Augmented Spinor Space**

Xiuhong FENG* Lin ZHU* Yanlin YU*

Abstract In this paper, based on the Pauli matrices, a notion of augmented spinor space is introduced, and a uniqueness of such augmented spinor space of rank n is proved. It may be expected that this new notion of spaces can be used in mathematical physics and geometry.

Keywords Augmented spinor space, Pauli matrices, Jack-orientation, Super algebra, Jack map

2000 MR Subject Classification 53C80, 53C27

1 Pauli Matrices

In order to decompose the natural positive elliptic operator Δ into a square of a first-order operator

$$\Delta = -\frac{\partial^2}{\partial x_1^2} - \dots - \frac{\partial^2}{\partial x_{2n}^2} = \left(A_1 \frac{\partial}{\partial x_1} + \dots + A_{2n} \frac{\partial}{\partial x_{2n}}\right)^2,$$

a set of equalities

$$\begin{cases} A_i^2 = -I, & i = 1, \dots, 2n, \\ A_i A_j + A_j A_i = 0, & i \neq j \end{cases}$$

must be assumed, where I is a unit matrix. Dirac advised expressing the above equations by matrices, which are called Pauli matrices. About it we know the following basic theorem.

Theorem 1.1 (1) There is at least one non-degenerated unitary $(N \times N)$ -matrix system $\{A_1, \dots, A_{2n}\}$ satisfying the above equations. Here 'non-degenerated' means that $\{A_{i_1} \cdots A_{i_s} \mid s = 0, 1, \dots, 2n; i_1 < \dots < i_s\}$ span a complex vector space of dim 4^n , where $N = 2^n$.

(2) For another matrix system $\{\widetilde{A}_1, \dots, \widetilde{A}_{2n}\}$ satisfying the above conditions, there exists a unitary $(N \times N)$ -matrix T, such that

$$\widetilde{A}_i = T \cdot A_i \cdot T^{-1}, \quad i = 1, \dots, 2n.$$

Moreover, such a T is unique up to a multiple $e^{i\theta}$, where $\theta \in R$.

Remark 1.1 In physics, Pauli matrices are little different from those in the above theorem, they are defined by $A_iA_j + A_jA_i = 2\delta_{ij}I$, for $i, j = 1, \dots, 2n$.

Manuscript received March 10, 2005. Published online March 5, 2007.

^{*}Department of Mathematics, School of Sciences, Suzhou University, Suzhou 215006, Jiangsu, China. E-mail: stranger_zl@hotmail.com

^{**}Project supported by the National Natural Science Foundation of China (No. 10131020).

If $C_{2n}(-1)$ is the Clifford algebra, which is an associative algebra with a unit 1 over the real number field R generated by e_1, e_2, \dots, e_{2n} subject to the relations: $e_i e_j + e_j e_i = -2\delta_{ij}$, for $i, j = 1, \dots, 2n$, then it is easy to see that Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2 (1) There exists a non-degenerated $C_{2n}(-1)$ -action on C^N , i.e.,

$$C_{2n}(-1) \times C^N \longrightarrow C^N$$
,

which satisfies

- (i) $e_i(\delta_1, \dots, \delta_N) = (\delta_1, \dots, \delta_N)A_i$,
- (ii) $\langle \langle e_i(x), e_i(y) \rangle \rangle = \langle \langle x, y \rangle \rangle$, for $x, y \in C^N$, where $\delta_i = (0, \dots, 1, \dots, 0)$, $\langle \langle , \rangle \rangle$ is the standard Hermitian product in C^N .
- (2) For any two non-degenerated $C_{2n}(-1)$ -action $\{e_i\}$, $\{\tilde{e}_i\}$ on C^N , for $i=1,\cdots,2n$, there exists a complex linear transformation $T:C^N\longrightarrow C^N$ preserving the Hermitian product, i.e.,

$$\langle\!\langle T(x), T(y)\rangle\!\rangle = \langle\!\langle x, y\rangle\!\rangle$$
, for $x, y \in C^N$,

and the following diagram is commutative

$$\begin{array}{ccc}
C^N & \xrightarrow{e_i} & C^N \\
T \downarrow & & \downarrow T \\
C^N & \xrightarrow{\tilde{e}_i} & C^N
\end{array}$$

Moreover, such a transformation T is unique up to a multiple $e^{i\theta}$, where $\theta \in R$, $N = 2^n$.

We may express the above theorem in the following way.

Theorem 1.3 (1) Let S be a complex vector space of dim 2^n with a Hermitian inner product $\langle \langle , \rangle \rangle$. Then there exists a non-degenerated $C_{2n}(-1)$ -action on S, which preserves the Hermitian inner product.

