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Abstract In this paper, the authors prove that if Mn is a complete noncompact Kähler

manifold with a pole p, and its holomorphic bisectional curvature is asymptotically non-

negative to p, then it is a Stein manifold.
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1 Introduction

Recently, Ni and Tam proved (see [1]):

Theorem 1.1 Let Mn be a complete noncompact Kähler manifold with nonnegative holo-

morphic bisectional curvature. Suppose that M has a pole. Then M is Stein.

Now we use elementary method to improve above theorem, that is,

Theorem 1.2 Let Mn be a complete noncompact Kähler manifold with a pole p, its bisec-

tional curvature is asymptotically nonnegative to p, then it is Stein.

Remark 1.1 In fact, Theorem 1.2 is held under the bisectional curvature ≥ − k
r2(p,x) .

2 Preliminary

Before we prove the theorem, we shall give some definitions and a lemma.

Definition 2.1 We say that the bisectional curvature is asymptotically nonnegative if

bi KM (x) ≥ −λ(r(x)),

where λ( · ) is a nonnegative and nonincreasing function on [0, +∞) and

∫ ∞

0

rλ(r)dr < +∞, r(x) = dist(p, x)

and p is a fixed point in M .

Definition 2.2 If there exists p ∈ M , such that the exponential mapping expp : Mp −→ M

is a diffeomorphism, then we say M has a pole p.
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Now, we will prove the next lemma.

Lemma 2.1 Suppose f(t) is a C2 function on (0, T ), d
dt

(−f(t)) − f2(t)
2 ≥ − k

t2
, and

lim
t→0+

f(t) = +∞. Then

f(t) > 0, (2.1)

where k ≥ 0, T can tend to +∞.

Proof We use comparison method to discuss the following inequality.

Assume

b1(t) =
−1 +

√
1 + 2k

2k
t, b2(t) =

−1 −
√

1 + 2k

2k
t. (2.2)

Then
dbi

dt
+

k

t2
b2
i −

1

2
= 0, i = 1, 2 (2.3)

and

b1(0) = b2(0) = 0, (2.4)

ḃ1(t) =
1

2
− k

t2
b2
1 =

−1 +
√

1 + 2k

2k
, (2.5)

ḃ2(t) =
1

2
− k

t2
b2
2 =

−1 −
√

1 + 2k

2k
. (2.6)

Let A = 1
f(t) . Therefore

dA

dt
+

k

t2
A2 − 1

2
≥ 0 (2.7)

and A(0) = 0.

Then

Ȧ(0) ≥ 1

2
− kȦ2(0), (2.8)

i.e., Ȧ(0) ≥ ḃ1(0) or Ȧ(0) ≤ ḃ2(0).

We will prove Ȧ(0) ≤ ḃ2(0) is not valid.

Conversely, if Ȧ(0) ≤ ḃ2(0) < 0, we have

A(t) = Ȧ(0)t + O(t2),

and then there exists an ǫ satisfying 0 < ǫ ≤ T such that A(t) < 0, ∀ t ∈ (0, ǫ), i.e.,

f(t) < 0, ∀ t ∈ (0, ǫ). (2.9)

This is a contradiction to lim
t→0+

f(t) = +∞ which is known.

When Ȧ(0) ≥ ḃ1(0), we will prove A(t) ≥ b1(t) > 0, for t ∈ [0, T ).

Let E = {t ∈ (0, T ) | Ȧ(t) < ḃ1(t)}. If E = ∅, then Ȧ(t) ≥ ḃ1(t), ∀ t ∈ [0, T ), and

A(0) = b1(0) = 0. Then A(t) ≥ b1(t) > 0, ∀ t ∈ [0, T ).

If E is a nonempty open set of [0, T ), then ∀ a ∈ E, we have A(a) ≥ b1(a). Otherwise, we

have

ḃ1(a) > Ȧ(a) ≥ 1

2
− k

A2

t2

∣

∣

∣

t=a
≥ 1

2
− k

b2
1

t2

∣

∣

∣

t=a
.

Obviously, it is impossible.
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For any c ∈ [0, T )\E, setting t0 = Sup(E ∩ [0, c]), we have

A(c) − b1(c) =

∫ c

t0

(

Ȧ(s) − ḃ1(s)
)

ds + A(t0) − b1(t0).

