Chinese Annals of Mathematics, Series B © The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2007

Bott Generator and Its Application to an Almost Complex Structure on $S^{6 ***}$

Chiakuei PENG* Zizhou TANG**

Abstract The Bott generator of the homotopy group $\pi_{2k-1} U(\infty)$ is used to construct an almost complex structure on S^6 , which is integrable except a small neighborhood.

Keywords Bott generator, Almost complex structure, Integrability 2000 MR Subject Classification 32Q99, 53C15

1 The Bott Generator of $\pi_{2k-1}U(\infty)$

Let U(k) be the unitary group. The homotopy sequence of the fibration $U(k) \to U(k+1) \xrightarrow{\pi} S^{2k+1}$ implies $\pi_{2k-1}U(k) \cong \pi_{2k-1}U(k+1)$, consequently

$$\pi_{2k-1}\mathbf{U}(k) \cong \pi_{2k-1}\mathbf{U}(\infty) \cong \widetilde{K}(S^{2k}).$$
(1.1)

The celebrated Bott periodicity theorem (see [3]) asserts $\widetilde{K}(S^{2k}) \cong \mathbb{Z}$. A natural question is to search for an explicit generator of the infinite group $\pi_{2k-1}U(k)$. Note that the unitary group U(k) is a deformation retract of the general linear group GL(k; \mathbb{C}), and that U(k) is diffeomorphic to $S^1 \times SU(k)$. It turns out that

$$\pi_{2k-1}\mathrm{SU}(k) \cong \pi_{2k-1}\mathrm{U}(k) \cong \pi_{2k-1}\mathrm{GL}(k;\mathbb{C}) \cong \mathbb{Z}$$
(1.2)

for k > 1.

Following Atiyah [1], we consider continuous maps

$$f: S^{2k-1} \to \mathrm{GL}(k; \mathbb{C}). \tag{1.3}$$

The first row of the matrix f defines a map

$$f_1: S^{2k-1} \to \mathbb{C}^k - \{0\},\$$

so that $\frac{f_1}{|f_1|}$ is a map from S^{2k-1} to itself, whose mapping degree makes sense. We then put

$$\deg f = \frac{(-1)^{k-1}}{(k-1)!} \deg \frac{f_1}{|f_1|}.$$
(1.4)

The theorem of Bott, described by Atiyah [1], is then as follows

Manuscript received February 24, 2005. Revised July 26, 2006. Published online March 5, 2007.

^{*}Department of Mathematics, Graduate School, Chinese Academy of Sciences, Beijing 100039, China. E-mail: pengck@gucas.ac.cn

^{**}Corresponding author. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China. E-mail: zztang@mx.cei.gov.cn

^{***}Project supported by the Changjiang Scholars Program, the Outstanding Youth Foundation of China (No. 19925103, No. 10229101) and the National Natural Science Foundation of China (No. 10531090).

Theorem 1.1 The map $f : S^{2k-1} \to \operatorname{GL}(k; \mathbb{C})$ can be deformed into another map $g : S^{n-1} \to \operatorname{GL}(N; \mathbb{C})$ if and only if $\deg f = \deg g$; moreover there exists a map with any given degree.

In fact if 2N > n, one can show that $f: S^{2k-1} \to \operatorname{GL}(k; \mathbb{C})$ is always deformed into a map q so that

$$g(x) = \operatorname{diag}(I, h(x)), \tag{1.5}$$

where $h(x) \in \operatorname{GL}([\frac{n}{2}]; \mathbb{C})$. If *m* is odd, the Bott periodicity theorem says that every map $f: S^{m-1} \to \operatorname{GL}(N; \mathbb{C})$ is deformed into a constant map for $2N \ge m$.

To understand the reason for the unexpected factor (k-1)! in the definition of the degree, we look at the homotopy sequence of the fibration $U(k-1) \rightarrow U(k) \xrightarrow{\pi} S^{2k-1}$:

$$\pi_{2k-1} \mathrm{U}(k-1) \to \pi_{2k-1} \mathrm{U}(k) \xrightarrow{\pi_*} \pi_{2k-1} S^{2k-1} \to \pi_{2k-2} \mathrm{U}(k-1) \to 0.$$
 (1.6)

Since $\pi_{2k-2}U(k-1) \cong \mathbb{Z}_{(k-1)!}$ and $\pi_{2k-1}U(k-1)$ is isomorphic to 0 or \mathbb{Z}_2 (see [4]), it follows that the map $\pi_* : \pi_{2k-1}U(k) \to \pi_{2k-1}S^{2k-1} \cong \mathbb{Z}$ is given by sending 1 to (k-1)!.

