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Abstract In this paper, the author considers the Cauchy problem for semilinear wave

equations with critical exponent in n ≥ 4 space dimensions. Under some positivity condi-

tions on the initial data, it is proved that there can be no global solutions no matter how

small the initial data are.
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1 Introduction

Consider the Cauchy problem for the semilinear wave equation

�u(t, x) = |u(t, x)|p, (1.1)

corresponding to initial conditions

u(0, x) = f(x), ut(0, x) = g(x), x ∈ Rn, (1.2)

where f, g ∈ C∞
0 (Rn) and � = ∂2

t −△ is the wave operator. In 1979, John showed that when

n = 3 global solutions always exist if p > 1 +
√

2 and initial data are sufficiently small, and

moreover, the global solutions do not exist if p < 1 +
√

2 and the initial data are not both

identically zero. The number 1+
√

2 appears to have first arisen in Strauss’ work on semilinear

Schrödinger equations. Based on this, he made the insightful conjecture that when n ≥ 2 global

solutions of (1.1)–(1.2) should always exist if initial data are sufficiently small and p is greater

than a critical power p0(n) which is the positive root of quadratics

(n − 1)p2 − (n + 1)p − 2 = 0. (1.3)

This conjecture was verified when n = 2 by Glassey [3], n = 4 by the author in [14] and finally

for all n ≥ 4 and p ≤ n+3
n−1 by V. Georgiev, H. Lindblad and C. Sogge [1]. On the other hand,

when 1 < p < p0(n), there can be blow up for arbitarily small data. This was shown by Glassey

[2] when n = 2 and by Sideris [6] for all n ≥ 4. For the critical case p = p0(n), it was shown by

Schaeffer [5] that there still can be blow up for small data if n = 2 or 3 (see also [8, 12, 13]).

However, when n ≥ 4 and p = p0(n), the problem has been left open for more than 20 years.

The aim of this paper is to extend Sideris’ blow up result to p = p0(n) for all n ≥ 4.
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For the subcritical case, Sideris was able to find certain averaged quantities such that they

satisfy differential inequalities which blow up. In the critical case, these differential inequalities

do not blow up. The best thing that can be achieved by Sideris’ method is as follows: Suppose

we have a solution on the time interval [0, T ]. Then we can get a sharp lower bound of certain

averaged quantities which depends on T . The new idea is to get an upper bound of the averaged

quantities which is independent of T . In this way, we can get an upper bound for T . This idea

was inspired by the recent work of Q. S. Zhang [11] on the damped wave equation. The key step

to accomplish this idea is to use positivity of some special functions which are homogeneous of

degree −q (q > 0), radial symmetric and solve the homogenous linear wave equations. Such

kind of special functions were used by the author in [13].

After the completion of this paper, we received a preprint of [10], similar result is proved by

different method.

2 Main Result

In this section, we briefly review results proved by Sideris [6] and state our main theorem.

We first recall the following local existence theorem of Sideris.

Proposition 2.1 Let f ∈ H1(Rn), g ∈ L2(Rn), n ≥ 4 with supp f, g ⊂ {|x| < k} and sup-

pose 1 ≤ p ≤ n+3
n−1 . Then there exists a T > 0 and a unique solution u(t) ∈ C([0, T ]; L

2(n+1)
n−1 (Rn))

of the integral equation

u(t) = u0(t) +

∫ t

0

R(t − τ) ∗ |u(τ)|pdτ (2.1)

with suppu(t) ⊂ {|x| < k + t}, where (2.1) is the integral equation of (1.1)–(1.2), that is, u0(t)

is the solution of the homogeneous linear wave equation with initial data (f, g) and R is the

fundamental solution of the wave operator.

Our main result can be stated as follows:

Theorem 2.1 Consider the Cauchy problem (1.1)–(1.2). Suppose that p = p0(n) and the

initial data satisfy

∫

Rn

|x|η−1f(x)dx > 0,

∫

Rn

|x|ηg(x)dx > 0, (2.2)

where η is 0 if n is odd and 1
2 if n is even. Let u(t) be a solution given by Proposition 2.1 on

the time interval [0, T ]. Then there exists a positive constant C∗ depending only on the initial

data such that

T ≤ C∗. (2.3)

This theorem is of the same form as that of Sideris’. The strange condition (2.2) comes

from the following lemma of Sideris.

