N(t) = n}

=

∞
∑

n=1

P
{

n
∑

k=1

h(t − U(k)(t))Xk < x | N(t) = n
}

· P{N(t) = n}

=

∞
∑

n=1

P
{

n
∑

k=1

h(t − Uk(t))Xk < x | N(t) = n
}

· P{N(t) = n}

= P
{

N(t)
∑

k=1

h(t − Uk(t))Xk < x
}

. (2.2)

Since N(t) is a Poisson process, it is easy to show the following lemma.

Lemma 2.2 Suppose that m(t) → ∞ as t → ∞. Then

N(t)

m(t)
→ 1 a.s. as t → ∞.
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Lemma 2.3 Fix t > 0. If m(t) ≥ 1, then E(N(t)r) ≤ cr(m(t))r for all r > 0.

Proof First let r be a positive integer n. The characteristic function of the random variable

N(t) is G(s) = exp{m(t)(eis − 1)}. Then we can conclude that for any integer n ≥ 1, the nth

derivative of G(s)

G(n)(s) = im(t)eis
n−1
∑

k=0

Ck
n−1i

kG(n−k−1)(s). (2.3)

In fact, (2.3) is obvious for n = 1, 2. Assuming that it holds for all integers not larger than

n − 1, we have

G(n)(s) = (G(n−1)(s))′ =
(

im(t)eis
n−2
∑

k=0

Ck
n−2i

kG(n−k−2)(s)
)′

= im(t)
(

ieis
n−2
∑

k=0

Ck
n−2i

kG(n−k−2)(s) + eis
n−2
∑

k=0

Ck
n−2i

kG(n−k−1)(s)
)

= im(t)eis
(

n−1
∑

k=0

Ck−1
n−2i

kG(n−k−1)(s) +

n−2
∑

k=0

Ck
n−2i

kG(n−k−1)(s)
)

= im(t)eis
n−1
∑

k=0

Ck
n−1i

kG(n−k−1)(s).

Then (2.3) is proved.

Now from (2.3) we can show that

E(N(t))n = |G(n)(0)| ≤ (m(t))n + 2n2

(m(t))n−1.

This is obvious for n = 1, 2, 3. We assume that it holds for integers which are not larger than

n − 1 (n ≥ 4). Then by (2.3) and the induction hypothesis, we have

E(N(t))n ≤ m(t)
n−1
∑

k=0

Ck
n−1((m(t))n−k−1 + 2(n−k−1)2(m(t))n−k−2)

≤ ((m(t))n + 2(n−1)2(m(t))n−1) + 2n−1 · 2(n−2)2(m(t))n−1

≤ (m(t))n + 2n2

(m(t))n−1.

Choosing cn = 2n2

+ 1, we obtain the conclusion when r is a positive integer.

For any non-integer r > 0, there exists a positive integer n such that n − 1 < r ≤ n. It is

clear that

E(N(t))r ≤
(

E(N(t))n
)r/n≤ (2(r+1)2 + 1)(m(t))r.

This completes the proof of Lemma 2.3.

Applying Lemmas 2.1–2.3, we can obtain some moment estimates of the random weighted

sum SN(t)(t) in terms of the moments of X and Lr(t). By the definition

Lr(t) = EN(t)hr(t − U(t)) = m(t)Ehr(t − U(t)).
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Lemma 2.4 Suppose that conditions (C1), (C2), (C3) are satisfied and that µr > 0. Then

we have

( i ) E|SN(t)(t)|r ≤ µrLr(t) for 0 < r ≤ 1;

( ii ) E|SN(t)(t) − µN(t)Eh(t − U(t))|r ≤ crµrLr(t) for 1 < r ≤ 2.

Further, if m(t) ≥ 1, then

(iii) E|SN(t)(t) − µN(t)Eh(t − U(t))|r ≤ crµr(m(t))r/2−1Lr(t) for r ≥ 2.

Proof We prove only (ii) and (iii), the proof of (i) is similar. By Lemma 2.1 we have

E|SN(t)(t) − µN(t)Eh(t − U(t))|r

=

∞
∑

n=1

E{|SN(t)(t) − N(t)Eh(t − U(t))|rX | N(t) = n} · P{N(t) = n}

=

∞
∑

n=1

E
{∣

∣

∣

n
∑

k=1

(h(t − Uk(t))Xk − Eh(t − Uk(t))Xk

∣

∣

∣

r}

· P{N(t) = n}.

If 1 ≤ r ≤ 2, then it follows by the moment inequality for sums of independent random variables

that

E|SN(t)(t) − µN(t)Eh(t − U(t))|r

≤ cr

∞
∑

n=1

nE|h(t − U(t))X |r · P{N(t) = n} = crµrLr(t).