(2) For any two vector spaces S_i with Hermitian inner products $\langle \langle , \rangle \rangle^{(i)}$, i = 1, 2, and two $C_{2n}(-1)$ -actions $\{e_i\}$, $\{\tilde{e}_i\}$ on them respectively, there exists a complex linear transformation $T: S_1 \longrightarrow S_2$ preserving the Hermitian product, i.e.,

$$\langle \langle T(u), T(v) \rangle \rangle^{(2)} = \langle \langle u, v \rangle \rangle^{(1)}$$
 for $u, v \in S_1$.

At the same time, the following diagram is commutative

$$\begin{array}{ccc} S_1 & \xrightarrow{e_i} & S_1 \\ T \downarrow & & \downarrow T \\ S_2 & \xrightarrow{\tilde{e}_i} & S_2 \end{array}$$

Moreover, such a transformation T is unique up to a multiple $e^{i\theta}$, where $\theta \in R$.

Definition 1.1 The space S satisfying Theorem 1.3(1) is called a spinor space of dim 2^n (or rank n), whose elements are called spinors.

Remark 1.2 Let S be a spinor space. Choose a unitary basis $\{U_1, \dots, U_N\}$, and define matrices $[e_i]$ by

$$e_i(U_1,\cdots,U_N)=(U_1,\cdots,U_N)[e_i].$$

Then $\{[e_1], \dots, [e_N]\}$ are Pauli matrices, where $N = 2^n$.

In this paper, we will add some other structures on a spinor space S, such that the isomorphism T in Theorem 1.3 is unique.

2 Augmented Spinor Space

Definition 2.1 Let S be a spinor space, an anti-complex linear map $J: S \to S$ is called a Jack map if it satisfies the following two conditions

- (i) $\langle \langle Ju, Jv \rangle \rangle = \overline{\langle \langle u, v \rangle \rangle}$, for $u, v \in S$,
- (ii) $e_i \cdot J = J \cdot e_i : S \to S$, for $i = 1, \dots, 2n$.

In [1], we have proved the following result.

Theorem 2.1 Let S be a spinor space. Then

- (i) there exists a Jack map in S;
- (ii) for any two Jack maps J_1 , J_2 , there always exists a real number θ such that $J_1 = e^{i\theta}J_2$. Moreover, $J^2 = (-1)^{\frac{n(n+1)}{2}}$.

Definition 2.2 For a spinor space S with a Jack map J, an element $\epsilon \in S$ is called a Jack-orientation, if it satisfies the following conditions

$$\sqrt{-1}e_{2i} \cdot \epsilon = e_{2i-1} \cdot \epsilon, \quad \langle \langle \epsilon, \epsilon \rangle \rangle = 1, \quad J \cdot \epsilon = K_n \cdot \epsilon,$$

where

$$K_n = \begin{cases} e_1 e_3 \cdots e_{2n-1}, & \text{when } n \text{ is odd,} \\ (\sqrt{-1})^n e_2 e_4 \cdots e_{2n}, & \text{when } n \text{ is even.} \end{cases}$$

- **Lemma 2.1** Given a spinor space S with a Jack map J, there exist exactly two Jack-orientations; one is ϵ , and the other is $-\epsilon$.
- **Definition 2.3** A spinor space S, with a Jack map J and a Jack-orientation ϵ , is called an augmented spinor space, which is denoted by \overrightarrow{S} .
- **Remark 2.1** The notion of augmented spinor space in this paper is different from the one in [1]; the latter does not contain the Jack-orientation.

Theorem 2.2 Given two augmented spinor spaces $\overrightarrow{S_1}$ and $\overrightarrow{S_2}$, there exists only one isomorphism $\Phi: \overrightarrow{S_1} \longrightarrow \overrightarrow{S_2}$, such that

- (i) $\Phi \cdot e_i^{(1)} = e_i^{(2)} \cdot \Phi$, for all $i = 1, \dots, 2n$,
- (ii) $\langle\!\langle \Phi(\mu), \Phi(\nu) \rangle\!\rangle^{(2)} = \langle\!\langle \mu, \nu \rangle\!\rangle^{(1)}$, for all $\mu, \nu \in \overrightarrow{S_1}$,
- (iii) $J^{(2)} \cdot \Phi = \Phi \cdot J^{(1)} : \overrightarrow{S_1} \to \overrightarrow{S_2}$,
- (iv) $\Phi(\epsilon^{(1)}) = \epsilon^{(2)}$,

where $e_i^{(\alpha)}$, $\langle \langle , \rangle \rangle^{(\alpha)}$, $J^{(\alpha)}$ and $\epsilon^{(\alpha)}$ are, respectively, Clifford action, Hermitian inner product, Jack map, and Jack-orientation of $\overrightarrow{S}_{\alpha}$, for $\alpha = 1, 2$.

