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Abstract This paper deals with bifurcations of subharmonic solutions and invariant tori

generated from limit cycles in the fast dynamics for a nonautonomous singularly perturbed
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1 Introduction

In the paper, we investigate the periodic orbits and invariant tori of a three dimensional

singularly perturbed system of the general form

{
ẋ = f(x, y) + εh(t, x, y, δ, ε) ∈ R2,

ẏ = εg(t, x, y, δ, ε) ∈ R, 0 ≤ ε ≪ 1,
(1.1)

where h(t, x, y, δ, ε) and g(t, x, y, δ, ε) are T -periodic in t. For simplicity, the functions f , g and

h are assumed to be sufficiently smooth with respect to the arguments throughout the paper.

There are many three dimensional singularly perturbed models taking such a form. For

example, the Van den Pol -Duffing oscillator and the Lorenz model for high Rayleigh numbers

can be put into system (1.1) (see [1–3]). Especially, in [4] Wiggins and Holmes called system

(1.1) slowly varying oscillator and pointed out that the systems taking the form occur as models

of simple nonlinear elastic structures subject to feedback control when there is a nonnegligible

time constant in the control process.

The above three dimensional singularly perturbed system with a slow variable has been

discussed by many people and various results have been obtained (see [1–7]). For example, in

[2, 7], Stiefenhofer studied the bifurcations of a three dimensional autonomous systems with

singular Hopf points and Bogdanov points, and obtained the existence of local closed orbits and
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invariant tori near the origin by means of the direct method and Naimark-Sacker bifurcation

theorem. In [4], Wiggins and Holmes studied the bifurcations of periodic orbits and subharmonic

solutions under the main condition that the fast system ẋ = f(x, y) is a planar Hamilitonian

system.

In this paper, we suppose that in the fast dynamics ẋ = f(x, y0) of system (1.1) at ε = 0,

there exists a hyperbolic periodic orbit L: x = u(θ), 0 ≤ θ ≤ T0. Without loss of generality, let

y0 = 0. Applying the methods of the bifurcation theory of periodic orbits and invariant tori used

in [8–17] and some new technique, we investigate some global behavior for system (1.1). Using

the curvilinear coordinate transformation and the succession function, the sufficient conditions

and necessary conditions for a hyperbolic limit cycle in the fast x-dynamics to generate the

saddle-node bifurcations of subharmonic solutions are obtained. Finally, the bifurcations of

invariant tori are discussed by means of the Floquet theory, the method of averaging and the

integral manifold theory (see [8, 10, 13]).

This paper is organized as follows. In Section 2, we discuss the saddle-node bifurcations of

subharmonic solutions generated from a hyperbolic limit cycle L in the fast x-dynamics. In

Section 3, the invariant torus bifurcations near a hyperbolic limit cycle L in the fast x-dynamics

are discussed.

2 Saddle-Node Bifurcation of Subharmonic Solutions

In this section, we assume that the limit cycle L in the fast dynamics ẋ = f(x, 0) is hyper-

bolic. This means that

I0 =
1

T0

∮

L0

trfx(x, 0)dt 6= 0. (2.1)

Also we suppose that the periods T0 and T satisfy

T0

T
=

m

k
, (m, k) = 1. (2.2)

This means that T0

T
is rational. In order to obtain the saddle-node bifurcations of subhar-

monic solutions of system (1.1) for sufficiently small ε 6= 0, we perform curvilinear coordinate

transformation

x = u(θ) + Z(θ)r = G(θ, r), 0 ≤ θ ≤ T0, (2.3)

where Z(θ) = (−v2(θ), v1(θ))
T , V (θ) = u′(θ)

|u′(θ)| = f(u(θ),0)
|f(u(θ),0)| = (v1(θ), v2(θ))

T .

Following the similar arguments to [8, 11], we have the following result.

Lemma 2.1 The periodic transformation

{
x = G(θ, r),

y = y,
0 ≤ θ ≤ T0

transforms system (1.1) into the following bi-periodic system:

θ̇ = 1 + f1(θ, r) + E(θ, r)F (t, u + Zr, y, δ, ε),

ṙ = A(θ)r + f2(θ, r) + ZT (θ)F (t, u + Zr, y, δ, ε),

ẏ = εg(t, u(θ) + Z(θ)r, y, δ, ε),

(2.4)
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where

A(θ) = trfx(u, 0) −
d

dθ
ln |f(u, 0)|,

E(θ, r) = (|f(u, 0)| + V T Z ′(θ)r)−1V T (θ),

f1(θ, r) = E(θ, r)[f(u + Zr, 0)− f(u, 0) − Z ′(θ)r],

f2(θ, r) = ZT [f(u + Zr, 0) − f(u, 0)− fx(u, 0)Zr],

F (t, x, y, δ, ε) = f(x, y) − f(x, 0) + εh(t, x, y, δ, ε).