Similarly, for r ≥ 2, by Lemmas 2.1 and 2.3 and the moment inequality (see [4, p.62]) we have

E|SN(t)(t) − µN(t)Eh(t − U(t))|r

=

∞
∑

n=1

E
∣

∣

∣

n
∑

k=1

(h(t − Uk(t))Xk − Eh(t − Uk(t))Xk

∣

∣

∣

r

· P{N(t) = n}

≤ cr

∞
∑

n=1

nr/2E|h(t − U(t))X |r · P{N(t) = n}

=
crµrLr(t)E(N(t))r/2

m(t)

≤ crµr(m(t))r/2−1Lr(t).

Lemma 2.5 (See [4]) Let X1, · · · , Xn be independent random variables and write Sn =
n
∑

k=1

Xk. Suppose there exist positive constants g1, · · · , gn and T such that

EetXk ≤ e
1

2
gkt2 , k = 1, · · · , n

for 0 ≤ t ≤ T. Let G =
n
∑

k=1

gk. Then for 0 ≤ x ≤ GT

P (|Sn| ≥ x) ≤ 2e−x2/2G.
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Lemma 2.6 Let X1, · · · , Xn be independent random variables with means zero and write

Sn =
n
∑

k=1

Xk. If there exist constants bk > 0 and a > 0 such that
E|Xk|n≤bkn!an−2

2 for all n ≥ 2,

then for all x > 0, we have

P{|Sn| ≥ x
√

n} ≤ 2 exp

{

− x2n

2
n
∑

k=1

bk + 2ax
√

n

}

.

Proof Fix x > 0, and let T = x
√

n
nP

k=1

bk+ax
√

n
. Then for any 0 ≤ t ≤ T < 1

a , by the conditions,

we have

EetXk =

∞
∑

n=0

E(tXk)n

n!
≤ 1 +

∞
∑

n=2

E(t|Xk|)n

n!
≤ 1 +

bkt2

2(1 − at)

≤ 1 +

bkt2
( n

∑

k=1

bk + ax
√

n
)

2
n
∑

k=1

bk

, k = 1, · · · , n.

Write

gk =

bk

( n
∑

k=1

bk + ax
√

n
)

n
∑

k=1

bk

, G =
n

∑

k=1

gk =
n

∑

k=1

bk + ax
√

n.

By Lemma 2.5, we have

P{|Sn| ≥ x
√

n} ≤ 2 exp
{

− (x
√

n)2

2G

}

= 2 exp

{

− x2n

2
n
∑

k=1

bk + 2ax
√

n

}

.

Proof of Theorem 1.1 Case (i) 1 < r ≤ 2.

By the Markov inequality and Lemma 2.4, we have

P{|SN(t)(t) − µN(t)Eh(t − U(t))| ≥ εµL1(t)} ≤ E|SN(t)(t) − µN(t)Eh(t − U(t))|r
(εµL1(t))r

≤ crµrLr(t)

(εµL1(t))r
≤ cr

(L1(t))r−1
. (2.4)

Choose a nondecreasing sequence {tn, n ≥ 1} satisfying

m(tn) = nr/(r−1), (2.5)

by (2.5) and condition (1.3)

L1(tn) ≥ Cnr/(r−1)r′

. (2.6)

Then, by (2.4), (2.6), Lemma 2.2 and the Borel-Cantelli lemma, we obtain

SN(tn)(tn)

N(tn)Eh(tn − U(tn))Xk
→ µ a.s. as n → ∞. (2.7)
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From (2.5) and (2.6), we have

m(tn) − m(tn−1)

L1(tn)
≤ nr/(r−1) − (n − 1)r/(r−1)

Cnr/((r−1)r′)
→ 0 as n → ∞. (2.8)

Moreover, write

L1(tn) − L1(tn−1) =

∫ tn

tn−1

h(tn − s)λ(s)ds +

∫ tn−1

0

(h(tn − s) − h(tn−1 − s))λ(s)ds

=: ln + l′n. (2.9)

Noting the following facts:

(a) for any ε > 0, there exists N ≥ 1 such that L1(tn) ≥ (1 − ε)L1(tn−1) for all n ≥ N by

condition (1.2);

(b) ln
L1(tn) ≤

R
tn
tn−1

λ(s)ds

L1(tn) = m(tn)−m(tn−1)
L1(tn) → 0 by (2.8);

(c) l′n ≤ 0;

we have

L1(tn)

L1(tn−1)
→ 1 as n → ∞. (2.10)