Lemma 2.1 Let u0 be the solution of the homogeneous linear wave equation with initial

data (f, g). Suppose that (2.2) is satisfied. Then there exists a positive constant T0 such that

∫

|x|>t

∫ t

t−k

(t − τ)mu0(τ, x)dτdx ≥ c0(t + k)
n−1

2 , ∀ t ≥ T0, (2.4)
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where m = n−5
2 if n is odd and m = n−4

2 if n is even, and c0 is a positive constant independent

of t.

The number m in Lemma 2.1 appears naturally in the solution formula for the linear wave

equation and we have the following lemma of Sideris.

Lemma 2.2 Let u be the solution of (2.1) and let

v(t) = u(t) − u0(t). (2.5)

Then

∫ t

0

(t − τ)mv(τ, x)dτ ≥ 0, a.e. x. (2.6)

We have

Corollary 2.1 Under the assumptions of Lemma 2.2,

∫ t

0

(t − τ)m+1v(τ, x)dτ ≥ 0, a.e. x. (2.7)

Proof In fact, we have

∫ t

0

(t − τ)m+1v(τ, x)dτ =

∫ t

0

dt1

∫ t1

0

(t1 − τ)mv(τ, x)dτ.

It follows from Lemmas 2.1 and 2.2 that

∫

|x|>t

∫ t

t−k

(t − τ)m|u(τ, x)|pdτdx ≥ c(t + k)n−1−n−1
2 p, ∀ t ≥ T0. (2.8)

In fact, it follows from Hölder’s inequality that

∫

|x|>t

∫ t

t−k

(t − τ)m|u(τ, x)|pdτdx

≥ c(t + k)−(n−1)(p−1)
∣

∣

∣

∫

|x|>t

∫ t

t−k

(t − τ)mu(τ, x)dτdx
∣

∣

∣

p

= c(t + k)−(n−1)(p−1)
∣

∣

∣

∫

|x|>t

∫ t

t−k

(t − τ)mu0(τ, x)dτdx +

∫

|x|>t

∫ t

t−k

(t − τ)mv(τ, x)dτdx
∣

∣

∣

p

.

We have

supp v(τ) ⊂ {|x| < τ + k}. (2.9)

Thus

∫

|x|>t

∫ t

t−k

(t − τ)mv(τ, x)dτdx =

∫

|x|>t

∫ t

0

(t − τ)mv(τ, x)dτdx ≥ 0. (2.10)

Therefore, (2.8) follows from Lemma 2.1.
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3 Proof of Theorem 2.1

The key point is to seek a solution of the linear wave equation

�φ = 0 (3.1)

on the domain |x| ≤ t, t ≥ 0 of the form

φ = φq = (t + |x|)−qh
( 2|x|

t + |x|
)

, (3.2)

where q > 0. A simple calculation shows that h = hq satisfies the ordinary differential equations

z(1 − z)h′′(z) +
[

n − 1 −
(

q +
n + 1

2

)

z
]

h′(z) − n − 1

2
qh(z) = 0. (3.3)

Therefore, we can take

hq(z) = F
(

q,
n − 1

2
, n − 1, z

)

, (3.4)

where F is the hypergeometric function defined by

F (α, β, γ, z) =
∞
∑

n=0

(α)n(β)n

n!(γ)n
zn (3.5)

with (λ)0 = 1, (λ)n = λ(λ + 1) · · · (λ + n − 1), n ≥ 1. For α > β > 0, one has the formula

F (α, β, γ, z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1 − t)γ−β−1(1 − zt)−αdt, |z| < 1. (3.6)

Thus

hq(z) =
Γ(n − 1)

Γ2(n−1
2 )

∫ 1

0

t
n−3

2 (1 − t)
n−3

2 (1 − zt)−qdt. (3.7)

It follows that

h(z) > 0, 0 ≤ z < 1. (3.8)

Moreover, when

0 < q <
n − 1

2
, (3.9)

h(z) is continous at z = 1. Thus

C−1
0 ≤ h(z) ≤ C0, 0 ≤ z ≤ 1 (3.10)

for some positive constant C0. When

q >
n − 1

2
, (3.11)

h(z) behaves like (1 − z)
n−1

2 −q when z is close to one. Thus

C−1
0 (1 − z)

n−1
2 −q ≤ h(z) ≤ C0(1 − z)

n−1
2 −q, 0 ≤ z ≤ 1, (3.12)
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for some positive constant C0. One can also verify

∂tφq(t, x) = −qφq+1(t, x) (3.13)

by (3.2) and (3.7).

