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Abstract Quasi-regression, motivated by the problems arising in the computer experi-

ments, focuses mainly on speeding up evaluation. However, its theoretical properties are

unexplored systemically. This paper shows that quasi-regression is unbiased, strong con-

vergent and asymptotic normal for parameter estimations but it is biased for the fitting

of curve. Furthermore, a new method called unbiased quasi-regression is proposed. In

addition to retaining the above asymptotic behaviors of parameter estimations, unbiased

quasi-regression is unbiased for the fitting of curve.
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1 Introduction

We first outline the quasi-regression proposed by Owen [7] and An and Owen [1]. Con-

sider the problem of approximating an unknown function f : [0, 1]p−1 → Rq by function

f̂ : [0, 1]p−1 → Rq. In this paper, we assume q = 1, for simplicity.

In [1], the approximating approach begins with an equation

f(x) = β0 +

p−1∑

j=1

zj(x)βj + η(x), (1.1)

where β0 through βp−1 are scalar coefficients, x = (x1, · · · , xp−1)T is a column vector of design

variables, z1(x) up to zp−1(x) are basis functions satisfying the following conditions

∫
zj(x)dx = 0,

∫
(zj(x))2dx = 1 for j = 1, · · · , p − 1,

∫
zj(x)zk(x)dx = 0 for j 6= k,

(1.2)
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where all integrals are over [0, 1]p−1. The basis functions may be chosen as sinusoids, wavelet

(see [2]), orthogonalized B-spline and so on.

For an unknown function f(x) containing many variables such as 1,000,000 variables, Owen

[7] proposed an approach, which begins with a linear equation

f(x) = β0 +

p−1∑

j=1

zj(xj)βj + η(x). (1.3)

In this paper, we only use the equation (1.3) to construct linear approximation by regression

and quasi-regression presented below.

Regression-based approaches for computer experiments (see [3, 8]) are defined through the

least squares values for β = (β0, β1, · · · , βp−1)
T , i.e.,

β = arg min
β

∫
(f(x) − z(x)β)2dx, (1.4)

where z(x) = (1, z1(x1), · · · , zp−1(xp−1)). Elementary manipulations give

β =
( ∫

z(x)T z(x)dx
)−1

∫
z(x)T f(x)dx (1.5)

=

∫
z(x)T f(x)dx. (1.6)

As a result, the residual function η(x) = f(x) − β0 −
p−1∑
j=1

zj(xj)βj satisfies
∫

η(x)dx =
∫

η(x)zj(xj)dx = 0 for j = 1 through p−1. In addition, the parameter σ2 =
∫

η2(x)dx is called

the variance of residual η(x).

Let z(xi) = (1, z1(x1
i ), · · · , zp−1(xp−1

i )) be the row vector of all p basis functions evaluated

at the ith input point xi = (x1
i , · · · , x

p−1
i )T for i = 1 up to n, and Z be the n × p matrix with

ith row z(xi). Similarly, Yi = f(xi), εi = η(xi), and Y denotes the column vector with ith

entry Yi, ε denotes the column vector with ith entry εi. In this paper, we assume Y1 through Yn

are i.i.d. observations. The regression approach is to take an independent Monte Carlo sample

x
j
i ∼ U [0, 1], for i = 1 through n and j = 1 up to p− 1, and to estimate the integral in (1.5) by

these sample values. This results in

β̂ = (β̂0, β̂1, · · · , β̂p−1)
T = (ZT Z)−1ZT Y (1.7)

and an approximation of f(x) as f̂(x) = z(x)β̂. Quasi-regression exploits the known value∫
z(x)T z(x)dx = I, and estimates β in equation (1.6) by an independent Monte Carlo samples,

i.e.,

β̃ = (β̃0, β̃1, · · · , β̃p−1)
T =

1

n
ZT Y (1.8)

and approximates f(x) by f̃(x) = z(x)β̃. Furthermore, quasi-regression has an advantage in

evaluation complexity, and the costs for calculating quasi-regression are smaller than those for

calculating regression (see [1]). The recent study about quasi-regression focuses mainly on the

improvment of its algorithms (see for example [10, 11]).