3 A Naive Model of Augmented Spinor Space

Because of Theorem 2.2, if rank n is fixed, then any two augmented spinor spaces differ by a unique complex linear isomorphism. Now let us try to show one of augmented spinor spaces, which is called a naive model.

Definition 3.1 Let $\Lambda_C^*(n)$ be a Grassmann algebra over complex number field C with generators $\{1, \Omega_1, \ldots, \Omega_n\}$, i.e., it is an associative algebra with generators $\{1, \Omega_1, \ldots, \Omega_n\}$ subject to only relations $\Omega_i\Omega_j + \Omega_j\Omega_i = 0$, for $i, j = 1, \cdots, n$. Sometimes we denote $\Lambda_C^*(n)$ by $\Lambda_C^*(\Omega_1, \cdots, \Omega_n)$. In this space, we define following two complex linear maps ϵ_i and ι_i by

$$\epsilon_{i}: \Lambda_{C}^{*}(\Omega_{1}, \cdots, \Omega_{n}) \to \Lambda_{C}^{*}(\Omega_{1}, \cdots, \Omega_{n}): \Omega_{i_{1}} \wedge \cdots \wedge \Omega_{i_{s}} \to \Omega_{i} \wedge \Omega_{i_{1}} \wedge \cdots \wedge \Omega_{i_{s}},$$

$$\iota_{i}: \Lambda_{C}^{*}(\Omega_{1}, \cdots, \Omega_{n}) \to \Lambda_{C}^{*}(\Omega_{1}, \cdots, \Omega_{n}): \Omega_{i_{1}} \wedge \cdots \wedge \Omega_{i_{s}} \to$$

$$\sum_{k=1}^{s} (-1)^{k-1} \delta_{ii_{k}} \Omega_{i_{1}} \wedge \cdots \wedge \widehat{\Omega}_{i_{k}} \wedge \cdots \wedge \Omega_{i_{s}}.$$

Proposition 3.1 Let

$$\mu_{2i-1} = \epsilon_i - \iota_i, \quad \mu_{2i} = -\sqrt{-1}(\epsilon_i + \iota_i) \quad \text{for } i = 1, \dots, n.$$

Then it is easy to see that

$$\mu_i \mu_j + \mu_j \mu_i = -2\delta_{ij}, \quad \forall i, j = 1, \dots, 2n.$$

In other words, map

$$C_{\mu}: \operatorname{Hom}_{C}(\Lambda_{C}^{*}(\Omega_{1}, \cdots, \Omega_{n})) \longrightarrow C_{2n}(-1) \otimes C: \mu_{i} \longmapsto e_{i}$$

is an algebra isomorphism.

In Grassmann algebra $\Lambda_C^*(\Omega_1, \dots, \Omega_n)$, we will define some structures as follows.

- (1) Define Hermitian product $\langle \langle , \rangle \rangle$ such that $\{\Omega_{i_1} \wedge \cdots \wedge \Omega_{i_s} \cdot 1 \mid 0 \leq s \leq n\}$ is a unitary basis. It is easy to see that Hermitian product has a property $\langle \langle e_i u, e_i v \rangle \rangle = \langle \langle u, v \rangle \rangle$, $u, v \in \Lambda_C^*(n)$.
 - (2) Define a map $f: \Lambda_C^*(\Omega_1, \dots, \Omega_n) \longrightarrow \Lambda_C^*(\Omega_1, \dots, \Omega_n)$ such that

$$f = \begin{cases} \mu_1 \mu_3 \cdots \mu_{2n-1}, & \text{when } n \text{ is odd,} \\ (\sqrt{-1})^n \mu_2 \mu_4 \cdots \mu_{2n}, & \text{when } n \text{ is even.} \end{cases}$$

Let $[f]_{\overline{C}}: \Lambda_C^*(n) \to \Lambda_C^*(n)$ be an anti-complex linear map.

Lemma 3.1 In Grassmann algebra $\Lambda_C^*(\Omega_1, \dots, \Omega_n)$, we define a Hermitian product as above and $e_i = \mu_i$, $i = 1, \dots, 2n$, $J = [f]_{\overline{C}}$, $\epsilon = 1 \in \Lambda_C^*(n)$. Then $\{\langle\!\langle, \rangle\!\rangle, e_i, J, \epsilon\}$ induces an augmented spinor space structure on $\Lambda_C^*(\Omega_1, \dots, \Omega_n)$.