To prove Theorem 2.1, we consider the functional

I(T ) =

∫ T

2k

θ2p′

( t

T

)

ln−1(t + k + 1)

∫

Rn

Φq(t, x)

∫ 2k

0

σm+1|u(t − σ, x)|pdσdxdt, (3.14)

where

1

p′
+

1

p
= 1, q = n − 1 − 2

p − 1
, (3.15)

Φq(t, x) = φ(t + k + 1, x), and θ = θ(τ) is a cut-off function such that θ ∈ C∞(R), 0 ≤ θ ≤ 1,

θ = 1 if τ ≤ 1
2 , θ = 0 if τ ≥ 3

4 . We shall prove that when p = p0(n), I(T ) is bounded above by

a positive constant C which is independent of T :

I(T ) ≤ C. (3.16)

Assume that (3.16) is valid, we now prove Theorem 2.1. Before doing that, we list the relations

satisfied by p and q if p = p0(n):

q =
n − 1

2
− 1

p
, (3.17)

0 < q <
n − 1

2
, (3.18)

q + 1 >
n − 1

2
, (3.19)

(n + 1 − q)
1

p′
= 2, (3.20)

(n − 1 − q)
1

p′
=

n + 1

2
− q − 1

p′
, (3.21)

(

q − n − 3

2

)

p′ = 1, (3.22)

− (n − 1) +
n − 1

2
p + q = 1. (3.23)

By (3.18) and (3.10), we have

I(T ) ≥
∫ T/2

2k

dt ln−1(t + k + 1)(t + k + 1)−q

∫ 2k

0

σm+1

∫

Rn

|u(t − σ, x)|pdxdσ

≥
∫ T/2−k

k

dt ln−1(t + 2k + 1)(t + 2k + 1)−q

∫ 2k

k

σm+1

∫

Rn

|u(t + k − σ, x)|pdxdσ

≥ k

∫ T/2−k

k

dt ln−1(t + 2k + 1)(t + 2k + 1)−q

∫ k

0

(σ + k)m

∫

Rn

|u(t − σ, x)|pdxdσ

≥ k

∫ T/2−k

k+T0

dt ln−1(t + 2k + 1)(t + 2k + 1)−q

∫ k

0

σm

∫

Rn

|u(t − σ, x)|pdxdσ. (3.24)

By (2.8)

∫ k

0

σm

∫

Rn

|u(t − σ, x)|pdxdσ ≥ c(t + 2k + 1)n−1−n−1
2 p, t ≥ T0. (3.25)
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It then follows from (3.23) that

I(T ) ≥ ck

∫ T/2−k

k+T0

dt ln−1(t + 2k + 1)(t + 2k + 1)−1

= ck
(

ln ln
(T

2
+ k + 1

)

− ln ln(3k + T0 + 1)
)

. (3.26)

This combining with (3.16) yields an upper bound

ln ln
(T

2
+ k + 1

)

≤ C1, (3.27)

where C1 is a positive constant depending only on the initial data. This gives (2.3).

It remains to prove (3.16). In the following, we shall denote by C a positive constant

independent of T . The meaning of C will change from step to step.

It is easy to see that
∫ 2k

0

σm+1|u(t − σ, x)|pdσ = �w(t, x), t ≥ 2k, (3.28)

where

w(t, x) =

∫ 2k

0

σm+1u(t − σ, x)dσ. (3.29)

Therefore, noting (3.13), we have

I(T ) =

∫ T

2k

θ2p′

( t

T

)

ln−1(t + k + 1)

∫

Rn

Φq(∂
2
t w −△w)dxdt

=

∫ T

2k

θ2p′

( t

T

)

ln−1(t + k + 1)

∫

Rn

(Φq∂
2
t w −△Φqw)dxdt

=

∫ T

2k

θ2p′

( t

T

)

ln−1(t + k + 1)

∫

Rn

(Φq∂
2
t w − ∂2

t Φqw)dxdt

=

∫ T

2k

θ2p′

( t

T

)

ln−1(t + k + 1)∂t

∫

Rn

(Φq∂tw − ∂tΦqw)dxdt

=

∫ T

2k

θ2p′

( t

T

)

ln−1(t + k + 1)
[

∂2
t

∫

Rn

Φqwdx − 2∂t

∫

Rn

∂tΦqwdx
]

dt

=

∫ T

2k

θ2p′

( t

T

)

ln−1(t + k + 1)
[

∂2
t

∫

Rn

Φqwdx − 2∂t

∫

Rn

Φq+1wdx
]

dt. (3.30)