We now return to the generator of $\pi_{2k-1} U(\infty)$. Suppose then that

$$f: S^{n-1} \to \operatorname{GL}(N; \mathbb{C}), \quad g: S^{m-1} \to \operatorname{GL}(M; \mathbb{C})$$

are two given maps. One defines their tensor product $f * g : S^{m+n-1} \to \operatorname{GL}(2MN; \mathbb{C})$ by

$$(x,y) \mapsto \begin{pmatrix} f(x) \otimes \mathrm{Id}_M & -\mathrm{Id}_N \otimes g^*(y) \\ \mathrm{Id}_N \otimes g(y) & f^*(x) \otimes \mathrm{Id}_M \end{pmatrix},$$

where f and g are extended homogeneously to all of \mathbb{R}^n and \mathbb{R}^m , respectively, $f^*(x)$ is the transposed conjugate of the matrix f(x) and Id_M denotes the identity matrix of degree M. It is easy to check that for $(x, y) \neq (0, 0), f * g(x, y)$ is nonsingular, thereby f * g defines a continuous map $S^{m+n-1} \to \mathrm{GL}(2MN; \mathbb{C})$.

If m and n are both even, one has the multiplicative formula

$$\deg\left(f*g\right) = \deg f \cdot \deg g. \tag{1.7}$$

It then follows that deg $(e_k) = 1$, where $e_1 : S^1 \to \operatorname{GL}(1, \mathbb{C})$ is the standard map $e_1(z) = z$ and the map

$$e_k = e_1 * \cdots * e_1 \ (k\text{-times}) : S^{2k-1} \to \operatorname{GL}(2^{k-1}; \mathbb{C})$$

is its k-fold power. Therefore, product theory furnishes the Bott generating map, meaning a generating element of the infinite cyclic group of homotopy classes of maps from S^{2k-1} to $\operatorname{GL}(2^{k-1}, \mathbb{C})$.

In order to get a generating element of $\pi_{2k-1}U(k)$, it suffices to deform $e_k : S^{2k-1} \to GL(2^{k-1}; \mathbb{C})$ into a map

$$G_k: S^{2k-1} \to \operatorname{GL}(k; \mathbb{C}) \hookrightarrow \operatorname{GL}(2^{k-1}; \mathbb{C}),$$

where the notation \hookrightarrow is the inclusion.

We conclude this section with an interesting relation with the gauge theory given by the general index theory for families in [2]. Let Y be a fiber bundle over S^2 with fiber S^{2k-2} , and

let V be a complex vector bundle over Y of rank k with a unitary connection, so that the gauge group is U(k) or SU(k). Let \mathcal{G} be the group of gauge transformations. According to [2], one has

$$\pi_1(\mathcal{G}) \cong \pi_{2k-1} \mathrm{SU}(k) \cong \mathbb{Z}.$$

Therefore, the Bott generator of $\pi_{2k-1}SU(k)$ will bring us an interpretation of a generator of the fundamental group of the group of gauge transformations.

2 The Bott Generator of $\pi_5 SU(3)$

The main result of this section is as follows

Proposition 2.1 $G(z) = z z^t + h(\overline{z})$ is the Bott generator of the homotopy group π_5 SU(3), where $z = (z_1, z_2, z_3)^t \in S^5 \subset \mathbb{C}$, and

$$h(\overline{z}) = \begin{pmatrix} 0 & -\overline{z}_3 & \overline{z}_2 \\ \overline{z}_3 & 0 & -\overline{z}_1 \\ -\overline{z}_2 & \overline{z}_1 & 0 \end{pmatrix}.$$

Proof First a straightforward computation gives that

$$\det G(z) = |z|^4 = 1$$

for $z \in S^5$. Next, from the following clear equalities

$$\begin{cases} h(z)z = 0, \\ z \overline{z}^t - h(\overline{z}) h(z) = |z|^2 I, \end{cases}$$

$$(2.1)$$

it follows that $G(z)\overline{G(z)}^t = I$ and then G(z) belongs to SU(3) for each $z \in S^5$.

