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Abstract In this paper, based on the Pauli matrices, a notion of augmented spinor space
is introduced, and a uniqueness of such augmented spinor space of rank n is proved. It
may be expected that this new notion of spaces can be used in mathematical physics and
geometry.
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1 Pauli Matrices

In order to decompose the natural positive elliptic operator A into a square of a first-order

operator
0? 0? 0 2
Ae_9 . _ :(A— An—)7
0x? oz, 0y T 0T2n
a set of equalities
A? = 1, i=1,--,2n,
AiAj +AjA; =0, i#]

must be assumed, where [ is a unit matrix. Dirac advised expressing the above equations by

matrices, which are called Pauli matrices. About it we know the following basic theorem.

Theorem 1.1 (1) There is at least one non-degenerated unitary (N x N)-matrix system

{Ay,---, As,} satisfying the above equations. Here ‘non-degenerated’ means that {A;, -+ A;. |
s=0,1,-++,2n5i1 < --- < ig} span a complex vector space of dim4™, where N = 2".
(2) For another matriz system {gl, e ,ggn} satisfying the above conditions, there exists

a unitary (N x N)-matriz T, such that
A;=T-A;,- T, i=1,---,2n.

Moreover, such a T is unique up to a multiple €, where § € R.

Remark 1.1 In physics, Pauli matrices are little different from those in the above theorem,
they are defined by A;A; + AjA; = 2651, for i,j=1,---,2n.
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If Cs,,(—1) is the Clifford algebra, which is an associative algebra with a unit 1 over the real
number field R generated by eq, ez, -, e2, subject to the relations : e;e; + eje; = —24;;, for

1,7 =1,--+,2n, then it is easy to see that Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2 (1) There exists a non-degenerated Cap,(—1)-action on CV, i.e.,
Con(—1) x CN — CV,

which satisfies

(1) ei(d1, -+ ,0n) = (61, ,0n)A;,

(ii) (ei(),ei(y))={(z,y), for x,y € CN, where §; = (0,---,1,---,0), {, ) is the standard
Hermitian product in CN.

(2) For any two non-degenerated Cay,(—1)-action {e;}, {€;} on CN, for i = 1,--- 2n,
there exists a complex linear transformation T : CN — CN preserving the Hermitian product,
i.e.,

(T(@), T()={.y), foraz,yeCV,
and the following diagram is commutative
CN N CN
T\ A
CN N CN

Moreover, such a transformation T is unique up to a multiple e’®, where § € R, N = 2™.
We may express the above theorem in the following way.

Theorem 1.3 (1) Let S be a complex vector space of dim 2™ with a Hermitian inner product
{, ) Then there exists a non-degenerated Ca,(—1)-action on S, which preserves the Hermitian
inner product.

(2) For any two vector spaces S; with Hermitian inner products {(, Y\, i = 1,2, and two
Con(—1)-actions {e;}, {€;} on them respectively, there exists a complex linear transformation

T : 51 — Sy preserving the Hermitian product, i.e.,
(T(w), T ()Y = (u, o)V for u,ve ;.
At the same time, the following diagram is commutative
S, S

T\ |7

Sy Sy
Moreover, such a transformation T is unique up to a multiple e, where 6 € R.

Definition 1.1 The space S satisfying Theorem 1.3(1) is called a spinor space of dim 2"

(or rank n), whose elements are called spinors.

Remark 1.2 Let S be a spinor space. Choose a unitary basis {Uy,---,Un}, and define
matrices [e;] by
ei(Ulv"' 7UN) = (Ula"' aUN)[ei]'
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Then {[e1],--- ,[en]|} are Pauli matrices, where N = 2.

In this paper, we will add some other structures on a spinor space S, such that the isomor-

phism 7" in Theorem 1.3 is unique.

2 Augmented Spinor Space

Definition 2.1 Let S be a spinor space, an anti-complex linear map J : S — S is called
a Jack map if it satisfies the following two conditions

(i) (Ju, Jv)={u,v), for u,v € S,

(il) e,-J=J-¢;:8— S, fori=1,---,2n.

In [1], we have proved the following result.

Theorem 2.1 Let S be a spinor space. Then
(1) there exists a Jack map in S;

(ii) for any two Jack maps Jy, Jo, there always exists a real number 0 such that J; = e* Js.

