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Abstract The Bott generator of the homotopy group π2k−1U(∞) is used to construct an
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1 The Bott Generator of π2k−1U(∞)

Let U(k) be the unitary group. The homotopy sequence of the fibration U(k)→ U(k+1)
π→

S2k+1 implies π2k−1U(k) ∼= π2k−1U(k + 1), consequently

π2k−1U(k) ∼= π2k−1U(∞) ∼= K̃(S2k). (1.1)

The celebrated Bott periodicity theorem (see [3]) asserts K̃(S2k) ∼= Z. A natural question

is to search for an explicit generator of the infinite group π2k−1U(k). Note that the unitary

group U(k) is a deformation retract of the general linear group GL(k; C), and that U(k) is

diffeomorphic to S1 × SU(k). It turns out that

π2k−1SU(k) ∼= π2k−1U(k) ∼= π2k−1GL(k; C) ∼= Z (1.2)

for k > 1.

Following Atiyah [1], we consider continuous maps

f : S2k−1 → GL(k; C). (1.3)

The first row of the matrix f defines a map

f1 : S2k−1 → C
k − {0},

so that f1

|f1|
is a map from S2k−1 to itself, whose mapping degree makes sense. We then put

deg f =
(−1)k−1

(k − 1)!
deg

f1

|f1|
. (1.4)

The theorem of Bott, described by Atiyah [1], is then as follows
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Theorem 1.1 The map f : S2k−1 → GL(k; C) can be deformed into another map g :

Sn−1 → GL(N ; C) if and only if degf = deg g; moreover there exists a map with any given

degree.

In fact if 2N > n, one can show that f : S2k−1 → GL(k; C) is always deformed into a map

g so that

g(x) = diag(I, h(x)), (1.5)

where h(x) ∈ GL([n
2 ]; C). If m is odd, the Bott periodicity theorem says that every map

f : Sm−1 → GL(N ; C) is deformed into a constant map for 2N ≥ m.

To understand the reason for the unexpected factor (k − 1)! in the definition of the degree,

we look at the homotopy sequence of the fibration U(k − 1)→ U(k)
π→ S2k−1:

π2k−1U(k − 1)→ π2k−1U(k)
π∗→ π2k−1S

2k−1 → π2k−2U(k − 1)→ 0. (1.6)

Since π2k−2U(k − 1) ∼= Z(k−1)! and π2k−1U(k − 1) is isomorphic to 0 or Z2 (see [4]), it follows

that the map π∗ : π2k−1U(k)→ π2k−1S
2k−1 ∼= Z is given by sending 1 to (k − 1)!.

We now return to the generator of π2k−1U(∞). Suppose then that

f : Sn−1 → GL(N ; C), g : Sm−1 → GL(M ; C)

are two given maps. One defines their tensor product f ∗ g : Sm+n−1 → GL(2MN ; C) by

(x, y) 7→
(

f(x)⊗ IdM −IdN ⊗ g∗(y)
IdN ⊗ g(y) f∗(x) ⊗ IdM

)
,

where f and g are extended homogeneously to all of Rn and Rm, respectively, f∗(x) is the

transposed conjugate of the matrix f(x) and IdM denotes the identity matrix of degree M .

It is easy to check that for (x, y) 6= (0, 0), f ∗ g(x, y) is nonsingular, thereby f ∗ g defines a

continuous map Sm+n−1 → GL(2MN ; C).

If m and n are both even, one has the multiplicative formula

deg (f ∗ g) = deg f · deg g. (1.7)

It then follows that deg (ek) = 1, where e1 : S1 → GL(1, C) is the standard map e1(z) = z and

the map

ek = e1 ∗ · · · ∗ e1 (k-times) : S2k−1 → GL(2k−1; C)

is its k-fold power. Therefore, product theory furnishes the Bott generating map, meaning

a generating element of the infinite cyclic group of homotopy classes of maps from S2k−1 to

GL(2k−1, C).

In order to get a generating element of π2k−1U(k), it suffices to deform ek : S2k−1 →
GL(2k−1; C) into a map

Gk : S2k−1 → GL(k; C) →֒ GL(2k−1; C),

where the notation →֒ is the inclusion.

We conclude this section with an interesting relation with the gauge theory given by the

general index theory for families in [2]. Let Y be a fiber bundle over S2 with fiber S2k−2, and
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let V be a complex vector bundle over Y of rank k with a unitary connection, so that the gauge

group is U(k) or SU(k). Let G be the group of gauge transformations. According to [2], one

has

π1(G) ∼= π2k−1SU(k) ∼= Z.