Integrating by parts, we get

I(T ) = −I0 + I1 + I2, (3.31)

where

I0 = ln−1(3k + 1)

∫

Rn

[Φq(2k, x)wt(2k, x) + qΦq+1(2k, x)w(2k, x)]dx

+ ln−2(3k + 1)(3k + 1)−1

∫

Rn

Φ(2k, x)w(2k, x)dx, (3.32)

I1 = −2q

∫ T

2k

∂t

[

θ2p′

( t

T

)

ln−1(t + k + 1)
]

∫

Rn

Φq+1(t, x)w(t, x)dxdt, (3.33)

I2 =

∫ T

2k

∂2
t

[

θ2p′

( t

T

)

ln−1(t + k + 1)
]

∫

Rn

Φq(t, x)w(t, x)dxdt. (3.34)
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We first estimate I0. We have

u = v + u0. (3.35)

Thus, by (2.7), we can get

w(2k, x) =

∫ 2k

0

σm+1v(2k − σ, x)dσ +

∫ 2k

0

σm+1u0(2k − σ, x)dσ

≥
∫ 2k

0

σm+1u0(2k − σ, x)dσ = f1(x). (3.36)

Similarly, by (2.6), we have

wt(2k, x) = (m + 1)

∫ 2k

0

σmv(2k − σ, x)dσ + (m + 1)

∫ 2k

0

σmu0(2k − σ, x)dσ

≥ (m + 1)

∫ 2k

0

σmu0(2k − σ, x)dσ = f2(x). (3.37)

Thus

I0 ≥ ln−1(3k + 1)

∫

Rn

[Φq(2k, x)f2(x) + qΦq+1(2k, x)f1(x)]dx

+ ln−2(3k + 1)(3k + 1)−1

∫

Rn

Φ(2k, x)f1(x)dx

≥ −C. (3.38)

We now estimate I1. By (3.19) and (3.12), we have

Φq+1(t, x) ≤ C0(t + k + 1)−
n−1

2 (t + k + 1 − |x|)−(q− n−3
2 ). (3.39)

Similarly, by (3.18) and (3.10), we have

C−1
0 (t + k + 1)−q ≤ Φq(t, x) ≤ C0(t + k + 1)−q. (3.40)

It then follows from Hölder’s inequality that

∣

∣

∣

∫

Rn

Φq+1(t, x)w(t, x)dx
∣

∣

∣
≤

(

∫

|x|≤t+k

Φq

(Φq+1

Φq

)p′

dx
)

1
p′

(

∫

Rn

Φq|w|pdx
)

1
p

. (3.41)

We have

Φq

(Φq+1

Φq

)p′

≤ C0(t + k + 1)−q+(q−n−1
2 )p′

(t + k + 1)−p′(q− n−3
2 ).

Noting (3.21) and (3.22), we have

(

∫

|x|≤t+k

Φq

(Φq+1

Φq

)p′

dx
)

1
p′ ≤ C(t + k + 1)

(n−1−q) 1
p′

+q−n−1
2

(

∫ t+k

0

(t + k + 1 − r)−1dr
)

1
p′

≤ C(t + k + 1)
1− 1

p′ (ln(t + k + 1))1−
1
p .

Again, it follows from Hölder’s ineqality that

I1 ≤ C
[

T−1
(

∫ T

T/2

(t + k + 1)p′−1dt
)

1
p′

+
(

∫ T

2k

ln−p′

(t + k + 1)(t + k + 1)−1dt
)

1
p′

]

I
1
p (T )

≤ CI
1
p′ (T ). (3.42)
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Noting (3.20), we have

∣

∣

∣

∫

Rn

Φqwdx
∣

∣

∣
≤

(

∫

|x|≤t+k

Φqdx
)

1
p′

(

∫

Rn

Φq|w|pdx
)

1
p ≤ C(t + k + 1)

n−q

p′

(

∫

Rn

Φq|w|pdx
)

1
p

= C(t + k + 1)
2− 1

p′

(

∫

Rn

Φq|w|pdx
)

1
p

.

Thus, in a similar way, we can get

I2 ≤ CI
1
p (T ). (3.43)

Therefore, it follows from (3.38), (3.42) and (3.43) that

I(T ) ≤ C + CI
1
p (T ). (3.44)

Therefore, (3.16) follows by Young’s ineqality.
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