It remains to show that $G(z) : S^5 \to SU(3)$ is homotopic to the Bott fenerator $e_3 : S^5 \to GL(4; \mathbb{C})$, where we use the inclusion $SU(3) \hookrightarrow GL(3; \mathbb{C}) \hookrightarrow GL(4; \mathbb{C})$. Recall that $e_3 = e_1 * e_2$ is given by

$$e_{3}(z) = \begin{pmatrix} z_{1} & 0 & -\overline{z}_{2} & -\overline{z}_{3} \\ 0 & z_{1} & z_{3} & -z_{2} \\ z_{2} & -\overline{z}_{3} & \overline{z}_{1} & 0 \\ z_{3} & \overline{z}_{2} & 0 & \overline{z}_{1} \end{pmatrix}.$$
 (2.2)

Let us introduce five maps $T_j = T_j(z) : S^5 \to \mathrm{GL}(4;\mathbb{C})$ defined by

$$T_{1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad T_{2} = \begin{pmatrix} 1 & \overline{z}_{1} & \overline{z}_{2} & \overline{z}_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad T_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -z_{1} & 1 & 0 & 0 \\ -z_{2} & 0 & 1 & 0 \\ -z_{3} & 0 & 0 & 1 \end{pmatrix},$$
$$T_{4} = \begin{pmatrix} 1 & -z_{1} & -z_{3} & z_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad T_{5} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Since det $T_2(z) = \det T_3(z) = \det T_4(z) = 1$ for all $z \in \mathbb{R}^6$, it follows that T_j $(j = 2, 3, 4) : S^5 \to \operatorname{GL}(4:\mathbb{C})$ is homotopic to the constant map I. Moreover, since $\operatorname{GL}(4;\mathbb{C})$ is connected, T_1 and

 T_5 are both homotopic to the constant map I, too. Therefore we arrive at

$$e_3 \simeq T_3 T_2 T_1 e_3 T_4 T_5 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & z_1^2 & z_1 z_2 - \overline{z}_3 & z_1 z_3 + \overline{z}_2 \\ 0 & z_2 z_1 + \overline{z}_3 & z_2^2 & z_2 z_3 - \overline{z}_1 \\ 0 & z_3 z_1 - \overline{z}_2 & z_3 z_2 + \overline{z}_1 & z_3^2 \end{pmatrix},$$

which completes the proof.

3 An Interesting Almost Complex Structure on S^6

We start with some preparations. Following [5], let us embed $gl(m; \mathbb{C})$ into $gl(2m; \mathbb{R})$ in a natural way: $A + \sqrt{-1}B \mapsto \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$, where A, B belong to $gl(m; \mathbb{R})$. Clearly any P in $GL(2m; \mathbb{R})$ has a unique decomposition

$$P = P_1 + P_2 S, (3.1)$$

where P_j (j = 1, 2) belongs to $gl(m; \mathbb{C})$, $S = diag(I_m, -I_m)$. The formula that $QS = S\overline{Q}$ for $Q \in gl(m; \mathbb{C})$ will be useful later, where \overline{Q} denotes the complex conjugate of Q.

In order to define an almost complex structure on S^6 , we need a coordinate system $S^6 = (S^6 - A_+) \cup (S^6 - A_-)$ with $f_+ : \mathbb{R}^6 \to S^6 - \{A_+\}$ and $f_- : \mathbb{R}^6 \to S^6 - \{A_-\}$, defined by

$$f_{+}(u) = (1 + |u|^{2})^{-1} (2u^{t}, |u|^{2} - 1)^{t},$$

$$f_{-}(v) = (1 + |v|^{2})^{-1} (2\overline{v}^{t}, 1 - |v|^{2})^{t},$$
(3.2)

where $u = (u_1, \dots, u_6)^t$, $A_+ = (0, \dots, 0, 1)^t$, $A_- = (0, \dots, 0, -1)^t$, $\overline{v} = (v_1, v_2, v_3, -v_4, -v_5, -v_6)^t$. It follows from (3.2) that the coordinate change

$$f_{-}^{-1} \circ f_{+} : \mathbb{R}^{6} - \{0\} \to \mathbb{R}^{6} - \{0\}$$

is given by $u \mapsto v = \frac{\overline{u}}{|u|^2}$. Clearly we have the Jacobian $\left(\frac{\partial v_i}{\partial u_j}\right) = SA$, where $A = |u|^{-4} (|u|^2 I - 2u u^t)$. It is not difficult to verify that $|u|^2 SA$ belongs to SO(6) for each $u \neq 0 \in \mathbb{R}^6$.