Performing the scaling transformation r = εξ, y = εη, we have

θ̇ = 1 + εs1(t, θ, ξ, η, δ) + O(ε2),

ξ̇ = A(θ)ξ + s2(t, θ, ξ, η, δ) + O(ε),

η̇ = g(t, u(θ), 0, δ, 0) + εs3(t, θ, ξ, η, δ) + O(ε2),

(2.5)

where

s1(t, θ, ξ, η, δ) = |f(u(θ), 0)|−1V T (θ)[(fx(u(θ), 0)Z(θ) − Z ′(θ))ξ

+ fy(u(θ), 0)η + h(t, u(θ), 0, δ, 0)],

s2(t, θ, ξ, η, δ) = ZT (θ)[fy(u(θ), 0)η + h(t, u(θ), 0, δ, 0)],

s3(t, θ, ξ, η, δ) = gx(t, u(θ), 0, δ, 0)Z(θ)ξ + gy(t, u(θ), 0, δ, 0)η + gε(t, u(θ), 0, δ, 0).

From (2.5), we may suppose that the solutions of system (2.5) with the vector (θ0, ξ0, η0)

as its initial value have the expansions of the form

θ(t, δ, ε, θ0, ξ0, η0) = θ0 + t + εθ1(t, δ, θ0, ξ0, η0) + O(ε2),

ξ(t, δ, ε, θ0, ξ0, η0) = ξ1(t, δ, θ0, ξ0, η0) + O(ε),

η(t, δ, ε, θ0, ξ0, η0) = η1(t, δ, θ0, ξ0, η0) + εη2(t, δ, θ0, ξ0, η0) + O(ε2),

(2.6)

where

θ1(0, δ, θ0, ξ0, η0) = 0, ξ1(0, δ, θ0, ξ0, η0) = ξ0,

η1(0, δ, θ0, ξ0, η0) = η0, η2(0, δ, θ0, ξ0, η0) = 0.

From (2.5)–(2.6), we can obtain

θ̇1 = s1(t, θ0 + t, ξ1, η1, δ),

ξ̇1 = A(θ0 + t)ξ1 + s2(t, θ0 + t, ξ1, η1, δ),

η̇1 = g(t, u(θ0 + t), 0, δ, 0),

η̇2 = gx(t, u(θ0 + t), 0, δ, 0)u′(θ0 + t)θ1 + s3(t, θ0 + t, ξ1, η1, δ).

(2.7)

Therefore,

θ1(t, δ, θ0, ξ0, η0) =

∫ t

0

s1(s, θ0 + s, ξ1, η1, δ)ds,

ξ1(t, δ, θ0, ξ0, η0) =
1

|f(u(θ0 + t), 0)|
exp

{∫ t

0

trfx(u(θ0 + s), 0)ds
}[

|f(u(θ0), 0)|ξ0



138 Z. Y. Ye and M. A. Han

+

∫ t

0

exp
(
−

∫ s

0

trfx(u(θ0 + z), 0)dz
)
f(u(θ0 + s), 0)

∧ (fy(u(θ0 + s), 0)η1 + h(s, u(θ0 + s), 0, δ, 0))ds
]
,

η1(t, δ, θ0, ξ0, η0) = η0 +

∫ t

0

g(s, u(θ0 + s), 0, δ, 0)ds,

η2(t, δ, θ0, ξ0, η0) =

∫ t

0

[gx(s, u(θ0 + s), 0, δ, 0)u′(θ0 + s)θ1 + s3(s, θ0 + s, ξ1, η1, δ)]ds.

(2.8)

Let P (θ0, ξ0, η0, δ, ε) denote Poincaré map, its m-th iteration is

Pm(θ0, ξ0, η0, δ, ε) = (θ(mT, δ, ε, θ0, ξ0, η0), ξ(mT, δ, ε, θ0, ξ0, η0), η(mT, δ, ε, θ0, ξ0, η0))

= (Pm
1 (δ, ε, θ0, ξ0, η0), P

m
2 (δ, ε, θ0, ξ0, η0), P

m
3 (δ, ε, θ0, ξ0, η0)). (2.9)

From (2.6)–(2.9), we can obtain the following result.

Theorem 2.1 A necessary condition for the limit cycle L to generate a subharmonic

solutions for ε sufficiently small is that there exists a θ0 (0 ≤ θ0 ≤ T0) such that

∫ mT

0

g(s, u(θ0+

s), 0, δ, 0)ds = 0.

Proof From (2.6) and (2.8), if
∫ mT

0
g(s, u(θ0+s), 0, δ, 0)ds 6= 0, then the following inequality

Pm
3 (δ, ε, θ0, ξ0, η0)) − η0 6= 0

holds for ε sufficiently small. This means that the limit cycle L can not generate a subharmonic

solutions for ε sufficiently small.

So in the section we always suppose that
∫ mT

0 g(s, u(θ0 + s), 0, δ, 0)ds = 0.