However, its statistical properties are unexplored systemically. In this paper, we discuss

quasi-regression theoretically and numerically in parametric inference and fitting of curve under
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general model presented above. Some small sample and large sample properties, including the

unbiasedness, strong convergence, asymptotic normality and the property of simulation, are

obtained. We also find some defects of quasi-regression arising in numerical simulation, and

give a theoretic reason why simply adding basis functions is of no help to the fitting of curve.

Then we propose a new method, called unbiased quasi-regression, which is superior to quasi-

regression in the sense that the method is unbiased not only for parameter estimations but also

for the fitting of curve and retains the above asymptotic behaviors of parameter estimations.

An example is investigated numerically to illustrate the theoretical conclusions.

2 Properties of Parameter Estimations

To study the statistical properties of quasi-regression, we firstly calculate the moments of

the estimators for scalar coefficients in (1.1). We have the following theorem.

Theorem 2.1 ( i ) If E(f2(x)) exists, then

E(β̃j) = βj for j ≥ 0

and

Var(β̃0) =
1

n
(E(f2(x)) − β2

0).

(ii) If E(f4(x)) and E((zj(xj))4) exist, then

Var(β̃j) =
1

n
(E((zj(zj))2f2(x)) − β2

j ) for j ≥ 1.

This theorem can be proved by definition (1.3) and condition (1.2), and its proof is omitted

here. From Theorem 2.1, we can obtain the convergency in mean square error. The following

corollary gives the details.

Corollary 2.1 Under the conditions of Theorem 2.1, E(β̃j−βj)
2 → 0 for j ≥ 0 as n → ∞.

Since β̃ is indeed the sum of independent and identically distributed random variables, from

Theorem 2.1, the Kolmogorov strong law of large numbers and the center limit theorem, we

can get the following corollaries concerning the strong convergency and asymptotic normality.

Corollary 2.2 Under the conditions of Theorem 2.1, β̃
a.s.−→ β as n → ∞.

Corollary 2.3 Under the conditions of Theorem 2.1,
√

n (β̃0−β0)
D−→ N(0, E(f2(x))−β2

0)

and
√

n (β̃j − βj)
D−→ N(0, E((zj(zj))2f2(x)) − β2

j ) for j ≥ 1.

Theorem 2.1 shows the quasi-regression estimator β̃ is unbiased. However, from [7, Propo-

sition 5.1], the regression estimator β̂j is biased and its bias is

E(β̂j) − βj = − 1

n
E(zj(xj)η(x)S2(x)) = − p

n
E(zj(xj)η(x)) + O

(p1/2

n

)
= O

(p1/2

n

)
,

where S2(x) =
p−1∑
j=1

(zj(xj))2. On the other hand, we can also compare the variance of β̃j with

the variance of β̂j . Theorem 2.1 shows that the asymptotic order of variance of quasi-regression
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estimator β̃j is O( 1
n ). From [7, Lemma 5.1], we have

E(β̂2
j ) = β2

j − 2βj

n
E(S2(x)(zj(xj))2η2(x)) +

1

n
E((zj(xj))2η2(x)) + o

( 1

n

)
.

In addition, for any function h(x), if
∫

h4(x)dx < ∞, then

E(S2(x)h2(x)) = (p − 1)E(h2(x)) + O(p1/2) (2.1)

(cf. [7, p. 6]). Therefore

E(β̂2
j ) = β2

j − 2βj(p − 1)

n
E((zj(xj))2η2(x)) +

1

n
E((zj(xj))2η2(x)) + O

(p1/2

n

)

= β2
j + O

( p

n

)
.

Then for j 6= 0,

Var(β̂j) = E(β̂2
j ) − (E(β̂j))

2 = O
( p

n

)
.

From the results above, we conclude that quasi-regression is better than regression in the sense

of unbiasedness and asymptotic variance of estimators for scalar coefficients.