We now define our almost complex structure J on S^6 in terms of the coordinate system v_1, \dots, v_6 simply by

$$J\left(\frac{\partial}{\partial v_1}, \cdots, \frac{\partial}{\partial v_6}\right) = \left(\frac{\partial}{\partial v_1}, \cdots, \frac{\partial}{\partial v_6}\right) J_0 \quad \text{for } |v| \le 1,$$
(3.3)

where $J_0 = \begin{pmatrix} 0 & -I_m \\ I_m & 0 \end{pmatrix}$. By the coordinate change $v = \frac{\overline{u}}{|u|^2}$, (3.3) is equivalent to

$$J\left(\frac{\partial}{\partial u_1}, \cdots, \frac{\partial}{\partial u_6}\right) = \left(\frac{\partial}{\partial u_1}, \cdots, \frac{\partial}{\partial u_6}\right)Q^{-1}J_0Q \tag{3.4}$$

for $1 \leq |u| \leq +\infty$, where Q = SA.

We have got an almost complex structure J on $\{u \mid u \in \mathbb{R}^6 \cup \{\infty\}, 1 \leq |u| \leq +\infty\} \subset S^6$, and the next thing to do is to extend smoothly the definition of the matrix (of functions) $Q^{-1}J_0Q$ to the field $\{u \mid u \in \mathbb{R}^6, 0 \leq |u| < 1\}$. The idea originates from the homotopy theory. As it is well known, one has two one to one correspondences:

$$\{X^{-1}J_0X \mid X \in \mathrm{SO}(6)\} \longleftrightarrow \{Y_{6\times 6} \mid Y^2 = -I, Y^t = -Y\} \longleftrightarrow \mathrm{SO}(6)/\mathrm{U}(3) \cong \mathbb{C}P^3.$$

The fibration $U(3) \hookrightarrow SO(6) \to SO(6)/U(3) = \mathbb{C}P^3$ has its homotopy sequence:

$$0 \cong \pi_6 \mathbb{C}P^3 \to \pi_5 \mathrm{U}(3) \to \pi_5 \mathrm{SO}(6) \to \pi_5 \mathbb{C}P^3 \cong 0.$$

Thus we get an isomorphism $\pi_5 U(3) \cong \pi_5 SO(6)$. Recall that $G(z) = |z|^{-2} z z^t + |z|^{-1} h(\overline{z})$ is the Bott generator of $\pi_5 U(3)$, and $|u|^2 AS$ is the "positive" generator of $\pi_5 SO(6)$ (see [6]). These arguments implies that $G(|u|^2 AS)^{-1}$ is homotopic to the constant map I, and then

$$I \cong G(|u|^2 AS)^{-1} = G(|u|^2 AS)^t = |u|^2 GQ.$$
(3.5)

For the sake of convenience, we rewrite A as the form in (3.1):

$$A = |z|^{-4} \{ |z|^2 I - (z\overline{z}^t + zz^t S) \},$$
(3.6)

where $z = (z_1, z_2, z_3)^t = (u_1 + \sqrt{-1}u_4, u_2 + \sqrt{-1}u_5, u_3 + \sqrt{-1}u_6)^t \in \mathbb{C}^3$. Therefore we have from (3.5) that

$$I \simeq |z|^2 GQ = (|z|^{-2} z \, z^t + |z|^{-1} h(\overline{z}))(|z|^{-2} (|z|^2 I - \overline{z} z^t) S - |z|^{-2} \overline{z} \, \overline{z}^t)$$

= $|z|^{-2} (|z| h(\overline{z}) S - z \overline{z}^t).$ (3.7)

We are now in a position to construct our extension as follows.

Lemma 3.1 Let f and g be real smooth functions of $|z|^2, z \in \mathbb{C}^3$, with boundary conditions: (1) $f \equiv 1$ for $|z| \leq \frac{\varepsilon}{2}$, $f \equiv 0$ for $|z| \geq \varepsilon$, and 1 > f > 0 for $\varepsilon > |z| > \frac{\varepsilon}{2}$; (2) f = 0 for $|z| \leq \frac{\varepsilon}{2}$, $f \equiv 0$ for $|z| \geq \varepsilon$, and 1 > f > 0 for $\varepsilon > |z| > \frac{\varepsilon}{2}$;

(2) $g \equiv 0$ for $|z| \leq \frac{\varepsilon}{2}$, $g \equiv 1$ for $|z| \geq \varepsilon$, and 1 > g > 0 for $\varepsilon > |z| > \frac{\varepsilon}{2}$.