Let N0 = ekT0I0 . By (2.6) we have

Pm
2 (δ, ε, θ0, ξ0, η0) − ξ0 = (N0 − 1)ξ0 +

N0R1(mT, θ0)

|f(u(θ0), 0)|
η0 +

N0R2(mT, θ0, δ)

|f(u(θ0), 0)|
+ O(ε)

where

R1(mT, θ0) =

∫ mT

0

exp
(
−

∫ s

0

trfx(u(θ0 + z), 0)dz
)
f(u(θ0 + s), 0) ∧ fy(u(θ0 + s), 0)ds,

R2(mT, θ0, δ) =

∫ mT

0

exp
(
−

∫ s

0

trfx(u(θ0 + z), 0)dz
)
f(u(θ0 + s), 0)

∧
(
fy(u(θ0 + s), 0)

∫ s

0

g(z, u(θ0 + z), 0, δ, 0)dz + h(s, u(θ0 + s), 0, δ, 0)
)
ds.

By means of Implicit Function Theorem, we have

ξ0 =
N0R1(mT, θ0)

(1 − N0)|f(u(θ0), 0)|
η0 +

N0R2(mT, θ0, δ)

(1 − N0)|f(u(θ0), 0)|
+ O(ε)

.
= ξ∗0(θ0, η0, δ, ε). (2.10)

Let Q(t) = |f(u(t), 0)|−2V T (t)(fx(u(t), 0)Z(t)− Z ′(t)). From (2.5), (2.8) and (2.10), a compu-

tation yields

θ1(mT, δ, θ0, ξ
∗
0 , η0)|ε=0 = K1(mT, θ0)η0 + W1(mT, δ, θ0),

η2(mT, δ, θ0, ξ
∗
0 , η0)|ε=0 = K2(mT, δ, θ0)η0 + W2(mT, δ, θ0),

(2.11)
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where

K1(mT, θ0) =

∫ mT

0

Q(θ0 + t) exp
(∫ t

0

trfx(u(θ0 + s), 0)ds
)
dt

[N0R1(mT, θ0)

1 − N0

+

∫ t

0

exp
(
−

∫ s

0

trfx(u(θ0 + z), 0)dz
)
f(u(θ0 + s), 0) ∧ fy(u(θ0 + s), 0)ds

]

+

∫ mT

0

|f(u(θ0 + s), 0)|−1V T (θ0 + s)fy(u(θ0 + s), 0)ds,

W1(mT, δ, θ0) =

∫ mT

0

Q(θ0 + t) exp
(∫ t

0

trfx(u(θ0 + s), 0)ds
)
dt

[N0R2(mT, θ0, δ)

1 − N0

+

∫ t

0

exp
(
−

∫ s

0

trfx(u(θ0 + z), 0)dz
)
f(u(θ0 + s), 0)

∧
(
fy(u(θ0 + s), 0)

∫ s

0

g(z, u(θ0 + z), 0, δ, 0)dz + h(s, u(θ0 + s), 0, δ, 0)
)
ds

]

+

∫ mT

0

|f(u(θ0 + s), 0)|−1V T (θ0 + s)
[
fy(u(θ0 + s), 0)

·

∫ s

0

g(z, u(θ0 + z), 0, δ, 0)dz + h(s, u(θ0 + s), 0, δ, 0)
]
ds,

K2(mT, δ, θ0) =

∫ mT

0

[
gx(s, u(θ0 + s), 0, δ, 0)u′(θ0 + s)K1(s, θ0)

+
Z(θ0 + s)gx(s, u(θ0 + s), 0, δ, 0)

|f(u(θ0 + s), 0)|
exp

( ∫ s

0

trfx(u(θ0 + z), 0
)
dz

·
(N0R1(mT, θ0)

1 − N0
+

∫ s

0

exp
(
−

∫ z

0

trfx(u(θ0 + z), 0)dz
)
f(u(θ0 + z), 0)

∧ fy(u(θ0 + z), 0)dz
)

+ gy(s, u(θ0 + s), 0, δ, 0)
]
ds,

W2(mT, δ, θ0) =

∫ mT

0

[
gx(s, u(θ0 + s), 0, δ, 0)u′(θ0 + s)W1(s, δ, θ0)

+
Z(θ0 + s)gx(s, u(θ0 + s), 0, δ, 0)

|f(u(θ0 + s), 0)|
exp

( ∫ s

0

trfx(u(θ0 + z), 0)dz
)

·
(N0R2(mT, θ0, δ)

1 − N0
+

∫ s

0

exp
(
−

∫ s

0

trfx(u(θ0 + z), 0)dz
)
f(u(θ0 + z), 0)

∧
(
fy(u(θ0 + z), 0)

∫ z

0

g(s, u(θ0 + s), 0, δ, 0)ds + h(z, u(θ0 + z), 0, δ, 0)
)
dz

)

+ gy(s, u(θ0 + s), 0, δ, 0)

∫ s

0

g(z, u(θ0 + z), 0, δ, 0)dz

+ gε(s, u(θ0 + s), 0, δ, 0)
]
ds.

Let

Qi(mT, , θ0, δ, ) =
W2K1 − W1K2

Ki

, i = 1, 2.