Lemma 3.2 Let \overrightarrow{S} be an augmented spinor space. Define \overrightarrow{S}_R to be a real space spanned by standard basis, i.e., $\overrightarrow{S}_R = \operatorname{span}_R \{e_{2i_1-1} \cdots e_{2i_s-1}(\epsilon) \mid s=1,\cdots,n; i_1 < i_2 < \cdots < i_s\}$. Then

$$\overrightarrow{S}_R = \{ a \in \overrightarrow{S} \mid J(a) = K_n a \},\$$

where

$$K_n = \begin{cases} e_1 e_3 \cdots e_{2n-1}, & \text{when } n \text{ is odd,} \\ (\sqrt{-1})^n e_2 e_4 \cdots e_{2n}, & \text{when } n \text{ is even.} \end{cases}$$

The above Lemma 3.1 provides a naive augmented spinor structure on Grassmann algebra $\Lambda_C^*(n)$. Let us consider the augmented spinor structures on fixed Grassmann algebra $\Lambda_C^*(n)$. We denote the set of all such structures on $\Lambda_C^*(n)$ by $\mathcal{SP}(n)$. Due to the uniqueness in Theorem 2.2, any two augmented spinor structures on $\Lambda_C^*(n)$ differ by an element in $\operatorname{Hom}(\Lambda_C^*(n))$. More exactly, we have a lemma.

Lemma 3.3 For any two $\sigma_{\alpha} = \{\langle\langle , \rangle\rangle\rangle^{(\alpha)}, e_i^{(\alpha)}, J^{(\alpha)}, \epsilon^{(\alpha)}\} \in \mathcal{SP}(n), \alpha = 1, 2, by Theorem$ 2.2 there exists only one isomorphism $\Phi: \Lambda_C^*(n) \longrightarrow \Lambda_C^*(n)$, such that

- (i) $\Phi \cdot e_i^{(1)} = e_i^{(2)} \cdot \Phi$, for all $i = 1, \dots, 2n$,
- $\begin{array}{ll} \text{(ii)} & \langle\!\langle \Phi(\mu), \Phi(\nu) \rangle\!\rangle\!\rangle^{\!(2)} = \langle\!\langle \mu, \nu \rangle\!\rangle^{\!(1)}, \ \textit{for all } \mu, \nu \in \overrightarrow{S_1}, \\ \text{(iii)} & J^{(2)} \cdot \Phi = \Phi \cdot J^{(1)} \overrightarrow{S_1} \to \overrightarrow{S_2}, \end{array}$
- (iv) $\Phi(\epsilon^{(1)}) = \epsilon^{(2)}$.

If we denote the relation among the above σ_1, σ_2, Φ by

$$\sigma_2 = \Phi * \sigma_1$$

then given any two of σ_1, σ_2, Φ , we can determine the third by the equality $\sigma_2 = \Phi * \sigma_1$.

4 Tensor Product

Given two augmented spinor structures σ_1, σ_2 on $\Lambda_c^*(n)$ and $\Lambda_c^*(m)$ respectively, we try to build an augmented spinor structure on $\Lambda_C^*(n+m)$ as follows. For the simplicity of notations we denote $\Lambda_C^*(n)$ and $\Lambda_C^*(m)$ by $\overrightarrow{S_1}$, $\overrightarrow{S_2}$ respectively.

Firstly we introduce super algebra structures on \overrightarrow{S}_i , i=1,2, and then use these super structures to define the desired augmented spinor structure on

$$\overrightarrow{S_1} \otimes \overrightarrow{S_2} \equiv \Lambda_c^*(n+m).$$

Definition 4.1 In an augmented spinor space $\overrightarrow{S} \equiv \Lambda_C^*(n)$, define a composition as $\overrightarrow{S} = \overrightarrow{S}^+ + \overrightarrow{S}^-$, where

in which $\widetilde{e} = (\sqrt{-1})^n e_1 e_2 \cdots e_{2n}$. The above decomposition is called a superstructure on \overrightarrow{S} . The elements in S^+ and S^- are called even and odd elements, respectively.

Definition 4.2 For any augmented spinor space \overrightarrow{S} , define a superstructure of $\operatorname{Hom}_C(\overrightarrow{S})$ as

$$\operatorname{Hom}_{C}(\overrightarrow{S}) = (\operatorname{Hom}_{C}(\overrightarrow{S}))^{+} + (\operatorname{Hom}_{C}(\overrightarrow{S}))^{-},$$

where

$$(\operatorname{Hom}_{C}(\overrightarrow{S}))^{+} = \{ f \in \operatorname{Hom}_{C}(\overrightarrow{S}) \mid \widetilde{e}f = f\widetilde{e} \},$$

$$(\operatorname{Hom}_{C}(\overrightarrow{S}))^{-} = \{ f \in \operatorname{Hom}_{C}(\overrightarrow{S}) \mid \widetilde{e}f = -f\widetilde{e} \}.$$

Here $(\operatorname{Hom}_C(\overrightarrow{S}))^+$ and $(\operatorname{Hom}_C(\overrightarrow{S}))^-$ are even and odd parts, respectively.