Let $P(z) = (f \sqrt{-1}I - g z\overline{z}^t) + |z|g h(\overline{z})S$. For any $z \neq 0 \in \mathbb{C}^3$, P(z) is, up to an non-zero factor, an element of SO(6).

Proof We observe that $P^t = (-f\sqrt{-1}I - gz\,\overline{z}^t) - |z|gh(\overline{z})S$, and find that

$$\begin{split} P P^t &= ((f\sqrt{-1}I - gz\,\overline{z}^t) + |z|gh(\overline{z})S)((-f\sqrt{-1}I - gz\,\overline{z}^t) - |z|gh(\overline{z})S) \\ &= f^2I + g^2|z|^2(z\,\overline{z}^t - h(\overline{z})h(z)) = (f^2 + g^2|z|^4)I, \end{split}$$

which is nonsingular owing to the definitions of f and g. It completes the proof.

Summarizing the arguments above, we have established

Theorem 3.1 There is an almost complex structure J on $S^6 = \mathbb{R}^6 \cup \{\infty\} = \{u \mid 0 \le |u| \le +\infty\}$ defined by

$$J\left(\frac{\partial}{\partial u_1},\cdots,\frac{\partial}{\partial u_6}\right) = \left(\frac{\partial}{\partial u_1},\cdots,\frac{\partial}{\partial u_6}\right)P^{-1}J_0P,$$

where P is given in Lemma 3.1. J is integrable for $|u| \leq \frac{\varepsilon}{2}$ or $\varepsilon \leq |u| \leq +\infty$.

The proof of this theorem is omitted.

4 Integrability of the Almost Complex Structure J

Proposition 4.1 The almost complex structure J defined in Lemma 3.1 is not integrable for $\frac{\varepsilon}{2} < |u| < \varepsilon$.

Proof Observe that if $f \neq 0$ (in fact it holds for $\frac{\varepsilon}{2} < |z| < \varepsilon$), then the complex matrix $f\sqrt{-1}I - gz\overline{z}^t$ has its inverse as

$$(f\sqrt{-1}I - gz\overline{z}^t)^{-1} = \frac{-\sqrt{-1}}{f}I - \frac{g}{f(f+g|z|^2\sqrt{-1})}z\overline{z}^t.$$

Thus the almost complex structure defined by $P(z) = (f\sqrt{-1}I - gz\overline{z}^t) + g|z|h(\overline{z})S$ is equivalent to that of

$$(f\sqrt{-1}I - g\,z\overline{z}^t)^{-1}P = I - g\,f^{-1}|z|\sqrt{-1}\,h(\overline{z})\,S.$$

However, the non-integrability of $I - g f^{-1} |z| \sqrt{-1} h(\overline{z}) S$ is an immediate consequence of the following criterion (see [5]).

Lemma 4.1 $I_m + VS$ is integrable if and only if $T^i_{jk} = T^i_{kj}$ for all $1 \le i, j, k \le m$, where $(v_{ij})_k = \frac{\partial}{\partial z_k}(v_{ij}), \ (v_{ij})_{\overline{k}} = \frac{\partial}{\partial \overline{z_k}}(v_{ij}), \text{ and } T^i_{jk} = (v_{ij})_{\overline{k}} - \sum_s (v_{ij})_s v_{sk}.$

References

- [1] Atiyah, M. F., Algebraic topology and elliptic operators, Comm. Pure Appl. Math., 20, 1967, 237–249.
- [2] Atiyah, M. F., Anomalies and Index Theory, Lecture Notes in Phy., Springer-Verlag, 208, 1984, 313–322.
- [3] Bott, R., Stable homology of the classical groups, Ann. of Math., 70, 1959, 313-337.
- [4] Kervaire, M. A., Some nonstable homology groups of Lie groups, Illinois J. of Math., 4, 1960, 161-169.
- [5] Peng, C. K. and Tang, Z. Z., Integrability condition on an almost complex structure and its application, Acta Math. Sin., 21, 2005, 1459–1464.
- [6] Steenrod, N., The Topology of Fiber Bundles, Princeton Univ. Press, Princeton, New Jersey, 1974.