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Abstract The embedding of the Bernoulli shift into the logistic map x 7→ µx(1 − x)
for µ > 4 is reinterpreted by the theory of anti-integrability: it is inherited from the
anti-integrable limit µ → ∞.
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1 Introduction

There is no doubt that one of the most extensively studied dynamical systems is the family

of logistic maps on the interval [0, 1]:

xi+1 = fµ(xi) = µxi(1− xi), µ ≥ 0, (1.1)

which, as the parameter µ increases, exhibits chaos via the route of period-doubling bifurcation

(see for example [9, 12, 16]). When µ exceeds 4, it is well-known, e.g. [7, p. 46, 13, p. 124,

18, p. 38], that the map restricted to the invariant set Λµ :=
∞
⋂

n=0
f−n

µ ([0, 1]) is topologically

conjugate to the Bernoulli shift with two symbols, namely the following diagram commutes

Σ2
σ−→ Σ2

h





y





y
h

Λµ

fµ−→ Λµ

The meaning of the diagram is as follows. Let Σ2 denote the space of sequences of 0’s and

1’s, Σ2 = {a | a = {ai}∞i=0, ai = 0 or 1}, σ be the Bernoulli shift acting in such a way that

σ(a) = {a1, a2, a3, . . .} = {σ(a)i}∞i=0 with σ(a)i = ai+1, and h, called the conjugacy, be the

homeomorphism from the compact set Σ2 (with the product topology) to Λµ. Partition the

interval [0, 1] into two parts [0, 1
2 ) and (1

2 , 1]; then an orbit x = {xi}∞i=0 of x0 ∈ Λµ under the

map fµ gives a sequence a of symbols by assigning for each i ≥ 0 that ai = 0 if xi < 1
2 or

ai = 1 if xi > 1
2 . The conjugacy indicates there is a one to one correspondence between the

orbit with initial point x0 and the sequence a of symbols. We call a = h−1(x0) the itinerary of

the orbit determined by x0. The conjugacy also indicates Λµ is a Cantor set. (A simple proof

of Λµ being a Cantor set, without using h, was given by Zeller and Thaler [19].)

In this paper, we present a new and simpler approach to the embedding of the Bernoulli shift

inspired by the concept of anti-integrable limit of Aubry. Our approach is analytical and has an
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advantage that it manifests a vivid picture on how the map is conjugate to the shift dynamics

when µ is greater than 4. This concept was first utilised in 1990 by Aubry and Abramovici [1]

to investigate chaotic orbits in the standard map. It has been extended, for example, to prove

the existence of cantori for symplectic maps of arbitrary dimension (see [15]), to construct a

non-zero measure set of drifting orbits in a symplectic map (see [8]), to show the existence of

multi-bump trajectories in time-dependent Lagrangian systems (see [3, 5]), and to show the

embedding of symbolic dynamics into scattering billiards (see [4]) and non-autonomous maps

(see [6]). Here, we are going to show the family of logistic maps is also anti-integrable, and all its

dynamics for µ larger than 4 can be reinterpreted as they are inherited from the anti-integrable

limit µ → ∞. The philosophy behind is as follows: when µ becomes larger and larger, the

invariant set Λµ becomes smaller and smaller, and eventually collapses to two points x = 0 and

1 when µ→∞. One can think that the dynamics of the system also “collapses” at the singular

limit µ→∞, and “reduces” (see [1]) to the Bernoulli shift.

In the next section, the anti-integrable limit for the logistic maps and how the dynamics of

the family collapses are formulated rigorously. Then we give a proof for the embedding of the

Bernoulli shift.

2 Anti-integrability

Our results are true for all µ greater than 4, but in order to process without encountering

any obstacle and to have self-contained proofs, we only consider the case µ > 2 +
√

5. The

reason is because we require a crucial fact that the non-trivial tangent orbits of the map are

unbounded when µ > 4 and this fact is easily obtained in the considered case. We point out at

the end of this paper that the required fact amounts to the repelling hyperbolicity of the set

Λµ for fµ with µ > 4.

A dynamical systems is, in Aubry’s sense (see [1]), at the anti-integrable limit if it becomes

non-deterministic and virtually a Bernoulli shift. The picture of the limit is particularly clear

in our case.

Theorem 2.1 The logistic map fµ is anti-integrable at the limit µ→∞.

To see this, let ǫ = 1
µ
; then {xi}, i ≥ 0, is an orbit of (1.1) if and only if

xi(1 − xi) = ǫxi+1. (2.1)

When ǫ = 0, the above difference equation becomes an algebraic one, and we have xi = 0 or 1

for each i. Whether xi is equal to 0 or 1 does not determine the value of xi+1, therefore the

system at ǫ = 0 (or µ =∞) is non-deterministic. For any {xi} ∈ Σ2 we have xi+1 = σ({xi})i,

therefore the system is virtually a Bernoulli shift with two symbols. So, we have the theorem.