Now we are going to define an augmented spinor structure on $\Lambda_C^*(n) \otimes \Lambda_C^*(m)$.

(1) Define a Hermitian product on spinor tensor space $\Lambda_C^*(n) \otimes \Lambda_C^*(m)$ by

$$\langle\!\langle u_1 \otimes u_2, v_1 \otimes v_2 \rangle\!\rangle = \langle\!\langle u_1, v_1 \rangle\!\rangle^{(1)} \langle\!\langle u_2, v_2 \rangle\!\rangle^{(2)}, \text{ where } u_1, v_1 \in \Lambda_C^*(n), \ u_2, v_2 \in \Lambda_C^*(m).$$

(2) Define a super algebra structure on $\operatorname{Hom}_C(\Lambda_C^*(n)) \otimes \operatorname{Hom}_C(\Lambda_C^*(m))$ as

$$(f_1 \otimes g_1) \widehat{\cdot} (f_2 \otimes g_2) = (-1)^{|f_2| \cdot |g_1|} (f_1 f_2 \otimes g_1 g_2),$$

where

$$(-1)^{|f_2| \cdot |g_1|} = \begin{cases} 1, & \text{either } f_2 \text{ or } g_1 \text{ is even,} \\ -1, & \text{both } f_2 \text{ and } g_1 \text{ are odd.} \end{cases}$$

 $(f_1 \otimes g_1) \cdot (f_2 \otimes g_2)$ is denoted by $(f_1 \widehat{\otimes} g_1) \cdot (f_2 \widehat{\otimes} g_2)$

There is a super algebra isomorphism

$$\operatorname{Hom}_C(\Lambda_C^*(n)) \otimes \operatorname{Hom}_C(\Lambda_C^*(m)) = \operatorname{Hom}_C(\Lambda_C^*(n) \otimes \Lambda_C^*(m))$$

such that

$$(e_i, e_j) \mapsto (e_i \widehat{\otimes} 1) \cdot (1 \widehat{\otimes} e_j).$$

From the above definitions, it is easy to check that

$$\begin{cases} (e_i \widehat{\otimes} 1)(e_j \widehat{\otimes} 1) + (e_j \widehat{\otimes} 1)(e_i \widehat{\otimes} 1) = -2\delta_{ij}, & \text{for } i, j = 1, \dots, 2n, \\ (e_i \widehat{\otimes} 1)(1 \widehat{\otimes} e_j) + (1 \widehat{\otimes} e_j)(e_i \widehat{\otimes} 1) = 0, & \text{for } i = 1, \dots 2n, \quad j = 1, \dots 2m, \\ (1 \widehat{\otimes} e_i)(1 \widehat{\otimes} e_j) + (1 \widehat{\otimes} e_j)(1 \widehat{\otimes} e_i) = -2\delta_{ij}, & \text{for } i, j = 1, \dots 2m. \end{cases}$$

It means a Clifford algebra generated by $\{e_1 \widehat{\otimes} 1, \dots, e_{2n} \widehat{\otimes} 1, 1 \widehat{\otimes} e_1, \dots, 1 \widehat{\otimes} e_{2m}\}$, and a Clifford action on $\Lambda_C^*(n) \otimes \Lambda_C^*(m)$. We can check that the inner product $\langle \langle , \rangle \rangle$ is invariant under the action of the set $\{e_i \widehat{\otimes} 1, 1 \widehat{\otimes} e_j\}$, i.e.,

$$\langle\!\langle (e_i \widehat{\otimes} 1)(u_1 \otimes u_2), (e_i \widehat{\otimes} 1)(v_1 \otimes v_2) \rangle\!\rangle = \langle\!\langle u_1 \otimes u_2, v_1 \otimes v_2 \rangle\!\rangle,$$
$$\langle\!\langle (1 \widehat{\otimes} e_i)(u_1 \otimes u_2), (1 \widehat{\otimes} e_i)(v_1 \otimes v_2) \rangle\!\rangle = \langle\!\langle u_1 \otimes u_2, v_1 \otimes v_2 \rangle\!\rangle,$$

for all $u_1, v_1 \in \Lambda_C^*(n), u_2, v_2 \in \Lambda_C^*(m)$.

