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The Hausdorff Dimension of Sections∗∗∗
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Abstract The notion of finite-type open set condition is defined to calculate the Hausdorff

dimensions of the sections of some self-similar sets, such as the dimension of intersection

of the Koch curve and the line x = a with a ∈ Q.
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1 Introduction

Let {Si}m
i=1 be an iterated function system (IFS) of contractive similitudes on Rn with the

same contraction ratio ρ ∈ (0, 1) defined by

Si(x) = ρRix + bi, 1 ≤ i ≤ m, (1.1)

where bi ∈ Rn and Ri is an n × n orthogonal matrix for each i. Then there exists a unique

non-empty compact set E ⊂ Rn such that E =
m
⋃

i=1

Si(E) (see [4]). This set E is called the

attractor of the IFS. Assume that (1.1) satisfies the open set condition (OSC), i.e., there exists

a non-empty open set V such that

⋃

i

Si(V ) ⊂ V, Si(V ) ∩ Sj(V ) = ∅, ∀ i 6= j. (1.2)

Suppose L is an (n − 1)-plane, let

ΓL = {S−1
i1···ik

(L) : S−1
i1···ik

(L) ∩ E 6= ∅, i1 · · · ik ∈ {1, · · · , m}k, k ≥ 1}.

We say that the section E ∩ L is of finite type, if #ΓL < ∞.

Let ∆ = {L : L∩E 6= ∅, L∩V 6= ∅}. Notice that E∩L =
m
⋃

i=1

[Si(E)∩L]. Let Λ =
{

L : E∩L =

⋃

i: S−1

i
(L)∈∆

[Si(E)∩L]
}

. Here S−1
i (L) ∈ ∆ if and only if Si(V )∩L 6= ∅ and Si(E)∩L 6= ∅. Write

Ω0(L) = {L}. By induction for every k ≥ 0, let

Ωk+1(L) = {S−1
i (L′) : L′ ∈ Ωk(L) and S−1

i (L′) ∈ ∆}.
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Definition 1.1 Assume that the IFS (1.1) with attractor E satisfies the OSC (1.2). Suppose

L is an (n − 1)-plane. We say that the section E ∩ L holds the finite-type open set condition

(FOSC ), if
∞
⋃

k=0

Ωk(L) ⊂ Λ and #

∞
⋃

k=0

Ωk(L) < ∞. (1.3)

Assume that E ∩ L satisfies the FOSC. We can define the transition matrix A(L) on ΣL =
∞
⋃

k=0

Ωk(L) such that the entry of A(L) in the row w.r.t. L1 and the column w.r.t. L2 is

#{i : 1 ≤ i ≤ m, S−1
i (L1) = L2}. (1.4)

The following is the main result about the FOSC.

Theorem 1.1 Suppose E is the attractor of the IFS (1.1) satisfying the OSC, and L is an

(n− 1)-plane. If E ∩L satisfies the FOSC, then dimH(E ∩L) = log λ
− log ρ , where λ is the spectral

radius of A(L).

Notice that in the above theorem, we do not need the irreducible condition on the transition

matrix A(L).

We organize the paper as follows. In Section 2, we prove the above theorem by using a

graph-directed construction satisfying the OSC, although A(L) may not be irreducible. In

Section 3, we obtain Proposition 3.1 for sections of finite type, and verify the FOSC for some

special sections, for example, the sections of Sierpinski carpet and the intersection of the Koch

curve with the line x = c (c ∈ Q ∩ (0, 1)).

2 Proof of Theorem 1.1

We will recall some important concepts and results related to the graph-directed sets (see

[1–7]). Assume that there exist N complete metric spaces {(Xi, dXi
)}1≤i≤N isometric to Rn,

where N ∈ N. Suppose that {1, · · · , N} is the vertex set of a directed graph G. For any

1 ≤ i, j ≤ N , let Γi,j = {e′ : e′ ∈ G is a directed edge from i to j}. For any edge e ∈ Γi,j ,

there is a corresponding similitude Te : Xj → Xi with the similarity ratio ρe ∈ (0, 1), that is,

dXi
(Te(x), Te(y)) = ρedXj

(x, y), ∀x, y ∈ Xj. The compact sets {Ei}N
i=1 are called the graph-

directed sets, if for each i,

Ei =
⋃

j

⋃

e∈Γi,j

Te(Ej).

Fixed s ≥ 0, we will obtain an N×N matrix B(s) = (bij)1≤i,j≤N with the entry bij =
∑

e∈Γij

(ρe)
s,

where ρe is the contraction ratio of Te .