For the simplicity of notations, let

(H1)

∫ mT

0

g(s, u(θ0 + s), 0, δ0, 0)ds = 0,
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K1(mT, θ0)η0 + W1(mT, δ0, θ0) = 0,

K2(mT, δ0, θ0)η0 + W2(mT, δ0, θ0) = 0;

(H2)

∣∣∣∣∣
W ′

1θ(mT, δ, θ0) + K ′
1θ(mT, θ0)η0 K1(mT, θ0)

W ′
2θ(mT, δ, θ0) + K ′

2θ(mT, δ, θ0)η0 K2(mT, δ, θ0)

∣∣∣∣∣ 6= 0;

(H3)

Ki(mT, θ0, δ0) 6= 0, Qiθ0
(mT, θ0, δ0) = 0,

Qiθ0θ0
(mT, θ0, δ0) 6= 0, Qiδ(mT, θ0, δ0) 6= 0.

Now we can obtain the following main result in the section.

Theorem 2.2 Suppose (2.1) and (2.2) hold. If there exist θ0 ∈ [0, T0), η0 and δ0 such that

( i ) (H1) and (H2) hold, then system (1.1) has a subharmonic solution near L for ε suffi-

ciently small;

(ii) (H1) and (H3) hold, then system (1.1) has a saddle-node bifurcation curve δ = δ0 +O(ε)

of subharmonic solutions for ε sufficiently small.

Proof Using (2.9) and (2.11), we have

Pm
1 (δ, ε, θ0, ξ0, η0) = θ0 + mT + ε[K1(mT, θ0)η0 + W1(mT, δ, θ0) + O(ε)],

Pm
3 (δ, ε, θ0, ξ0, η0) = η0 + ε[K2(mT, δ, θ0)η0 + W2(mT, δ, θ0) + O(ε)].

(2.12)

In the following, we discuss (i) and (ii) separately.

( i ) By means of Implicit Function Theorem, there exist functions θ0 = θ0 + O(ε) and

η0 = η0 + O(ε) such that

Pm
1 (δ, ε, θ0, ξ0, η0) = θ0 + mT, Pm

3 (δ, ε, θ0, ξ0, η0) = η0.

Substituting θ0 = θ0 + O(ε) and η0 = η0 + O(ε) into (2.10), we have

Pm
2 (δ, ε, θ0, ξ0, η0) = ξ0.

This means that system (1.1) has a subharmonic solution near L for ε sufficiently small.

(ii) Considering the case K1(mT, θ0) 6= 0, following the similar arguments to (2.10), we

have

η0 = −
W1(mT, δ, θ0)

K1(mT, θ0)
+ O(ε) (2.13)

such that Pm
1 (δ, ε, θ0, ξ0, η0) = θ0 + mT. Substituting (2.13) into the second equation of system

(2.12) yields

Pm
3 (δ, ε, θ0, ξ0, η0) = η0 + ε[Q1(mT, , θ0, δ) + O(ε)]

.
= η0 + εF̃ (θ0, δ, ε).

Because (H1) holds, it is not difficult to prove that

Q1(mT, , θ0, δ0) = 0.
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From (H3), there exists a function θ0 = a(δ, ε) such that

∂F̃

∂θ0
(a(δ, ε), δ, ε) = 0.

The Taylor expansion of the function F̃ (θ0, δ, ε) at θ0 = a(δ, ε) is

F̃ (θ0, δ, ε) = b1(δ, ε) + b2(δ, ε)(θ0 − a(δ, ε))2(1 + o(1)), (2.14)

where

b1(δ, ε) = F̃ (a(δ, ε), δ, ε) = Q1δ(mT, θ0, δ0)(δ − δ0) + O(ε),

b2(δ, ε) =
1

2

∂2F̃

∂θ2
0

(a(δ, ε), δ, ε) =
1

2
Q1θ0θ0

(mT, θ0, δ0) + O(ǫ, δ − δ0).

So we obtian that if

b1(δ, ε)Q1θ0θ0
(mT, θ0, δ0) > (=, <)0,

system (2.14) has no (a, two) zero root(s) for δ − δ0 and ε sufficienly small. Because

Q1δ(mT, θ0, δ0) 6= 0, there exists a curve δ = δ(ε) = δ0 + O(ε) such that b1(δ(ε), ε) = 0.

This means that the curve δ = δ0 + O(ε) is a saddle-node bifurcation curve of subharmonic

solutions of system (1.1) for ε sufficiently small.

For example, we consider the three dimensional singularly perturbed system under the

periodic perturbation of the form

ẋ1 =
1

m
x2 + x1(x

2
1 + x2

2 − 1)(y + 1) + εx2(x
m
1 cos t + δ),

ẋ2 = −
1

m
x1 + x2(x

2
1 + x2

2 − 1)(y + 1) − εx1(x
m
1 cos t + δ),

ẏ = ε(x2
1 + x2

2 + y − 1),

(2.15)

where m is a positive integer. If y = 0 and ε = 0, the fast system

ẋ1 =
1

m
x2 + x1(x

2
1 + x2

2 − 1),

ẋ2 = −
1

m
x1 + x2(x

2
1 + x2

2 − 1)

has a hyperbolic limit cycle

L0 : (x1, x2) =
(

sin
t

m
, cos

t

m

)
, 0 ≤ t ≤ 2mπ = T0.