As for the estimator of σ2, Owen [7] provided the linear variation σ2
L =

∫
(fL(x)− β0)

2dx =
p−1∑
j=1

β2
j and the nonlinear variation σ2

NL =
∫
(f(x) − fL(x))2dx =

∫
(η(x))2dx in f(x), where

fL(x) = β0 +
p−1∑
j=1

zj(xj)βj . It can be verified that the nonlinear variation is equal to σ2. Owen

[7] took
p−1∑
j=1

β̃2
j as estimator of the linear variation σ2

L. And the nonlinear variation σ2
NL, i.e.,

variance σ2, is estimated by subtracting
p−1∑
j=1

β̃2
j from the total variation 1

n

n∑
i=1

(f(xi)−f)2, where

f = 1
n

n∑
i=1

f(xi). The estimator of σ2 is

σ̃2 =
1

n

n∑

i=1

(f(xi) − f)2 −
p−1∑

j=1

β̃2
j .

From [7, Proposition 4.1], we have

E
( p−1∑

j=1

β̃2
j

)
=

n − 1

n

p−1∑

j=1

β2
j +

1

n
E(S2(x)f2(x)).

On the other hand, it can be verified that

E
( 1

n

n∑

i=1

(f(xi) − f )2
)

=
(n − 1)(E(f2(x)) − β2

0)

n

and

σ2 = σ2
NL =

∫
(f(x) − fL(x))2dx = E(f2(x)) − β2

0 −
p−1∑

j=1

β2
j .
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Therefore, we obtain the following theorem.

Theorem 2.2 If E(zj(xj))4 and E(f(x))4 exist, then E(σ̃2) = n−1
n σ2 − 1

nE(S2(x)f2(x)).

Consequently, E(σ̃2) = σ2 − p
nE(f2(x)) + O(p1/2

n ) = σ2 + O( p
n ).

Analogously, using (1.7), we get another estimator of σ2, denoted by σ̂2, which is

σ̂2 =
1

n

n∑

i=1

(f(xi) − f)2 −
p−1∑

j=1

β̂2
j . (2.2)

Owen [7] showed that if E(zj(xj))4 and E(η(x))4 exist, then

E
( p−1∑

j=1

β̂2
j

)
=

p−1∑

j=1

β2
j +

1

n
E(S2(x)η2(x)) + O(n−2).

Using (2.2) and the above method, we get

E(σ̂2) =
(n − 1)σ2

n
− 1

n

p−1∑

j=1

β2
j − 1

n
E(S2(x)η2(x)) + O(n−2).

From (2.1), we have

E(σ̂2) = σ2 − p

n
E(η2(x)) + O

(p1/2

n

)
.

It can be verified that E(f2(x)) > E(η2(x)). Consequently, the bias of σ̂2 is smaller than of

σ̃2. However, both σ̃2 and σ̂2 have the same asymptotic orders.

3 Unbiased Quasi-regression

We have to realize that quasi-regression has some imperfections. Denote the residual of

quasi-regression by η̃(xi). Then

η̃(xi) = f(xi) − f̃(xi), i = 1, · · · , n,

where fitted value f̃(xi) = β̃0 +
p−1∑
j=1

zj(xj
i )β̃j . From (2.1), we have

E(η̃(xi)) = − 1

n
E

( p−1∑

j=1

zj(xj
i )

n∑

s=1

zj(xj
s)f(xs)

)
= −p − 1

n
β0 + O

(p1/2

n

)
. (3.1)

This result implies that |E(η̃(xi))| is very large, if β0 6= 0 and p is very large. The residuals

will increase with number of basis functions (or design variables). For the model containing

large numbers of variables, this bias is more serious. This gives a theoretical explanation for

the problem appearing in numerical simulation. Some examples of numerical simulation in [1]

showed that simply adding basis functions does not improve fitting of curve. Now, we provide

an alternative fitting model of (1.3), where fitted value is

f(xi) = β0 +

p−1∑

j=1

zj(xj
i )β̃j , (3.2)
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where β̃1 through β̃p−1 are provided in (1.8) and β0 = 1
n

n∑
i=1

(
1 − 1

n

p−1∑
j=1

(zj(xj
i ))

2
)
f(xi). In the

new model, the residual, denoted by η(xi) = f(xi) − f(xi), has the following properties.