We say that a family {Te}e∈G of similitudes satisfies the OSC, if there exists a family {Ui}N
i=1

of non-empty open sets such that for each i,

(1)
⋃

e∈Γi,j

Te(Uj) ⊂ Ui;

(2)
⋃

e∈Γi,j

Te(Uj) is a disjointed union.
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We say that the family {Te}e∈G satisfies the strong open set condition (see [2, 8]), if the above

conditions (1), (2) and the following condition hold:

(3) Ui ∩ Ei 6= ∅ for every i.

A directed graph G is said to be strongly connected provided that for any vertices x, y of G

there is a directed path from x to y. We say that the graph-directed construction is irreducible,

if the corresponding graph is strongly connected.

In fact, for the graph-directed sets in the Euclidean space, the strong open set condition is

equivalent to the open set condition (see [6]). Then according to [2, Theorem 3.14], we have

the following lemma.

Lemma 2.1 Suppose the graph-directed construction is irreducible and the family {Te}e∈G

satisfies the open set condition. Let dimEi = t. Then t is the unique value such that the spectral

radius of B(t) equals to 1, where B(t) is defined as above.

Remark 2.1 In the preceding lemma, if all the similarity ratios are the same, i.e., ρe = ρ,

then there exists a nonnegative irreducible integer matrix C such that B(s) = ρsC. Furthermore

for each i, we get that dimEi = − log ρ(C)
log ρ , where ρ(C) is the spectral radius of the nonnegative

matrix C.

Graph-directed Construction Let ΣL be the vertex set. For any vertex L ∈ ΣL, we

assign a natural space L isometric to Rn−1. For any L1, L2 ∈ ΣL and i with S−1
i (L1) = L2, we

define an edge from vertex L1 to vertex L2, whose corresponding similitude from space L2 to

space L1 is Si|L2
: L2 → L1.

Proof of Theorem 1.1

Step 1 {E ∩ L′}L′∈ΣL
are graph-directed sets satisfying the OSC.

Suppose V is a non-empty open set of Rn satisfying

⋃

i

Si(V ) ⊂ V, Si(V ) ∩ Sj(V ) = ∅, ∀ i 6= j.

By the definition of the FOSC, we obtain a family {L′}L′∈ΣL
of metric spaces isometric to

Rn−1.

It follows from the definition of the FOSC that

E ∩ L′ =
⋃

S−1

i
(L′)∈ΣL

Si[S
−1
i (L′) ∩ E]. (2.1)

Given L′ ∈ ΣL, by the definition of the FOSC, we get a non-empty open subset VL′ = V ∩L′

of L′. Because
m
⋃

i=1

[Si(V ) ∩ L] ⊂ V ∩ L, the disjoint union

⋃

S−1

i
(L′)∈ΣL

Si[S
−1
i (L′) ∩ V ] =

⋃

S−1

i
(L′)∈ΣL

[Si(V ) ∩ L′] ⊂ V ∩ L′.

Therefore, the open set condition holds for {E ∩ L′}L′∈ΣL
.
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We write the transition matrix A(L) = (aL1,L2
)L1,L2∈ΣL

. And a
(n)
L′,L′′ the entry of [A(L)]n

in the row w.r.t. L′ and the column w.r.t. L′′.

Step 2 dimH(E ∩ L) ≤ log λ
− log ρ .

Notice that

E ∩ L =
⋃

S−1

i1···ik
(L)∈ΣL

Si1···ik
[S−1

i1···ik
(L) ∩ E], (2.2)

where the diameter of Si1···ik
[S−1

i1···ik
(L) ∩ E] is less than ρk|E|.

For any δ > 0 and integer k large enough with ρk < δ, we have

Hs
δ(E ∩ L) ≤

∑

Li1
···Lik

aL,Li1
aLi1

,Li2
· · · aLik−1

,Lik
(ρk|E|)s =

∑

L′∈ΣL

a
(k)
L,L′(ρ

k|E|)s

≤
∑

L′,L′′∈ΣL

a
(k)
L′,L′′(ρ

k|E|)s = ‖A(L)k‖(ρk|E|)s,

where the norm ‖B‖ = ‖(bij)ij‖ =
∑

i,j

|bij |.

Let λ be the spectral radius of A(L). Then

λ = lim
k→∞

‖A(L)k‖1/k.

Letting δ → 0, we have k → ∞, and thus

dimH(E ∩ L) ≤ lim
k→∞

log ‖A(L)k‖
−k log ρ

=
log λ

− log ρ
.

Step 3 dimH(E ∩ L) ≥ log λ
− log ρ .

Under some permutation of ΣL, we write A(L) in the following shape

A(L) =







A11

...
. . .

Al1 · · · All






,

where Aii is an irreducible square matrix for each 1 ≤ i ≤ l.