Obviously, ∫ mT

0

g(s, u(θ0 + s), 0, δ, 0)ds = 0.

From (2.11), we have

K1(2mπ, θ0) = 0, K2(2mπ, δ, θ0) = 2mπ, W2 = 0,

W1(2mπ, δ, θ0) = 2πm2δ + m

∫ 2mπ

0

sinm θ0 + t

m
cos t dt.

(2.16)
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We only investigate the periodic orbits of the system (2.15) in the case m = 1 and m = 2. If

m = 1 or m = 2, then

W1(2mπ, δ, θ0) =

{
π(2δ + sin θ0), m = 1,

8πδ − 2π cos θ0, m = 2.

From (2.16), the system

K1(mT, θ0)η0 + W1(mT, δ0, θ0) = 0,

K2(mT, δ0, θ0)η0 + W2(mT, δ0, θ0) = 0

is equivalent to the system

η0 = 0,

W1(2mπ, δ0, θ0) = 0.

This means that if there exist δ0 and θ0 such that W1(2mπ, δ0, θ0) = 0, then hypothesis (H1)

holds.

Due to

Q2(2mπ, δ, θ0) =
W2K1 − W1K2

K2
= −W1(2mπ, δ, θ0),

we have

Q2δ(2mπ, δ, θ0) 6= 0,

Q2θ0
(2mπ, δ, θ0) =

{
−π cos θ0, m = 1,

−2π sin θ0, m = 2.

If m = 1, by Theorem 2.1, there exist two saddle-node bifurcation curves of harmonic solutions,

i.e.,

δ = δi(ε) =
1

2
(−1)i + O(ε), i = 1, 2,

such that system (2.15) has two harmonic solutions if δ1(ε) < δ < δ2(ε), one harmonic solution

if δ = δi(ε), and no harmonic solution if δ > δ2(ε) or δ < δ1(ε) near L0 for small ε 6= 0.

Similarly, if m = 2, there exist four saddle-node bifurcation curves of subharmonic solutions,

i.e.,

δ = δij(ε) =
1

4
(−1)i + O(ε), i, j = 1, 2.

The subharmonic solutions of saddle-node type are

x1ij(t, ε) = sin
θij

2
+ O(ε),

x2ij(t, ε) = cos
θij

2
+ O(ε),

yij = O(ε).

Noting

θ1j(t, ε) = (2 + (−1)j)π + t, θ2j(t, ε) = (1 + (−1)j)π + t,

we have

θi2 − θi1 = 2π, i = 1, 2.
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Therefore, (
sin

θi1

2
, cos

θi1

2

)
= −

(
sin

θi2

2
, cos

θi2

2

)
.

System (2.15) is symmetric to the plane:
{

x1=0

y=0
and the plane:

{
x2=0

y=0
. Therefore, we have

(x1i1, x2i1, yi1) = (−x1i2,−x2i2, yi2).

This means that δi1(ε) = δi2(ε) = δi. Thus, if δ1(ε) < δ < δ2(ε), system (2.15) has four

subharmonic solutions. If δ < δ1(ε) or δ > δ2(ε), system (2.15) has no subharmonic solution

for small ε 6= 0.

3 Invariant Torus Bifurcations

For simplicity, in this section we discuss invariant torus bifurcations of the the following

system:
{

ẋ = f(x, y) + εh(t, x, y, ε) ∈ R2,

ẏ = εg(t, x, y, ε) ∈ R, 0 ≤ ε ≪ 1,
(3.1)

where h(t, x, y, ε) and g(t, x, y, ε) ∈ R are T -periodic in t. In fact, system (3.1) is the form

of system (1.1) without the parameter δ. In this section, we still assume that the fast system

ẋ = f(x, 0) of system (3.1) has a hyperbolic limit cycle L0 : x = u(θ) (0 ≤ θ ≤ T0). Different

from Section 2, we suppose that noresonant condition holds, i.e., T0

T
is irrational.

Performing transformation (2.3), we have the following result.

Lemma 3.1 Under transformation (2.3), system (3.1) can be written as

dt

dθ
= 1 + c1(θ)r + c2(θ)y + O(|r2| + |ry| + |y2| + |ε|),

dr

dθ
= A(θ)r + a(θ)y + O(|r2| + |ry| + |y2| + |ε|),

dy

dθ
= ε[g(t, u(θ), 0, 0) + b1(t, θ)r + b2(t, θ)y + O(|r2| + |ry| + |y2| + |ε|)],

(3.2)

where

c1(θ) = −|f(u(θ), 0)|−1vT (θ)(fx(u(θ), 0)Z(θ) − Z ′(θ)),

c2(θ) = −|f(u(θ), 0)|−1vT (θ)fy(u(θ), 0),

a(θ) = ZT (θ)fy(u(θ), 0),

b1(t, θ) = gx(t, u(θ), 0, 0)Z(θ) − E(θ, 0)(fx(u(θ), 0)Z(θ) − Z ′(θ))g(t, u(θ), 0, 0),

b2(t, θ) = gy(t, u(θ), 0, 0) − E(θ, 0)fy(u(θ), 0)g(t, u(θ), 0, 0).