- (3) In Grassmann algebra, let K_1, K_2 be the Jack maps of $\Lambda_C^*(n), \Lambda_C^*(m)$ respectively. Then $H \cdot (K_1 \widehat{\otimes} K_2)$ is a complex conjugate linear map, which is defined as a Jack map on $\Lambda_C^*(n) \otimes \Lambda_C^*(m)$, where H is a linear map.
- (4) Define a Jack-orientation ϵ of $\Lambda_C^*(n) \otimes \Lambda_C^*(m)$ to be $\epsilon_1 \otimes \epsilon_2$, where ϵ_1 , ϵ_2 are the Jack-orientations of $\Lambda_C^*(n)$, $\Lambda_C^*(m)$ respectively.

It is easy to see that the above (1)–(4) define an augmented spinor structure on

$$\Lambda_C^*(n) \otimes \Lambda_C^*(m) = \Lambda_C^*(n+m).$$

Theorem 4.1 Given two augmented spinor structures σ_1, σ_2 on $\Lambda_C^*(n), \Lambda_C^*(m)$, respectively, the above construction shows an augmented spinor structure σ on $\Lambda_C^*(n+m) = \Lambda_C^*(n) \otimes$

 $\Lambda_C^*(m)$. In other words, if we denote the above augmented spinor structure σ by $\sigma_1 \times \sigma_2$, then we have a map

$$\mathcal{SP}(n) \times \mathcal{SP}(m) \to \mathcal{SP}(n+m) : (\sigma_1, \sigma_2) \mapsto \sigma_1 \times \sigma_2.$$

Theorem 4.2 The naive augmented spinor spaces provide naive augmented structures $\sigma_1^0, \sigma_2^0, \sigma_3^0$ on

$$\Lambda_C^*(n), \ \Lambda_C^*(m), \ \Lambda_C^*(n+m)$$

respectively. For any augmented spinor structures $\sigma_1, \sigma_2, \sigma_3$, by using Lemma 3.3 there are $\Phi_i \in \text{Hom}(S_i)$ such that

$$\sigma_i = \Phi_i * \sigma_i^0, \quad \forall i = 1, 2, 3,$$

where

$$S_1 = \Lambda_C^*(n), \quad S_2 = \Lambda_C^*(m), \quad S_3 = \Lambda_C^*(n+m).$$

We denote $\Phi_i = \sigma_i/\sigma_i^0$. Then Theorem 4.1 gives a map

$$U(2^n) \times U(2^m) \to U(2^{n+m}) : (\sigma_1/\sigma_1^0, \sigma_2/\sigma_2^0) \mapsto (\sigma_1 \times \sigma_2)/\sigma_3^0,$$

where $U(2^n)$ is the set of the unitary homomorphisms in $\operatorname{Hom}(\Lambda_C^*(n))$.

5 Group Actions on \overrightarrow{S}

Now we define the subset Spin(2n) in $C_{2n}(-1)$ by

$$Spin(2n) = \{u_1 \cdots u_{2k} \mid \langle u_i, u_i \rangle = 1, u_i \in \mathbb{R}^{2n} \},$$

where

$$R^{2n} = \operatorname{Span}_{R} \{ e_1, \cdots, e_{2n} \}.$$

Let

$$\operatorname{Spin}^{C}(2n) = \{e^{i\theta}g_0 \mid g_0 \in \operatorname{Spin}(2n), e^{i\theta} \in U(1)\} \subset C_{2n}(-1) \otimes C.$$

Definition 5.1 Let \overrightarrow{S} be the naive augmented spinor space. Define a Spin^C(2n)-group action

$$\operatorname{Spin}^C(2n) \times \overrightarrow{S} \longrightarrow \overrightarrow{S}$$

by the restriction of the algebra action $(C_{2n}(-1) \otimes C) \times \overrightarrow{S} \longrightarrow \overrightarrow{S}$.

Proposition 5.1 For an arbitrary $g = g_0 e^{i\theta} \in \operatorname{Spin}^C(2n)$, define a map

$$g_*: \operatorname{Hom}_R(\overrightarrow{S}, \overrightarrow{S}) \longrightarrow \operatorname{Hom}_R(\overrightarrow{S}, \overrightarrow{S})$$

by

$$g_*(f) = g \cdot f \cdot g^{-1}, \quad \forall f \in \operatorname{Hom}_R(\overrightarrow{S}, \overrightarrow{S}).$$

Then we have

$$g_*(J) = e^{2i\theta} J.$$

Proof According to the definition of g_* , we have

$$g_*(J) = g \cdot J \cdot g^{-1} = g_0 e^{i\theta} J e^{-i\theta} g_0^{-1} = g_0 e^{2i\theta} g_0^{-1} J = e^{2i\theta} J.$$

So the Proposition is proved.

The next proposition gives the relations between U(n) action and $\mathrm{Spin}^C(2n)$ action on the naive model $\Lambda_C^*(n)$.