Theorem 3.1 ( i ) If E(f2(x)) exists, then E(η(xi)) = 0 and E(η̃(xi)) = − p−1
n β0+O

(
p1/2

n

)
.

(ii) If E(f6(x)) and E((zj(xj))4) exist, then Var(η(xi))=Var(η(x))+O
(

p2

n

)
and Var(η̃(xi))

−Var(η(xi)) =
p2β2

0

n2 + O( p
n2 ) + O( p2

n3 ).

Proof (i) can be immediately verified by (3.1). For (ii), let β̃j(i) = 1
n

∑
1≤s≤n,s6=i

zj(xj
s)f(xs).

From Theorem 2.1 and equation (2.1), we have

Var(η(xi)) = E(η(xi))
2 = E(f2(x)) − β2

0 −
p−1∑

k=1

β2
k + O

(p2

n

)
= Var(η(x)) + O

(p2

n

)
.

Similarly, from (3.1) and the method used above, it follows that

Var(η̃(xi)) − Var(η(xi)) = E(η̃(xi))
2 − (E(η̃(xi)))

2 − E(η(xi))
2 =

p2β2
0

n2
+ O

( p

n2

)
+ O

( p2

n3

)
.

The proof is completed.

Table 3.1 Quasi-regression and unbiased quasi-regression

Estimation Complexity Time Space
Regression O(np2 + p3) O(p2)
Quasi-regression O(np) O(p)
Unbiased quasi-regression O(np + p) O(p)
β0 Expectation Variance
Quasi-regression β0 O( 1

n )

Unbiased quasi-regression β0 + O( p
n ) O(p2

n )
βi, i = 1, · · · , p − 1 Expectation Variance
Quasi-regression βi O( 1

n )

Unbiased quasi-regression βi O( 1
n )

Residual Expectation Variance

Quasi-regression − p−1
n β0 + O

(
p1/2

n

)
E(f2(x)) − β2

0 −
p−1∑
k=1

β2
k + O

(
p2

n

)

Unbiased quasi-regression 0 E(f2(x)) − β2
0 −

p−1∑
k=1

β2
k + O

(
p2

n

)

From Theorem 3.1, the residual η(xi) satisfies E(η(xi)) = 0, so the new model is called

unbiased quasi-regression. For n data points and p basis functions, we provide the result of

comparing unbiased quasi-regression with quasi-regression in Table 3.1. In Table 3.1, unbiased

quasi-regression has the same evaluation complexity as quasi-regression. In (3.2), all estimators

of βj for j ≥ 1 do not change except that of β0, which changes from β̃0 = 1
n

n∑
i=1

f(xi) to

β0 = 1
n

n∑
i=1

(
1 − 1

n

p−1∑
j=1

(zj(xj
i ))

2
)
f(xi). The only loss in parameter estimation caused by this
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changes is that β0 is biased and the bias is O( p
n ). But, we get better residual η(x), because η(x)

has mean zero and its variance is smaller than that of η̃(xi) when β0 6= 0. Although Var(η(xi))

will increase at rate O(p2

n ) with p, this loss can not be avoided under general condition and

common statistical methods, for example, quasi-regression, behave like this. Hence for fitting

of curve, f(xi) is superior to f̃(xi) in statistical effectiveness.

Like the regression, we can use residual sum of squares to estimate the variance of residual.

Note that the residual of quasi-regression is bad, while the residual of unbiased quasi-regression

has some better properties. Denote the mean square residual of unbiased quasi-regression by

R2, and R2 = 1
n

n∑
i=1

η2(xi). Theorem 3.1 shows that R2 is an asymptotically unbiased estimator

of σ2. The following corollary gives the details.