Letting y → ε
1

2 y and r → ε
1

2 r, we see that this blow-up transformation drives system (3.2)

into the following bi-periodic system:

dt

dθ
= 1 + (c1(θ)r + c2(θ)y)ε

1

2 + O(ε),

dr

dθ
= A(θ)r + a(θ)y + O(ε

1

2 ),

dy

dθ
= ε

1

2 [g(t, u(θ), 0, 0) + (b1(t, θ)r + b2(t, θ)y)ε
1

2 + O(ε)].

(3.3)
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We often use the method of averaging and the theory of integral manifold to obtain the existence

of invariant tori. Noting that system (3.3) is not in a standard form for the method of averaging,

so we can not apply the method of averaing directly. Following the Floquet theory, we obtain

the periodic transformation

r = e
R

θ

0
A(s)ds− θ

T0

R T0

0
A(s)ds

ξ +
(
ke

− θ

T0

R T0

0
A(s)ds − k +

∫ θ

0

e−
R

s

0
A(s)dsa(s)ds

)
e
R

θ

0
A(s)dsη,

y = η,

(3.4)

where k = (e
R T0

0
A(s)ds − 1)−1e

R T0

0
A(s)ds

∫ T0

0 e−
R

s

0
A(s)dsa(s)ds. Transformation (3.4) carries the

system

dr

dθ
= A(θ)r + a(θ)y,

dy

dθ
= 0

into the system

dξ

dθ
=

1

T0

∫ T0

0

A(s)dsξ +
k

T0

∫ T0

0

A(s)dsη,

dη

dθ
= 0.

From the above, it is not difficult to prove Lemma 3.2.

Lemma 3.2 Under transformation (3.4), system (3.3) can be carried into the following

bi-periodic system:

dt

dθ
= 1 + (d1(θ)ξ + d2(θ)η)ε

1

2 + O(ε),

dξ

dθ
=

1

T0

∫ T0

0

A(s)dsξ +
k

T0

∫ T0

0

A(s)dsη + O(ε
1

2 ),

dη

dθ
= ε

1

2 [g(t, u(θ), 0, 0) + (d3(t, θ)ξ + d4(t, θ)η)ε
1

2 + O(ε)],

(3.5)

where

d1(θ) = c1(θ)e
R

θ

0
A(s)ds− θ

T0

R
T0

0
A(s)ds

,

d2(θ) = c1(θ)
(
ke

− θ

T0

R T0

0
A(s)ds − k +

∫ θ

0

e−
R

s

0
A(s)dsa(s)ds

)
e
R

θ

0
A(s)ds + c2(θ),

d3(t, θ) = b1(t, θ)e
R

θ

0
A(s)ds− θ

T0

R
T0

0
A(s)ds

,

d4(t, θ) = b1(t, θ)
(
ke

− θ

T0

R T0

0
A(s)ds − k +

∫ θ

0

e−
R

s

0
A(s)dsa(s)ds

)
e
R

θ

0
A(s)ds + b2(t, θ).

In order to obtain invariant tori of system (3.1) near L0, we apply the idea of the averaging

method to the first and third equation of the system (3.5). Letting

µ = ε
1

2 ,

d1 =
1

T0

∫ T0

0

d1(θ)dθ,

B(θ, ξ, η) =

∫ θ

0

[(d1(θ) − m(θ)A)ξ + (d2(θ) − Akm(θ))η]dθ − (d1 − mA)ξθ − (d2 − Akm)ηθ,
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where

m(θ) = e−Aθ

∫ θ

0

eAs(d1(s) − d1 + mA)ds,

m = A(1 − e−AT0)−1

∫ T0

0

e−Aθdθ

∫ θ

0

eAs(d1(s) − d1)ds,

we have the following lemma.

Lemma 3.3 Suppose that the nonresonant condition holds.

( i ) If system (3.1) has invariant tori near L0 for sufficiently small ε, then

∫ T0

0

∫ T

0

g(t, u(θ), 0, 0)dtdθ = 0.

(ii) If (1) d1 = mA,
∫ T0

0

∫ T

0
g(t, u(θ), 0, 0)dtdθ = 0 and d3(t, θ) = 0; (2) the functions

g(t, u(θ), 0, 0), gt(t, u(θ), 0, 0)B(θ, ξ, η), and d4(t, θ) are trigonometric polynomials in 2π
T

t and
2π
T0

θ, then there exist smooth transformations t = t(φ, θ, ρ, µ) and η = η(φ, θ, ρ, µ) such that

system (3.5) can be carried into the following bi-periodic system:

dφ

dθ
= 1 + µ[(d2 − Akm)ρ + O(µ)],

dξ

dθ
= Aξ + Akρ + O(µ),

dρ

dθ
= µ2[d4ρ + O(µ)],

(3.6)

where

d2 =
1

T0

∫ T0

0

d2(θ)dθ,

A =
1

T0

∫ T0

0

A(θ)dθ,

d4 =
1

T0T

∫ T

0

∫ T0

0

d4(φ, θ)dφdθ.