Definition 5.2 Let $i: U(n) \longrightarrow C_{2n}(-1) \otimes C$ be the composition of maps

$$U(n) \xrightarrow{\lambda} \operatorname{Hom}_{C}(\Lambda_{C}^{*}(\Omega_{1}, \cdots, \Omega_{n})) \xrightarrow{C_{\mu}} C_{2n}(-1) \otimes C,$$

where $\lambda: U(n) \longrightarrow \operatorname{Hom}_{C}(\Lambda_{C}^{*}(\Omega_{1}, \cdots, \Omega_{n}))$ is a complex linear map defined by

$$\lambda(A)(\Omega_{i_1} \wedge \cdots \wedge \Omega_{i_s}) = (\lambda(A)\Omega_{i_1}) \wedge \cdots \wedge (\lambda(A)\Omega_{i_s}), \quad \forall A = (A_{ij}) \in U(n),$$

where $(\lambda(A)\Omega_1, \dots, \lambda(A)\Omega_n) = (\Omega_1, \dots, \Omega_n)A$, and C_μ is the naive isomorphism in Proposition 3.1.

Obviously, the above definition gives an imbedding of U(n) into $C_{2n}(-1) \otimes C$. It is notable here that $\operatorname{Spin}^{C}(2n)$ is also a subset of $C_{2n}(-1) \otimes C$.

Proposition 5.2 $U(n) \subset \operatorname{Spin}^{C}(2n)$.

Proof It is sufficient to check $T_1(U(n)) \subset T_1(\operatorname{Spin}^C(2n))$ in $T_1(C_{2n}(-1) \otimes C)$. From [1, Proposition 2.6], we know that

$$T_1(\mathrm{Spin}^C(2n)) = \mathrm{Span}_R\{\sqrt{-1}, \ e_i e_j \in C_{2n}(-1) \mid i < j\},$$

$$T_1(U(n)) = \mathrm{Span}_R\{\sqrt{-1}\theta_{ii}, \ \sqrt{-1}(\theta_{ij} + \theta_{ji}), \ \Xi_{ij} \mid i < j\},$$

where $(\theta_{ij})_{\alpha\beta} = \delta_{i\alpha}\delta_{j\beta}$, $(\Xi_{ij})_{\alpha\beta} = \delta_{i\alpha}\delta_{j\beta} - \delta_{i\beta}\delta_{j\alpha}$. Letting $h = (h_{ij}) \in T_1(U(n))$, we have

$$\lambda(e^{th})(\Omega_{i_1} \wedge \dots \wedge \Omega_{i_s}) = (e^{th}\Omega_{i_1}) \wedge \dots \wedge (e^{th}\Omega_{i_s}),$$

$$\frac{d}{dt}\Big|_{t=0} (e^{th}\Omega_{i_1}) \wedge \dots \wedge (e^{th}\Omega_{i_s}) = \sum_{i,j=1}^n h_{ij} \epsilon_i \iota_j (\Omega_{i_1} \wedge \dots \wedge \Omega_{i_s}).$$

So

$$h = \lambda_*(h) = \sum_{i,j} h_{ij} \epsilon_i \iota_j = \sum_{i,j} h_{ij} \frac{(\epsilon_i + \iota_i) + (\epsilon_i - \iota_i)}{2} \cdot \frac{(\epsilon_j + \iota_j) - (\epsilon_j - \iota_j)}{2}$$
$$= \frac{1}{4} \sum_{i,j} h_{ij} (\sqrt{-1} e_{2i} + e_{2i-1}) \cdot (\sqrt{-1} e_{2j} - e_{2j-1}).$$

If
$$h = \sqrt{-1} \theta_{ii}$$
, $\sqrt{-1}(\theta_{ij} + \theta_{ji})$, or Ξ_{ij} , then

$$h_{\alpha\beta} = \sqrt{-1} \, \delta_{i\alpha} \delta_{i\beta}, \quad \sqrt{-1} (\delta_{i\alpha} \delta_{j\beta} + \delta_{j\alpha} \delta_{i\beta}) \quad \text{or} \quad \delta_{i\alpha} \delta_{j\beta} - \delta_{i\beta} \delta_{j\alpha},$$

respectively. Therefore

$$\sqrt{-1}\,\theta_{ii} = h = \lambda_*(h) = \frac{1}{4}\sqrt{-1}(\sqrt{-1}\,e_{2i} + e_{2i-1})\cdot(\sqrt{-1}\,e_{2i} - e_{2i-1})$$

$$= \frac{1}{2}(\sqrt{-1} - e_{2i-1}e_{2i}),$$

$$\sqrt{-1}(\theta_{ij} + \theta_{ji}) = h = \lambda_*(h) = \frac{1}{2}(e_{2i}e_{2j-1} - e_{2i-1}e_{2j}),$$

$$\Xi_{ij} = h = \lambda_*(h) = \frac{1}{2}(-e_{2i}e_{2j} - e_{2i-1}e_{2j-1}).$$

It means

$$T_1(U(n)) = \operatorname{Span}_R\{\sqrt{-1}\,\theta_{ii}, \sqrt{-1}(\theta_{ij} + \theta_{ji}), \Xi_{ij}\} \subset \operatorname{Span}_R\{\sqrt{-1}, e_i e_j\} = T_1(\operatorname{Spin}^C(2n)),$$
 so the proposition is proved.