Corollary 3.1 If E(f6(x)) and E((zj(xj))4) exist, then E(R2) = σ2 + O(p2

n ).

Corollary 3.1 and Theorem 2.2 show that σ̃2 is better than R2 in estimation effectiveness.

We provide a new estimator of σ2, denoted by σ2, which is

σ2 =
n

n − 1

(
σ̃2 +

1

n2

n∑

i=1

S2(xi)f
2(xi)

)
.

From Theorem 2.2, we have the following corollary.

Corollary 3.2 If E(zj(xj))4 and E(f(x))4 exist, then E(σ2) = σ2.

From Corollary 3.2, the estimator σ2 is unbiased, and requires extra computation on the

order of np to calculate the sample average of S2(x)f2(x). This evaluation complexity is the

same as that of σ̃2. As a result, the costs for calculating σ2 is smaller than those for calculating

estimator σ̂2, i.e., new estimator σ2 has more favorable estimation complexity than σ̂2.

4 Numerical Results

To fix ideas, we consider the borehole function investigated in [1, 6]. The function is defined

as

f(Tu, Hu, Hl, r, rω , L, Kω, Tl) =
2πTu(Hu − Hl)

log( r
rω

)
(
1 + 2LTu

log( r
rω

)r2
ωKω

+ Tu

Tl

) . (4.1)

This is a model for the flow rate of water from an upper to a lower aquifer. The inputs r and

rω are radii of the borehole and surrounding basin respectively, Tu and Tl are transmissivities

of aquifers, Hu and Hl are their potentiometric heads, L is the length of borehole and Kω is a

conductivity. The ranges of 8 input variables respectively are

rω ∈ [0.05, 0.15]m, r ∈ [100, 50000]m, Tu ∈ [63070, 115600]
m3

yr
, Tl ∈ [63.1, 116]

m3

yr
,

Hu ∈ [990, 1110]m, Hl ∈ [700, 820]m, L ∈ [1120, 1680]m, Kω ∈ [9855, 12045]
m

yr
.

For simplicity, we assume the variables have the same significance. In the example, the sample

size is n = 100 and the univariate orthogonal basis functions chosen to work with are

z0(x0) = 1, zj(xj) =
1√
6

6∑

k=1

φk(xj) for j = 1, · · · , 8, (4.2)
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where φ0(x) = 1 up to φ6(x) are the first seven univariate orthogonal polynomials. We select

x
j
i ∼ U [0, 1], hence

rω = 0.05 + x1(0.15 − 0.05) ∼ U [0.05, 0.15], r = 100 + x2(50000− 100) ∼ U [100, 50000],

Tu = 63070 + x3(115600− 63070) ∼ U [63070, 115600],

Tl = 63.1 + x4(116 − 63.1) ∼ U [63.1, 116],

Hu = 990 + x5(1110 − 990) ∼ U [990, 1110], Hl = 700 + x6(820 − 700) ∼ U [700, 820],

L = 1120 + x7(1680− 1120) ∼ U [1120, 1680],

Kω = 9855 + x8(12045− 9855) ∼ U [9855, 12045].

Figure 4.1 shows the relative residuals of quasi-regression defined as η̃r(xi) = eη(xi)

f
and

f = 1
n

n∑
i=1

f(xi). Figure 4.2 shows the relative residuals of unbiased quasi-regression defined as

ηr(xi) =
η(xi)

f
.
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Figure 4.1 The relative residual of quasi-regression
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Figure 4.2 The relative residual of unbiased quasi-regression

From the above figures, the residual points of unbiased quasi-regression are evenly dis-

tributed on both sides of the center line, while the residual points of quasi-regression are biased

towards below the center line. According to numerical simulation, we obtain that the orig-

inal mean relative residual of squares is R̃2
r = 1

n

n∑
i=1

η̃2
r (xi) = 0.3915, the new mean relative

residual of squares is R2
r = 1

n

n∑
i=1

ηr
2(xi) = 0.3841, the original mean residual of squares is
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R̃2 = 1
n

n∑
i=1

η̃2(xi) = 1850.3521, the new mean residual of squares is R2 = 1
n

n∑
i=1

η2(xi) =

1815.3527, the original residual sum is R̃ =
n∑

i=1

η̃(xi) = −6.1267, and the new residual sum

is R =
n∑

i=1

η(xi) = −1.5927. These numerical results indicate that unbiased quasi-regression

is improved greatly in the bias and small in the relative residual sum of squares and residual

sum of squares. Hence unbiased quasi-regression is better than quasi-regression in the fitting

of curve.