Proof Following the averaging method, we look for the following transformation

t = U(φ, θ, ξ, ρ, µ) = φ + u1(θ, ξ, ρ)µ + O(µ),

η = V (φ, θ, ξ, ρ, µ) = ρ + v1(φ, θ)µ + v2(φ, θ, ξ, ρ)µ2 + O(µ3),
(3.7)

which drives system (3.5) into the system of the form

φ̇ = 1 + µP (φ, θ, ξ, ρ, µ),

ξ̇ = Q1(φ, θ, ξ, ρ, µ),

ρ̇ = µQ2(φ, θ, ξ, ρ, µ),

(3.8)

where

P (φ, θ, ξ, ρ, µ) = P0(ξ, ρ) + O(µ),

Q1(φ, θ, ξ, ρ, µ) = Q10(ξ, ρ) + O(µ),

Q2(φ, θ, ξ, ρ, µ) = Q20 + Q21(ξ, ρ)µ + O(µ).
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In fact, this is the method of averaging. It is clear that Q10(ξ, ρ) = Aξ + Akρ. From (3.5),

(3.7) and (3.8), using the asymptomatic expansions and comparing the coefficients of terms

with same order, we have

d1(θ)ξ + d2(θ)ρ = P0(ξ, ρ) +
∂u1

∂θ
+

∂u1

∂ξ
(Aξ + Akρ). (3.9)

If P0(ξ, ρ) = (d1 − mA)ξ + (d2 − Akm)ρ, since the function m(θ) satisfies

ṁ(θ) = −Am(θ) + d1(θ) − d1 + mA,

a computation yields that the periodic function u1(θ, ξ, ρ) = B(θ, ξ, ρ) is a solution of equation

(3.9). Similar to (3.9), we have

∂v1

∂θ
+

∂v1

∂φ
= g(φ, u(θ), 0, 0) − Q20. (3.10)

From the theory of almost periodic function, noticing that g(t, u(θ), 0, 0) are trigonometric

polynomial in 2π
T

t and 2π
T0

θ, using Lemmas 4.1 and 4.2 of Chapter 12 in [8], we obtain that

equation (3.10) has a bi-periodic solution and

Q20 =
1

T0T

∫ T0

0

∫ T

0

g(φ, u(θ), 0, 0)dφ dθ. (3.11)

If Q20 = 1
T0T

∫ T0

0

∫ T

0 g(φ, u(θ), 0, 0)dφ dθ 6= 0, it is obvious that system (3.8) has no invariant

torus near L. This means that system (3.1) has no invariant torus near L for small ε 6= 0.

If we only prove that Lemma 3.3(i) holds, the condition that the function g(t, u(θ), 0, 0) are

trigonometric polynomial in 2π
T

t and 2π
T0

θ is not necessary.

Under the conditions of Lemma 3.3(ii), from (3.5), (3.7) and (3.8), we may assume that

v2(φ, θ, ξ, ρ) = v2(φ, θ, ρ). Similar to (3.9), we have

∂v2

∂θ
+

∂v2

∂φ
= D(φ, θ) − Q21, (3.12)

where D(φ, θ) = gt(φ, u(θ), 0, 0)u1 + d4(φ, θ)ρ − ∂v1

∂φ
P0. It is clear that the function D(φ, θ) is

trigonometric polynomial in 2π
T

φ and 2π
T0

θ. By Lemmas 4.1 and 4.2 in [8] again, it is not difficult

to see that equation (3.12) has a bi-periodic solution. Noticing that
∫ T0

0

∫ T

0 gt(φ, u(θ), 0, 0)dφdθ

= 0 and
∫ T0

0

∫ T

0
∂v1

∂φ
dφdθ = 0, we have

Q21 =
1

T0T

∫ T0

0

∫ T

0

d4(φ, θ)dφdθ. (3.13)

This completes the proof of Lemma 3.3.

Theorem 3.1 Assume that the hypotheses of Lemma 3.3 hold. If A d4 6= 0, then system

(3.1) has invariant tori near L0 for sufficiently small ε 6= 0.

Proof The matrix (
A Ak

0 µ2d4

)
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has two eigenvalues λ1 = A and λ2 = εd4. When Ad4 6= 0, it is obvious that λ1 6= λ2 for small

ε 6= 0. Therefore, there exists a matrix

M =

(
m11 m12

m21 m23

)
,

such that

(
m11 m12

m21 m23

)−1 (
A Ak

0 µ2d4

) (
m11 m12

m21 m23

)
=

(
A 0

0 µ2d4

)
. (3.14)

In fact,

M =



1
−Ak

A − µ2d4

0 1



 .

Perform the linear transformation

ξ = ζ +
−Ak

A − µ2d4

τ,

ρ = τ.