Then the maximal spectral radius of Aii (1 ≤ i ≤ l) equals to λ, the spectral radius of A(L).

Without loss of generality, we assume that the spectral radius of Ajj is λ for some j and let Σj

be the irreducible branch with respect to Ajj .

Therefore for L′ ∈ Σj , we have

⋃

S−1

i
(L′)∈Σj

Si[E ∩ S−1
i (L′)] ⊂ E ∩ L′. (2.3)

Hence E ∩ L′ includes aL′,L′′ copies of E ∩ L′′ with contraction ratio ρ.

Suppose {BL′}L′∈Σj
are graph-directed sets according to Σj and Ajj with

⋃

S−1

i
(L′)∈Σj

Si[BS−1

i
(L′)] = BL′ , (2.4)
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where BL′ exactly includes aL′,L′′ copies of BL′′ with similarity ratio ρ whenever L′, L′′ ∈ Σj .

In the same way, the open set condition holds for the graph-directed sets. By the irreducibility

of Ajj and Remark 2.1, we have

dimBL′ =
− logλ

log ρ
. (2.5)

By (2.3) and (2.4), we have BL′ ⊂ E ∩ L′. Then

dimH E ∩ L′ ≥ dimH BL′ . (2.6)

We need only to prove

dimH E ∩ L ≥ dimH E ∩ L′. (2.7)

In fact, since

E ∩ L =
⋃

S−1

i1···ik
(L)∈ΣL

Si1···ik
[S−1

i1···ik
(L) ∩ E] (2.8)

and L′ ∈ ⋃
k

Ωk(L), there is one copy of L′ ∩ E contained in E ∩ L, and then inequality (2.7)

holds. Using (2.5)–(2.7), we have

dim(E ∩ L) ≥ − log λ

log ρ
.

3 Applications

In this section we will give some examples satisfying finite-type open set condition and

calculate the Hausdorff dimension.

Suppose {Si}m
i=1 are similitudes defined by (1.1) with its attractor E. For c ∈ R, K =

(k1, · · · , kn) ∈ Rn with K 6= 0, the (n − 1)-plane LK,c is defined by

LK,c = {(x1, · · · , xn) ∈ Rn | k1x1 + · · · + knxn = c }.

For the attractor E, set EK,c = E ∩ LK,c, the intersection of the self-similar set E with the

hyperplane LK,c. Given a sequence i1 · · · il ∈ {1, · · · , m}l, let

LKl,cl
= S−1

i1···il
(LK,c).

Since S−1
il+1

(LKl,cl
) = LKl+1,cl+1

, there are the following recurrence relations:

Kl+1 = KlRil+1
and cl+1 = ρ−1cl − ρ−1Klbil+1

.

Remark 3.1 If the set {R1, · · · , Rm} is contained in a finite subgroup of O(n), then {Kl}∞l=0

is a finite set. At this time we need only to check whether {cl}l is discrete or not. In fact, if

the section E ∩ LK,c is non-empty, then the corresponding c shall be bounded.

Proposition 3.1 Suppose Ri is identical transformation for each i, ρ−1 ∈ N, and K =

(k1, k2, · · · , kn) ∈ Qn, c ∈ Q, then E ∩ LK,c is of finite type.
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Proof Since Ri is identical transformation and K = (k1, k2, · · · , kn) ∈ Qn is invariant, we

need only to consider the discreteness of the set of all the parameter c with LK,c∩E non-empty.

Notice that c ∈ Q, and bi ∈ Qn for each 1 ≤ i ≤ m. We assume that

K =
K ′

N
, c =

M

N
and bi =

Mi

N
,

where N ∈ N, M ∈ Z, K ′ ∈ Zn and Mi ∈ Zn for each 1 ≤ i ≤ m.

Let Θ = { a
N2 : a ∈ Z}. Given a sequence i1 · · · il, we will show that cl ∈ Θ for any l, where

LKl,cl
= S−1

i1···il
(LK,c).

In fact, as c0 = c = M
N ∈ Θ and ρ−1 is an integer, we have

cl+1 = ρ−1
[ al

N2
− K ′Mil+1

N2

]

=
al+1

N2
∈ Θ.

The distance of different elements in Θ is at least 1
N2 .

That means E ∩ LK,c is of finite type.

Example 3.1 (Sierpinski carpet)

Suppose {Si}4
i=1 are similitudes defined by:

S1

(

x

y

)

=
1

3

(

x

y

)

, S2

(

x

y

)

=
1

3

(

x

y

)

+

(2
3

0

)

,

S3

(

x

y

)

=
1

3

(

x

y

)

+

(

0
2
3

)

, S4

(

x

y

)

=
1

3

(

x

y

)

+

(

2
3
2
3

)

.