Therefore, the Bott generator of π2k−1SU(k) will bring us an interpretation of a generator of

the fundamental group of the group of gauge transformations.

2 The Bott Generator of π5SU(3)

The main result of this section is as follows

Proposition 2.1 G(z) = z zt + h(z) is the Bott generator of the homotopy group π5SU(3),

where z = (z1, z2, z3)
t ∈ S5 ⊂ C, and

h(z) =




0 −z3 z2

z3 0 −z1

−z2 z1 0


.

Proof First a straightforward computation gives that

detG(z) = |z|4 = 1

for z ∈ S5. Next, from the following clear equalities

{
h(z)z = 0,

z zt − h(z)h(z) = |z|2 I,
(2.1)

it follows that G(z)G(z)
t
= I and then G(z) belongs to SU(3) for each z ∈ S5.

It remains to show that G(z) : S5 → SU(3) is homotopic to the Bott fenerator e3 : S5 →
GL(4; C), where we use the inclusion SU(3) →֒ GL(3; C) →֒ GL(4; C). Recall that e3 = e1 ∗ e2

is given by

e3(z) =




z1 0 −z2 −z3

0 z1 z3 −z2

z2 −z3 z1 0
z3 z2 0 z1


 . (2.2)

Let us introduce five maps Tj = Tj(z) : S5 → GL(4; C) defined by

T1 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 , T2 =




1 z1 z2 z3

0 1 0 0
0 0 1 0
0 0 0 1


 , T3 =




1 0 0 0
−z1 1 0 0
−z2 0 1 0
−z3 0 0 1


 ,

T4 =




1 −z1 −z3 z2

0 1 0 0
0 0 1 0
0 0 0 1


 , T5 =




1 0 0 0
0 −1 0 0
0 0 0 −1
0 0 1 0


 .

Since det T2(z) = detT3(z) = detT4(z) = 1 for all z ∈ R6, it follows that Tj (j = 2, 3, 4) : S5 →
GL(4 : C) is homotopic to the constant map I. Moreover, since GL(4; C) is connected, T1 and
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T5 are both homotopic to the constant map I, too. Therefore we arrive at

e3 ≃ T3T2T1e3T4T5 =




1 0 0 0
0 z2

1 z1z2 − z3 z1z3 + z2

0 z2z1 + z3 z2
2 z2z3 − z1

0 z3z1 − z2 z3z2 + z1 z2
3


 ,

which completes the proof.

3 An Interesting Almost Complex Structure on S
6

We start with some preparations. Following [5], let us embed gl(m; C) into gl(2m; R) in a

natural way: A+
√
−1B 7→

(
A −B
B A

)
, where A, B belong to gl(m; R). Clearly any P in GL(2m; R)

has a unique decomposition

P = P1 + P2S, (3.1)

where Pj (j = 1, 2) belongs to gl(m; C), S = diag(Im,−Im). The formula that QS = SQ for

Q ∈ gl(m; C) will be useful later, where Q denotes the complex conjugate of Q.

In order to define an almost complex structure on S6, we need a coordinate system S6 =

(S6 −A+) ∪ (S6 −A−) with f+ : R6 → S6 − {A+} and f− : R6 → S6 − {A−}, defined by

f+(u) = (1 + |u|2)−1(2ut, |u|2 − 1)t,

f−(v) = (1 + |v|2)−1(2vt, 1− |v|2)t,
(3.2)

where u = (u1, · · · , u6)
t, A+ = (0, · · · , 0, 1)t, A− = (0, · · · , 0,−1)t, v = (v1, v2, v3,−v4,−v5,

−v6)
t. It follows from (3.2) that the coordinate change

f−1
− ◦ f+ : R

6 − {0} → R
6 − {0}

is given by u 7→ v = u
|u|2 . Clearly we have the Jacobian ( ∂vi

∂uj
) = SA, where A = |u|−4(|u|2 I −

2u ut). It is not difficult to verify that |u|2SA belongs to SO(6) for each u 6= 0 ∈ R6.

We now define our almost complex structure J on S6 in terms of the coordinate system

v1, · · · , v6 simply by

J
( ∂

∂v1
, · · · , ∂

∂v6

)
=

( ∂

∂v1
, · · · , ∂

∂v6

)
J0 for |v| ≤ 1, (3.3)

where J0 =
(

0 −Im

Im 0

)
. By the coordinate change v = u

|u|2 , (3.3) is equivalent to

J
( ∂

∂u1
, · · · , ∂

∂u6

)
=

( ∂

∂u1
, · · · , ∂

∂u6

)
Q−1J0Q (3.4)

for 1 ≤ |u| ≤ +∞, where Q = SA.