6 Examples

We write Pauli matrices for n=1, and naive augmented spinor space for n=2. When n=1, the basis of $\Lambda_C^*(1)$ can be represented by $(1,\Omega)$. Then

$$e_1(1,\Omega) = (\epsilon - \iota)(1,\Omega) = (\Omega, -1) = (1,\Omega)[e_1],$$

$$e_2(1,\Omega) = -\sqrt{-1}(\epsilon + \iota)(1,\Omega) = (-\sqrt{-1}\Omega, -\sqrt{-1}) = (1,\Omega)[e_2],$$

where

$$[e_1] = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad [e_2] = \begin{pmatrix} 0 & -\sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix}.$$

The above $[e_1]$, $[e_2]$ are the Pauli matrices for n=1.

When n=2, since

$$\Lambda_C^*(\Omega_1,\Omega_2)=\Lambda_C^*(\Omega_1)\otimes\Lambda_C^*(\Omega_2)=(1\otimes 1,1\otimes\Omega_2,\Omega_1\otimes 1,\Omega_1\otimes\Omega_2)=(1,\Omega_2,\Omega_1,\Omega_1\wedge\Omega_2),$$

by the following equalities

$$e_{1}(1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2}) = (\epsilon_{1} - \iota_{1})(1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2}) = (1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2})[e_{1}],$$

$$e_{2}(1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2}) = -\sqrt{-1}(\epsilon_{1} + \iota_{1})(1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2}) = (1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2})[e_{2}],$$

$$e_{3}(1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2}) = (\epsilon_{2} - \iota_{2})(1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2}) = (1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2})[e_{3}],$$

$$e_{4}(1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2}) = -\sqrt{-1}(\epsilon_{2} + \iota_{2})(1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2}) = (1, \Omega_{2}, \Omega_{1}, \Omega_{1}\Omega_{2})[e_{4}],$$

we can determine the Pauli matrices

$$[e_{1}] = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad [e_{2}] = \begin{pmatrix} 0 & 0 & -\sqrt{-1} & 0 \\ 0 & 0 & 0 & -\sqrt{-1} \\ -\sqrt{-1} & 0 & 0 & 0 \\ 0 & -\sqrt{-1} & 0 & 0 & 0 \\ 0 & -\sqrt{-1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & \sqrt{-1} & 0 \end{pmatrix},$$
$$[e_{3}] = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \quad [e_{4}] = \begin{pmatrix} 0 & -\sqrt{-1} & 0 & 0 \\ -\sqrt{-1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{-1} & 0 \end{pmatrix}.$$

It is easy to check that

$$e_1 = e_1 \hat{\otimes} 1$$
, $e_2 = e_2 \hat{\otimes} 1$, $e_3 = 1 \hat{\otimes} e_3$, $e_4 = 1 \hat{\otimes} e_4$.

The Jack map in the augmented spinor space is

$$J(1, \Omega_2, \Omega_1, \Omega_1\Omega_2) = -e_2e_4(1, \Omega_2, \Omega_1, \Omega_1\Omega_2) = (1, \Omega_2, \Omega_1, \Omega_1\Omega_2)[J],$$

where

$$[J] = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Obviously, here $\{[J], [e_i], i = 1, 2, 3, 4\}$ satisfy the equations

$$\begin{cases} [e_i][e_j] + [e_j][e_i] = -2\delta_{ij}I, & \text{for } i, j = 1, 2, 3, 4, \\ [J] \cdot \overline{[e_i]} = [e_i] \cdot [J], & \text{for } i = 1, 2, 3, 4. \end{cases}$$

The Jack-orientation in the augmented spinor space is $\epsilon = 1 \in \Lambda_C^*(2)$.

Applications of the augmented spinor spaces will be introduced in other papers.

References

- [1] Yu, Y. L., Augmented spinor space and Seiberg-Witten map, Algebra Colloq., 5(2), 1998, 189-202.
- [2] Yu, Y. L., Index Theorem and Heat Equation Method, World Scientific Publishing, Singapore, 2001.