Any anti-integrable orbit of the logistic map is then precisely a point lying in the space Σ2.

In the sequel, we show that all the anti-integrable orbits persist as long as µ is greater than

2 +
√

5.

We rewrite the map (1.1) as another map F ( · , ǫ) in the space l∞ := {x | x = {x0, x1, x2, . . .},
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xi ∈ R, bounded} of bounded sequences with the sup norm:

F : l∞ × R→ l∞,

(x, ǫ) 7→ F (x, ǫ) = {F0(x, ǫ), F1(x, ǫ), F2(x, ǫ), · · · }

with Fi(x, ǫ) = −ǫxi+1 + xi(1− xi). It is readily to see that x is an orbit of (1.1) if and only if

it solves F (x, ǫ) = 0. Theorem 2.1 can be rephrased as the following.

Proposition 2.1 F (x†, 0) = 0 if and only if x
†
i = 0 or 1 for every i ≥ 0.

We proceed to show, by employing the implicit function theorem, that any x† in the propo-

sition can be continued to ǫ less than 1
2+

√
5
.

Theorem 2.2 Providing ǫ < 1
2+

√
5
, then for any anti-integrable orbit x†, there corresponds a

unique C1-family of points x∗(ǫ;x†) = {x∗
i (ǫ;x

†)} in l∞ parametrized by ǫ such that x∗(0;x†) =

x† and F (x∗(ǫ;x†), ǫ) = 0. Conversely, if xǫ is such a point that F (xǫ, ǫ) = 0, then there exists

a unique x† such that F (x†, 0) = 0 and x∗(ǫ;x†) = xǫ.

The proof is as follows. F certainly is a C1-map with its derivative at x a linear map

DxF (x, ǫ) : l∞ ←֓ , ξ 7→
{

∞
∑

j=0

Dxj
Fi(x, ǫ)ξj

}∞

i=0
,

or realized in matrix form as

DxF (x, ǫ)ξ =















1− 2x0 −ǫ 0 0 · · ·
0 1− 2x1 −ǫ 0 · · ·
0 0 1− 2x2 −ǫ · · ·
0 0 0 1− 2x3 · · ·
...

...
...

...
. . .





























ξ0

ξ1

ξ2

ξ3

...















.

Thus it is easy to see DxF (x†, 0) is invertible because it is a diagonal matrix with entries ±1.

So, the theorem is true for ǫ sufficiently small.

When ǫ is not zero, DxF (x, ǫ) is invertible if and only if

−ǫξi+1 + (1− 2xi)ξi = ηi (2.2)

possesses a unique bounded solution for any given η = {ηi}i≥0 ∈ l∞. But (2.2) has a solution

ξi =
∑

N≥0

ǫN
(

N
∏

k=0

(1− 2xi+k)−1
)

ηi+N = ǫ−1
∑

N≥0

((fN+1
µ )′(xi))

−1ηi+N , (2.3)

which is bounded for every i ≥ 0 because (2.3) is a geometric series coming from the expanding

property that |(1 − 2x)ǫ−1| = |f ′
µ(x)| > 1 + C for some positive constant C and for all x

belonging to f−1
µ ([0, 1]) (e.g. [7, p. 37, 18, p. 32]). Furthermore, notice that

ξi+N = ξiǫ
−N

N−1
∏

k=0

(1− 2xi+k) = (fN
µ )′(xi)ξi, ∀ i ≥ 0, N ≥ 1
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is a homogeneous solution of (2.2); then by the same property, we see {ξi} is unbounded unless

ξ is identical to 0. This means solution (2.3) is the only bounded solution. Therefore DxF (x, ǫ)

is invertible and the theorem follows from the implicit function theorem.

Since the set Λ 1
ǫ

consists of those points in the interval [0, 1] whose orbits are bounded, in

the light of Theorem 2.2, we infer that

Λ 1
ǫ

=
⋃

x
†∈Σ2

x∗
0(ǫ;x

†)

and that the bijectivity of h in the commutative diagram in the introduction section can be

constructed by the composition of mappings

x† 7→ x∗(ǫ;x†) 7→ x∗
0(ǫ;x

†). (2.4)

The projection x∗(ǫ;x†) 7→ x∗
0(ǫ;x

†) certainly is continuous; we can therefore accomplish the

embedding simply by showing the continuation x† 7→ x∗(ǫ;x†) is continuous with the product

topology. Then h is a continuous bijection from the compact set Σ2 into the interval [0, 1]

and hence is a homeomorphism. To show h is a conjugacy, suppose an initial point x0 which

determines the itinerary h−1(x0); then we must have σ ◦ h−1(x0) = h−1(x1) = h−1 ◦ fµ(x0).

Lemma 2.1 With the product topology, the mapping x† 7→ x∗(ǫ;x†) is continuous.

This lemma is a consequence of the following result.