By continuity, A(t0) − b1(t0) ≥ 0 and (t0, c] ⊂ [0, T )\E, so that Ȧ(s) − ḃ1(s) ≥ 0. Then

A(c) − b1(c) ≥ 0, i.e., A(c) ≥ b1(c) > 0.

Thus f(t) > 0, ∀ t ∈ (0, T ), i.e.,

f(t) > 0, ∀ t ∈ [0, T ). (2.10)

3 The Proof of Theorem 1.2

Now we will prove Theorem 1.2.

Proof of Theorem 1.2 A result of Grauert [2] says that a complex manifold which admits

a smooth strictly plurisubharmonic exhaustion function is Stein. Next we will prove the square

of the distance function satisfies these three conditions.

Firstly, the square of the distance function r2(x) = r2(p, x) between p and x is smooth

because p is a pole and obviously it is exhausting.

Secondly, we will prove that r2(p, x) is strictly plurisubharmonic. ∀x ∈ M , there exists a

normal geodesic γx with the minimal length which issues from p to x. For every nonzero vector

X ∈ T
(1,0)
x (M), we have X = X1−

√
−1JX1 such that X1 is the unit vector of Tx(M). Now we

choose a normal basis {e1(x), e2(x), · · · , en(x), en+1(x), · · · , e2n(x)} = {e1(x), e2(x), · · · , en(x),

Je1(x), · · · , Jen(x)} on Tx(M), such that X1 = e1(x), JX1 = en+1(x). And {ei(t)}1≤i≤2n

is the normal basis on γx(t) that was obtained by the parallel translation of {ei(x)}1≤i≤2n

along γx(t). Since M is Kähler, the parallel translation preserves the complex structure, so

that J [ei(t)] = en+i(t), 1 ≤ i ≤ n, is valid on γx(t). We denote by {ei(0)}1≤i≤2n the parallel

vector basis field at p ∈ M . Let U(γx) be an open neighborhood of γx. For any y ∈ U(γx),

there is a minimal length normal geodesic from p to y. We translate {ei(0)}1≤i≤2n parallel

along γy. Then we obtain a normal basis {ei(y)}1≤i≤2n on Ty(M), ∀ y ∈ U(γx), such that

Jei(y) = en+i(y), 1 ≤ i ≤ n. Hence {ei(y)}1≤i≤2n, y ∈ U(γx), is a normal frame on U(γx).

Let
∇ei(t)γ̇(t) = uij(t)ej(t),

∇γ̇(t)ei(t) = λij(t)ej(t) = 0.
(3.1)

Then we have

uij(t) = 〈∇ei
γ̇(t), ej〉 = ei〈γ̇(t), ej〉 − 〈γ̇(t),∇ei

ej〉

= (eiejr) − (∇ei
ejr) = Hr(ei, ej) = uji(t), (3.2)

〈R(e1, γ̇(t))γ̇(t), e1〉 = −〈∇γ̇(t)∇e1 γ̇(t), e1〉 − 〈∇∇e1 γ̇(t)γ̇(t), e1〉 + 〈∇∇γ̇(t)e1 γ̇(t), e1〉

=
d

dt
(−u11) −

∑

j

u1juj1

≤ d

dt
(−u11) − u11u11. (3.3)
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Similarly, we have

〈R(en+1, γ̇(t))γ̇(t), en+1〉 ≤
d

dt
(−un+1,n+1) − un+1,n+1un+1,n+1, (3.4)

− k

r2
≤ 〈R(e1, γ̇(t))γ̇(t), e1〉 + 〈R(en+1, γ̇(t))γ̇(t), en+1〉

≤ d

dt
(−u11 − un+1,n+1) −

(u11 + un+1,n+1)
2

2
. (3.5)

Assume f(t) = u11 + un+1,n+1, and lim
t→0+

f(t) = +∞. By Lemma 2.3 and (3.5), we have

D2r(X1, X1) + D2r(JX1, JX1) = Hr(e1, e1) + Hr(en+1, en+1) > 0. (3.6)

And

D2r2(X1, X1) + D2r2(JX1, JX1)

= 2
〈

X1,
∂

∂r

〉2

+ 2
〈

JX1,
∂

∂r

〉2

+ 2r[D2r(X1, X1) + D2r(JX1, JX1)]

> 0. (3.7)

Because √
−1 ∂∂r2(X, X) = D2r2(X1, X1) + D2r2(JX1, JX1), (3.8)

where X = X1 −
√
−1JX1, r2 is strictly plurisubharmonic.

Thus M is a Stein manifold.
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