According to the numerical results, function values f(xi) range on [13.0015, 187.2624], and if

f(xi) are very large or very small, for example f(xi) > 100 or f(xi) < 50, the residuals are very

large; otherwise, the residuals are very small. This behaviour is similar to that of regression.

In this numerical simulation, the residual sums of squares are very large. The main causes

are that, first, in the computer experiment, the variables scatter widely, resulting in a low

efficiency in fitting of curve; second, the construction of quasi-regression is too simple to fit

a curve. In the fitted curve, all basis functions are chosen to be the polynomials of degree 6

while the degrees of some variables in f(x) are perfectly possible higher than 6 and others are

lower than 6. However, looking at equation (4.1) does not easily let us know exactly the degree

of each variable. If we choose the basis functions of higher degree to work with, data can be

well fitted but the resulting models lack prediction power, a phenomenon known as overfitting,

because overfitting leads to a bigger variance in estimation and prediction (see [9]). We also

choose the basis functions of lower degree to work with, for example, let

z0(x0) = 1, zj(xj) = φ3(x
j) for j = 1, · · · , 8,

and n = 100, resulting in

R̃2
r = 0.3878, R2

r = 0.3700, R̃2 = 1813.4703, R2 = 1749.0063, R̃ = −8.5795, R = −3.0239.

In this case, the biases are relatively large while the residuals are relatively small.

On the other hand, the similar results are seen when the experiment is finished at other

values of n. The efficiency to fit curve can increase with n, but the increase is limited, because

the variance σ2 of residual, i.e., the nonlinear variation in f(x), can not be reduced. For

example, let n = 1000 and basis functions be in (4.2), then the numerical results are

R̃2
r = 0.2932, R2

r = 0.2931, R̃2 = 1701.5741, R2 = 1701.2535, R̃ = −0.5868, R = −0.1503.

From this numerical example, we get another conclusion, i.e., with n increasing, the difference

between the statistical properties of quasi-regression and unbiased quasi-regression is decreasing.

So, only if p
n is not very small, unbiased quasi-regression is obviously superior to quasi-regression,

which just illustrates Theorem 3.1.

5 Discussion

The above results are based on the assumption that Y1 up to Yn are i.i.d. observations. If Y1

through Yn are dependent observations, we use blocks of observations as discussed by Dimitris

and Joseph [4] to construct blockwise quasi-regression.
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Let M and L be integers depending only on n, satisfying M = O(n1−τ ), 0 < τ < 1, M
L →

c, 0 < c ≤ 1, as n → ∞. Denote

Bi = (Y(i−1)L+1, · · · , Y(i−1)L+M )′, i = 1, · · · , Q, Q =
[n − M

L

]
+ 1,

where [x] stands for the integer party of x, Bi is a block of observations, M is the window-width,

L is the separation between the block starting points, L = O(n1−τ ) and Q = O(nτ ). For sim-

plicity, the functions Ti,M,L(Bi) are chosen as T
j
i,M,L(Bi) = 1

M

M∑
s=1

zj(xj
(i−1)L+s)Y(i−1)L+s, j =

0, 1, · · · , p − 1, where z0(x) ≡ 1. Thus, the blockwise quasi-regression estimator of βj is

βj =
1

Q

Q∑

i=1

T
j
i,M,L(Bi), j = 0, 1, · · · , p − 1.

For the weakly dependent stationary observations Y1 up to Yn, we can prove by the method

used in [5] that blockwise quasi-regression has the superiority in parametric statistical inference.
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