Further, when tn−1 < t ≤ tn, noting that h(t) is nonincreasing for all t ≥ 0 , we have

SN(t)(t) ≤
N(tn)
∑

k=1

h(t − Tk)Xk ≤
N(tn−1)

∑

k=1

h(tn−1 − Tk)Xk +

N(tn)
∑

k=N(tn−1)+1

Xk,

SN(t)(t) ≥
N(tn−1)

∑

k=1

h(t − Tk)Xk ≥
N(tn)
∑

k=1

h(tn − Tk)Xk −
N(tn)
∑

k=N(tn−1)+1

Xk; (2.11)

L1(t) ≤
∫ tn

0

h(t − s)λ(s)ds =

∫ tn−1

0

h(t − s)λ(s)ds +

∫ tn

tn−1

h(t − s)λ(s)ds

≤
∫ tn−1

0

h(tn−1 − s)λ(s)ds +

∫ tn

tn−1

λ(s)ds = L1(tn−1) + (m(tn) − m(tn−1)),

L1(t) ≥
∫ tn−1

0

h(t − s)λ(s)ds =

∫ tn

0

h(t − s)λ(s)ds −
∫ tn

tn−1

h(t − s)λ(s)ds

≥
∫ tn−1

0

h(tn − s)λ(s)ds −
∫ tn

tn−1

λ(s)ds = L1(tn) − (m(tn) − m(tn−1)). (2.12)

And by the properties of the Poisson process and the independence between {Xk, k ≥ 1} and

{N(t), t ≥ 0}, we have

P
{

∣

∣

∣

N(tn)
∑

k=N(tn−1)+1

(Xk − EXk)
∣

∣

∣
≥ εL1(tn)

}

= P
{

∣

∣

∣

N(tn)−N(tn−1)
∑

k=1

(Xk − EXk)
∣

∣

∣
≥ εL1(tn)

}

≤
E

∣

∣

∣

N(tn)−N(tn−1)
∑

k=1

(Xk − EXk)
∣

∣

∣

r

(εL1(tn))r
. (2.13)
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In the same way as the proof of Lemma 2.4, we have

E

∣

∣

∣

N(tn)
∑

k=N(tn−1)+1

(Xk − EXk)
∣

∣

∣

r

≤ crµrE(N(tn) − N(tn−1)) = crµr(m(tn) − m(tn−1)). (2.14)

And then by (2.5), (2.6), (2.8), (2.13), (2.14) and the Borel-Cantelli lemma, we have

N(tn)
∑

k=N(tn−1)+1

Xk

L1(tn)
=

N(tn)
∑

k=N(tn−1)+1

Xk − EXk

L1(tn)

+ µ · N(tn) − N(tn−1)

m(tn) − (tn−1)
· m(tn) − m(tn−1)

L1(tn)
→ 0 a.s. as n → ∞. (2.15)

Therefore, it follows by (2.7), (2.11), (2.12) and (2.15) that

SN(t)(t)

L1(t)
≤

N(tn−1)
∑

k=1

h(tn−1 − Tk)Xk +
N(tn)
∑

k=N(tn−1)+1

Xk

L1(tn) − (m(tn) − m(tn−1))

a.s.−→ µ as n → ∞,

SN(t)(t)

L1(t)
≥

N(tn)
∑

k=1

h(tn−1 − Tk)Xk −
N(tn)
∑

k=N(tn−1)+1

Xk

L1(tn) + (m(tn) − m(tn−1))

a.s.−→ µ as n → ∞,

which completes the proof of Theorem 1.1 in the case of 1 < r ≤ 2.

Case (ii) r > 2.

By Lemma 2.4, we have

P{|SN(t)(t) − µN(t)Eh(t − U(t))| ≥ εµL1(t)}

≤ E|SN(t)(t) − µN(t)Eh(t − U(t))|r
(εµL1(t))r

≤ cr(m(t))r/2−1Lr(t)

(L1(t))r
≤ cr(m(t))r/2−1

(L1(t))r−1
. (2.16)

Choose a nondecreasing sequence {tn} satisfying

m(tn) = n2. (2.17)

By (2.17) and condition (1.3), we get

L1(tn) ≥ Cn2/r′

. (2.18)

Then we just follow the same procedure as the proof in the case (i) with (2.4)–(2.6) replaced

by (2.16)–(2.18) respectively, and the proof is completed.