We have got an almost complex structure J on {u | u ∈ R6∪{∞}, 1 ≤ |u| ≤ +∞} ⊂ S6, and

the next thing to do is to extend smoothly the definition of the matrix (of functions) Q−1J0Q

to the field {u | u ∈ R6, 0 ≤ |u| < 1}. The idea originates from the homotopy theory. As it is

well known, one has two one to one correspondences:

{X−1J0X | X ∈ SO(6)} ←→ {Y6×6 | Y 2 = −I, Y t = −Y } ←→ SO(6)/U(3) ∼= CP 3.
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The fibration U(3) →֒ SO(6)→ SO(6)/U(3) = CP 3 has its homotopy sequence:

0 ∼= π6CP 3 → π5U(3)→ π5SO(6)→ π5CP 3 ∼= 0.

Thus we get an isomorphism π5U(3) ∼= π5SO(6). Recall that G(z) = |z|−2z zt + |z|−1h(z) is the

Bott generator of π5U(3), and |u|2AS is the “positive” generator of π5SO(6) (see [6]). These

arguments implies that G(|u|2AS)−1 is homotopic to the constant map I, and then

I ∼= G(|u|2AS)−1 = G(|u|2AS)t = |u|2GQ. (3.5)

For the sake of convenience, we rewrite A as the form in (3.1):

A = |z|−4{|z|2I − (zzt + zztS)}, (3.6)

where z = (z1, z2, z3)
t = (u1 +

√
−1u4, u2 +

√
−1u5, u3 +

√
−1u6)

t ∈ C3. Therefore we have

from (3.5) that

I ≃ |z|2GQ = (|z|−2z zt + |z|−1h(z))(|z|−2(|z|2I − zzt)S − |z|−2z zt)

= |z|−2(|z|h(z)S − zzt). (3.7)

We are now in a position to construct our extension as follows.

Lemma 3.1 Let f and g be real smooth functions of |z|2, z ∈ C3, with boundary conditions:

(1) f ≡ 1 for |z| ≤ ε
2 , f ≡ 0 for |z| ≥ ε, and 1 > f > 0 for ε > |z| > ε

2 ;

(2) g ≡ 0 for |z| ≤ ε
2 , g ≡ 1 for |z| ≥ ε, and 1 > g > 0 for ε > |z| > ε

2 .

Let P (z) = (f
√
−1 I − g zzt) + |z|g h(z)S. For any z 6= 0 ∈ C3, P (z) is, up to an non-zero

factor, an element of SO(6).

Proof We observe that P t = (−f
√
−1 I − gz zt)− |z|gh(z)S, and find that

P P t = ((f
√
−1 I − gz zt) + |z|gh(z)S)((−f

√
−1 I − gz zt)− |z|gh(z)S)

= f2I + g2|z|2(z zt − h(z)h(z)) = (f2 + g2|z|4)I,

which is nonsingular owing to the definitions of f and g. It completes the proof.

Summarizing the arguments above, we have established

Theorem 3.1 There is an almost complex structure J on S6 = R6 ∪ {∞} = {u | 0 ≤ |u| ≤
+∞} defined by

J
( ∂

∂u1
, · · · , ∂

∂u6

)
=

( ∂

∂u1
, · · · , ∂

∂u6

)
P−1J0P,

where P is given in Lemma 3.1. J is integrable for |u| ≤ ε
2 or ε ≤ |u| ≤ +∞.

The proof of this theorem is omitted.

4 Integrability of the Almost Complex Structure J

Proposition 4.1 The almost complex structure J defined in Lemma 3.1 is not integrable

for ε
2 < |u| < ε.
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Proof Observe that if f 6= 0 (in fact it holds for ε
2 < |z| < ε), then the complex matrix

f
√
−1 I − gzzt has its inverse as

(f
√
−1 I − gzzt)−1 =

−
√
−1

f
I − g

f(f + g|z|2
√
−1)

zzt.

Thus the almost complex structure defined by P (z) = (f
√
−1 I−gzzt)+g |z|h(z)S is equivalent

to that of

(f
√
−1 I − g zzt)−1P = I − g f−1 |z|

√
−1h(z)S.

However, the non-integrability of I − g f−1 |z|
√
−1h(z)S is an immediate consequence of the

following criterion (see [5]).

Lemma 4.1 Im + V S is integrable if and only if T i
jk = T i

kj for all 1 ≤ i, j, k ≤ m, where

(vij)k = ∂
∂zk

(vij), (vij)k = ∂
∂zk

(vij), and T i
jk = (vij)k −

∑
s

(vij)s vsk.
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