(3.15)

Therefore, system (3.6) can be written as

dφ

dθ
= 1 + h1(φ, θ, ζ, τ, µ),

dζ

dθ
= Aζ + h2(φ, θ, ζ, τ, µ),

dτ

dθ
= µ2[d4τ + h3(φ, θ, ζ, τ, µ)],

(3.16)

where hi(φ, θ, ζ, τ, µ) (i = 1, 2, 3) are bi-periodic in 2π
T0

θ and2π
T

t, and hi(φ, θ, ζ, τ, µ) = O(µ). By

[13, Theorem 2.1], system (3.16) has an invariant torus near L0. Thus we completes the proof

of Theorem 3.1.

For example, we consider the following example:

ẋ1 = x2 + x1(x
2
1 + x2

2 − 1)(y + 1) + εx2(x1 cosπt + δ),

ẋ2 = −x1 + x2(x
2
1 + x2

2 − 1)(y + 1) − εx1(x1 cosπt + δ),

ẏ = ε(−3x1 − 3x2 + y + x3
1 + x2

1x2 + x1x
2
2 + x3

2).

(3.17)

Similar to (2.15), if y = 0 and ε = 0, the fast system

ẋ1 = x2 + x1(x
2
1 + x2

2 − 1),
ẋ2 = −x1 + x2(x

2
1 + x2

2 − 1)

has a hyperbolic limit cycle L0 : x1 = sin θ, x2 = cos θ (0 ≤ t ≤ 2π). Because of T0

T
= π, the

noresonant condition are valid. First,

∫ 2

0

∫ 2π

0

g(t, u(θ), 0, 0)dtdθ

= 2

∫ 2π

0

(−3 sin θ − 3 cos θ + sin3 θ + sin2θ cos θ + sin θ cos2 θ + cos3 θ) = 0,
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this means the necessary condition for the existence of invariant tori of system (3.17) holds.

Noting that Z(θ) = (sin θ, cos θ)T , and v(θ) = (cos θ,− sin θ)T , from (3.2), we have

c1(θ) = 0, c2(θ) = 0, a(θ) = 0,

b1(t, θ) = 0, b2(t, θ) = 1.
(3.18)

Substituting (3.18) into (3.5) yields

d3(t, θ) = 0, d4(t, θ) = 1. (3.19)

Since d1(θ) = 0, it is clear that m = 0. Therefore, d1 = mA. This means that the hypothesis

of Lemma 3.4 holds. Noting that A = 2 and d4 = 1, by Theorem 3.1, we see that system (3.17)

has an invariant torus for small ε 6= 0.

Acknowledgement The authors thank the referee for their valuable suggestions.

References

[1] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmospheric Sci., 20, 1963, 130–141.

[2] Stiefenhofer, M., Unfolding singularly perturbed Bogdanov points, SIAM J. Math. Anal., 32(4), 2000,
820–853.

[3] Robbins, K. A., Periodic solutions and bifurcation structure at high R in the Lorenz model, SIAM J. Appl.

Math., 36, 1979, 457–472.

[4] Wiggins, S. and Holmes, P., Periodic orbits in slowly varying oscillations, SIAM J. Math. Anal., 18(3),
1987, 592–611.

[5] Marzec, C. J. and Spiegle, E. A., Ordinary differential equations with strange attractors, SIAM J. Appl.

Math., 38, 1980, 403–421.

[6] Robinson, C., Sustained resonance for a nonlinear system with varying coefficients, SIAM J. Appl. Math.,
14, 1983, 847–860.

[7] Stiefenhofer, M., Singular perturbation with Hopf points in the fast dynamics, Z. Angew. Math. Phys.,
49(4), 1998, 602–629.

[8] Chow, S. N. and Hale, J. K., Methods of Bifurcation Theory, Springer-Verlag, New York-Berlin, 1982.

[9] Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector
Fields, Springer-Verlag, New York, 1983.

[10] Hale, J. K., Ordinary Differential Equations, Wiley-Interscience, New York, 1969.

[11] Han, M., Bifurcations of invariant tori and subharmonic solutions for periodic perturbed systems, Sci.

China Ser. A, 37(11), 1994, 1325–1336.

[12] Han, M., Bifurcation theory of invariant tori of planar periodic perturbed systems, Sci. China Ser. A,
29(5), 1996, 509–519.

[13] Han, M. and Chen, X., Existence and bifurcation of integral manifolds with applications, Sci. China Ser.

A, 35(4), 2005, 425–441.

[14] Han, M., Jiang, K., Green, D. and David, J., Bifurcations of periodic orbits, subharmonic solutions and
invariant tori of high-dimensional systems, Nonlinear Anal. Ser. A, Theory Methods, 36(3), 1999, 319–329.

[15] Han, M. and Bi, P., Bifurcation of limit cycles from a double homoclinic loop with a rough saddle, Chin.

Ann. Math., 25B(2), 2004, 233–242.

[16] Liu, X. and Han, M., Bifurcation of periodic orbits of a three-dimensional system, Chin. Ann. Math.,
26B(2), 2005, 253–274.

[17] Luo, D., Wang, X., Zhu, D. and Han, M., Bifurcation Theory and Methods of Dynamical Systems, World
Scientific, Singapore, 1997.