Proof of Theorem 1.2 Let Yk(t) = h(t−Uk(t))Xk, Zk(t) = Yk(t)−EYk(t). Then by the

cr-inequality we have

E|Zk(t)|n ≤ 2n−1(E(Yk(t))n + (EYk(t))n) ≤ 2nE(Yk(t))n ≤ 2nEXn
k · L1(t)

m(t)
, (2.19)
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and by the condition EeαXk ≤ M we have

EXn
k = n

∫ ∞

0

xn−1P{Xk ≥ x}dx ≤ nM

∫ ∞

0

xn−1e−αxdx =
Mn!

αn
. (2.20)

So from (2.19) and (2.20), by Lemma 2.6 with bk = 8ML1(t)
m(t)α2 and a = 2

α , we have

P
{
∣

∣

∣

n
∑

k=1

Zk

∣

∣

∣
≥ εµnL1(t)

m(t)

}

≤ 2 exp

{

−
( εµ

√
nL1(t)

m(t)

)2

16ML1(t)
m(t)α2 + 4εµL1(t)

m(t)α

}

≤ 2 exp

{

− (εµ)2

16M
α2 + 4εµ

α

· nL1(t)

m(t)

}

≤ 2 exp
{

− Cε2nL1(t)

m(t)

}

. (2.21)

Since there exists a constant c such that 1− exp(−x) ≥ cx for 0 ≤ x ≤ x0, given any 0 < ε < 1,

it follows from Lemma 2.1 and (2.21) that

P
{∣

∣

∣

SN(t)(t)

µN(t)Eh(t − U(t))
− 1

∣

∣

∣
≥ ε

}

=
∞
∑

n=1

P
{∣

∣

∣

n
∑

k=1

(

h(t − Uk(t))Xk − Eh(t − Uk(t))Xk

)

∣

∣

∣
≥ εµnL1(t)

m(t)

}

· P{N(t) = n}

≤ 2

∞
∑

n=1

exp
{

− Cε2nL1(t)

m(t)

}

· (m(t))n

n!
· exp{−m(t)}

≤ 2 exp
{

− m(t)
(

1 − exp
(

− Cε2L1(t)

m(t)

))}

≤ 2 exp{−Cε2L1(t)}. (2.22)

Now we choose a nondecreasing sequence {tn, n ≥ 1} such that

m(tn) = n. (2.23)

Then from condition (1.5), we have

L1(tn) ≥ C(log n)1/r′′

. (2.24)

Further, noting that N(tn)−N(tn−1) has a Poisson distribution with mean one and EeαXk ≤ M

for all k ≥ 1, we have

P
{

N(tn)
∑

k=N(tn−1)+1

Xk

L1(tn)
≥ ε

}

≤ E exp
{

α

N(tn)
∑

k=N(tn−1)+1

Xk

}

· exp{−αεL1(tn)}

≤ M exp{−Cαε(log n)1/r′′},

which implies

N(tn)
∑

k=N(tn−1)+1

Xk

L1(tn)
→ 0 a.s. as n → ∞. (2.25)
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Then we just follow the same procedure as the proof of Theorem 1.1(i) with (2.4), (2.6), (2.15)

replaced by (2.22)–(2.25) respectively, and the proof is completed.

Proof of Theorem 1.3 (i) Case 1 < r ≤ 2.

By Lemma 2.4, as t → ∞, we have

E|SN(t)(t) − µN(t)Eh(t − U(t))|r
Lr

1(t)
≤ crµrLr(t)

Lr
1(t)

→ 0. (2.26)

Moreover, we have

E|µN(t)Eh(t − U(t)) − µm(t)Eh(t − U(t))|r
Lr

1(t)

=
µrE|N(t) − m(t)|r

mr(t)
≤ µr(E|N(t) − m(t)|2)r/2

mr(t)
= µrm−r/2(t) → 0 as t → ∞. (2.27)

By (2.26) and (2.27), cr-inequality and Lemma 2.2, the proof is completed.

(ii) Case r > 2.

By Lemma 2.4 and condition (1.6), as t → ∞, we have

E|SN(t)(t) − µN(t)Eh(t − U(t))|r
Lr

1(t)
≤ crµr(m(t))r/2−1Lr(t)

Lr
1(t)

→ 0. (2.28)

Moreover, by the Hölder inequality, Lemma 2.3 and cr-inequality, we have

E|µN(t)Eh(t − U(t)) − µm(t)Eh(t − U(t))|r
Lr

1(t)

=
µrE|N(t) − m(t)|r

mr(t)
≤ µr(E|N(t) − m(t)|2)1/2(E|N(t) − m(t)|2(r−1))1/2

mr(t)

= crµ
rm−1/2(t) → 0 as t → ∞. (2.29)

By (2.28), (2.29), cr-inequality and Lemma 2.2, the proof is completed.
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