Then the corresponding attractor E is called the Sierpinski carpet. The IFS satisfies the open

set condition with the corresponding open set U = (0, 1) × (0, 1).

Given a planar line L : y = 2
5x, we will consider the section E ∩ L.

By the definition, we provide three different types:

L1 = L =
{

y =
2

5
x
}

, L2 =
{

y =
2

5
x +

2

5

}

, L3 =
{

y =
2

5
x +

4

5

}

.

It is easy to check that the finite-type open set condition holds for the section E ∩ L. The

corresponding transition matrix is A =
(

1 1 0
0 0 1
1 0 0

)

with its spectral radius λ = 1.4655 · · · . It

follows from Theorem 1.1 that

dimH(E ∩ L) =
log λ

log 3
= 0.34793 · · · .

Example 3.2 (Koch curve)

In this example, we will prove that the Koch curve intersected by line L : x = c with c ∈ Q

is of finite type.

The Koch curve F can be generated by the following similitudes:

S1

(

x

y

)

=
1

3

(

x

y

)

, S4(x) =
1

3

(

x

y

)

+

(

2
3

0

)

,

S2

(

x

y

)

=
1

3

(

1
2

−
√

3
2√

3
2

1
2

)

(

x

y

)

+

(

1
3

0

)

,

S3

(

x

y

)

=
1

3

(

− 1
2 −

√
3

2√
3

2 − 1
2

)

(

1 0
0 −1

)(

x

y

)

+

(

2
3

0

)

,
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where

(

1
2

−
√

3
2

√
3

2
1
2

)

,

(

− 1
2

−
√

3
2

√
3

2
− 1

2

)

are contained in a finite subgroup G of O(2). Under the action

of G, from the initial vector K = (1, 0)T , we obtain six points as follows

{

(1, 0)T ,
(1

2
,

√
3

2

)T

,
(

− 1

2
,

√
3

2

)T

, (−1, 0)T ,
(

− 1

2
,−

√
3

2

)T

,
(1

2
, −

√
3

2

)T}

.

These points are symmetric with respect to x-axis, i.e., under the action
(

1 0

0 −1

)

the set of these

six points is invariant.

Using the recurrence relation Kl+1 = KlRil+1
, we conclude that Kl+1 belongs to the six

points. Thus

Klbil+1
∈
{

0, ±1

3
, ±2

3
, ±1

6

}

.

Let

Θ∗ =
{ a

6p

∣

∣

∣ a ∈ Z

}

.

By induction, supposing cl ∈ Θ∗, we have

cl+1 = 3cl − 3Klbil+1
∈ Θ∗.

In the same way as Proposition 3.1, we verify that this section is of finite type.

Notice that Koch curve F satisfies the open set condition, and the corresponding open set

V is the interior of ∆ABC whose vertices are A = (0, 0)T , B = (1, 0)T , C = (1
2 ,

√
3

6 )T . In

order to verify the finite-type open set condition, we consider the small triangle Si(∆ABC),

i = 1, 2, 3, 4; Fix a planar line L : x = c. If any line L′ ∈ ΓL induced by L does not occur the

following two exceptional cases:

(1) L′ ∩ Si(∆ABC) is a singleton for some i (here dimH(L′ ∩ F ) = 0),

(2) L′ ∩ Si(∆ABC) = Si(AB), Si(AC) or Si(BC) (here dimH(L′ ∩ F ) = log 2
log 3 ),

then we can conclude that

L′ ∩ F 6= ∅ and L′ ∩ V 6= ∅ for any L′ ∈ ΓL.

And thus the section F ∩L satisfies the finite-type open set condition and the dimension of the

section can be obtained by Theorem 1.1.

Given a line L : x = 11
20 , then ΓL is composed of the following lines:

L1 : x =
11

20
, L2 : y =

1√
3

(

x − 7

10

)

, L3 : y =
1√
3

(

x − 1

10

)

, L4 : y =
1√
3

(

x − 3

10

)

,

L5 : y = − 1√
3

(

x − 7

10

)

, L6 : x =
17

20
, L7 : y =

1√
3

(

x − 9

10

)

,

L8 : y = − 1√
3

(

x − 1

10

)

, L9 : y = − 1√
3

(

x − 3

10

)

, L10 : y = − 1√
3

(

x − 9

10

)

.

Here the exceptional cases do not appear, and thus the section F ∩ L satisfies the finite-type
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open set condition. The corresponding transition matrix is

A =

































0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
1 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 2 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 2 1 0 0 0 0

































.

Then the spectral radius of A is 1.6265766 · · · . Hence

dimH(E ∩ L) =
log 1.6265766 · · ·

log 3
= 0.442811 · · · .
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