Proposition 2.2 Suppose F (x, ǫ) = 0, F (y, ǫ) = 0 and suppose the corresponding itinerary

sequences are such that x
†
i = y

†
i for i ≤ N . Providing ǫ < 1

2+
√

5
then there exists λ > 1 such

that |xi − yi| < λ−(N−i)|xN − yN | for i ≤ N .

To prove the proposition, notice that the condition that itinerary sequences of x and y agree

for i ≤ N guarantees two facts that (fN−i
µ )′(z) have the same sign for all z lying between xi

and yi and that |(fN−i
µ )′(z)| > (1 + C)N−i for some C > 0. The reason is that both xi and

yi are continued respectively from x
†
i and y

†
i , but these continuations cannot cross the middle

point x = 1
2 . Then by invoking the mean value theorem, we get |fN−i

µ (xi) − fN−i
µ (yi)| >

(1 + C)N−i|xi − yi| and the proposition follows.

Having the proposition, we can easily derive the lemma. For instance, we suppose the

product topology is induced by the metric, e.g. [18, p. 37],

d(x,y) =
∑

i≥0

|xi − yi|
3i

;

then the proposition implies

d(x,y) <
λ−N−1 − 3−N−1

λ−1 − 3−1
+

∑

i>N

1

3i
,

but we already presumed that 1
3N+1 ≤ d(x†,y†) ≤ 1

2·3N .

Theorem 2.2 indicates that x∗(ǫ;x†) depends continuously on ǫ in l∞ (with the uniform

topology) for every x†, and therefore also depends continuously on ǫ with the product topology

since the latter topology is weaker than the former one. Hence we conclude Λµ is continuously
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Figure 1 Depiction of Λµ versus 1
µ

for 4 < µ < ∞: horizontal axis— 1
µ
, vertical

axis—Λµ. The Cantor set Λµ is approximated by the set f−8
µ (0), which constitutes

256 points for a given µ.

dependent upon µ. Figure 1 illustrates this fact. Notice in the figure that Λµ collapses to two

points {0} and {1} when µ approaches infinity (i.e., ǫ approaches zero). The map h constructed

by the composition (2.4) is no longer a conjugacy because x∗(ǫ;x†) 7→ x∗
0(ǫ;x

†) is not one-to-

one but infinite-to-one when ǫ = 0. Its being infinite-to-one is because equation (2.1) is not a

dynamical system any more, thus the initial data x∗
0(0;x†) ≡ x

†
0 cannot determine the “orbit”

x∗(0;x†) ≡ x†. Any x† with x
†
0 as its zeroth element will be mapped to x

†
0 by h when ǫ = 0.

Hence the image of Σ2 under h when ǫ = 0 consists of only the two points {0} and {1}.
Consequently, lim

ǫ→0
Λ 1

ǫ
is not a Cantor set any more but two points. We write down what we

have proved in this section, by exploiting the anti-integrable limit of the logistic maps.

Theorem 2.3 When µ varies from 2+
√

5 to infinity, Λµ form a continuous family of Cantor

sets. For a given µ, the restriction of fµ to Λµ is topologically conjugate to the Bernoulli shift

with two symbols.

Remark 2.1 The presented approach can be easily extended to the embedding of the

Bernoulli shift with K + 1 symbols into K-modal maps such as fν(x) = νx(a1 − x)(a2 −
x) · · · (aK−1 − x)(1 − x) for sufficiently large ν and 0 < a1 < a2 < · · · < aK−1 < 1.

The proofs of Theorem 2.2 and Proposition 2.2 rely on the property that |f ′
µ(x)| > 1 for all

x ∈ f−1
µ ([0, 1]) when µ > 2+

√
5. The case 4 < µ ≤ 2+

√
5 is subtler because for these parameter

values there are points x with |f ′
µ(x)| ≤ 1; thus we need an additional property that the absolute

values of the derivative of fµ being less than or equal to one do not happen too often. It will

be sufficient to obtain the desired property if we can show that for every x ∈ Λµ there is an

integer Nx ≥ 1 such that |(fNx
µ )′(x)| > 1. By virtue of the compactness of Λµ, it will then
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imply that Λµ is uniformly hyperbolic and vice versa (see [2, 11, 14] and [17, p. 220]). Recall

that an invariant set Λ is said to be uniformly hyperbolic for a C1-function f : R ←֓ if there

are constants C > 0 and λ > 1 such that |(fn)′(x)| ≥ Cλn for all x ∈ Λ and n ≥ 1. Therefore,

the uniform hyperbolicity of an orbit x is sufficient to ensure the invertibility of DxF (x, ǫ).

For other proofs of the hyperbolicity, we refer the reader to the textbook of Robinson [18, pp.

33–37], where the Poincaré metric and the Schwarz lemma of complex analysis are employed,

and to the pedagogical note of Glendinning [10] (see also [19]), in which an idea similar to the

standard topological conjugacy between the logistic map with µ equal to 4 and the tent map

with slope two are used.
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