Moreover, J? = (—1)n(nz+1>.

Definition 2.2 For a spinor space S with a Jack map J, an element € € S is called a

Jack-orientation, if it satisfies the following conditions
V—legi-e=e9_1-€ {(e,eh=1, J-e=K,- ¢,

where
K eies - €eap_1, when n is odd,
(vV—1)"eseq - e2,, when n is even.

Lemma 2.1 Given a spinor space S with a Jack map J, there exist exactly two Jack-

orientations; one is €, and the other is —e.

Definition 2.3 A spinor space S, with a Jack map J and a Jack-orientation €, is called

—
an augmented spinor space, which is denoted by S .

Remark 2.1 The notion of augmented spinor space in this paper is different from the one

in [1]; the latter does not contain the Jack-orientation.

Theorem 2.2 Given two augmented spinor spaces §1) and ,S—>’2, there exists only one iso-
morphism ® : §1) — 5_';, such that

(i) <I>~e(1) (2 P, foralli=1,---,2n,

(i) (®(u), @(v )>>(2) = (v vy, , Jor all p,v € 51,

(iii) J& . d=0.J0 . Sy — Sg,

(iv) () =,

(@)

where e;"", {(, W) T and € are, respectively, Clifford action, Hermitian inner product,

Jack map, and Jack-orientation of ?a, for a=1,2.
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3 A Naive Model of Augmented Spinor Space

Because of Theorem 2.2, if rank n is fixed, then any two augmented spinor spaces differ by
a unique complex linear isomorphism. Now let us try to show one of augmented spinor spaces,

which is called a naive model.

Definition 3.1 Let AL(n) be a Grassmann algebra over complex number field C' with
generators {1,Qq,...,Q,}, i.e., it is an associative algebra with generators {1,Q4,...,Q,} sub-
ject to only relations Q;Q; + Q;Q; = 0, for i,j = 1,--- ,n. Sometimes we denote AL(n) by

AL(Qq, -+, Q). In this space, we define following two complex linear maps €; and v; by
€6 AL, Q) =2 AL, Q) Qi A A, = A, A AQ
Li s A, Q) = AL, Q) Qi A AQ —
i(—l)k—léﬁkml A A A A
k=1
Proposition 3.1 Let
f2i—1 =€ — i, fiz; = —V—1(e; +1;) fori=1,-- n.
Then it is easy to see that
Wil + pjps = =265, Vi, j=1,--,2n.
In other words, map
C,, : Home(AG (1, -+, Q) — Con(-1) @ C : py — €5
is an algebra isomorphism.

In Grassmann algebra A% (21, ,Q,,), we will define some structures as follows.

(1) Define Hermitian product (, }) such that {Q;; A---AQ;, 1|0 < s < n} is a unitary
basis. It is easy to see that Hermitian product has a property {e;u, e;v)) = (u, v}) u, v € A5 (n).

(2) Define amap f: AL(Q, -, Q) — AS(Q,- -+ ,Qy) such that

= Hipes - fhon—1, when n is odd,
(V=1)"papis - - - i2n, When n is even.

Let [flg : AL (n) — Ag(n) be an anti-complex linear map.

Lemma 3.1 In Grassmann algebra AL(Q,---,Qy), we define a Hermitian product as
above and e; = i, i =1,---,2n, J = [flg, e =1 € AL(n). Then {(,), e, J, €} induces an
augmented spinor space structure on AL (Qq,- -+, Qy).

Lemma 3.2 Let ? be an augmented spinor space. Define ?R to be a real space spanned by

N
standard basis, i.e., S p =spang{ez;,_1---€2i,—1(€) | s=1,--+ ,nyiy <iz <---<igs}. Then

— —
Sr={ae S| J(a)=K,a},
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where
K €1€3 - €1, when n is odd,
n - .
(vV/—1)"eseq---ea,, when n is even.

The above Lemma 3.1 provides a naive augmented spinor structure on Grassmann algebra
A% (n). Let us consider the augmented spinor structures on fixed Grassmann algebra Ag (n).
We denote the set of all such structures on A% (n) by SP(n). Due to the uniqueness in Theorem
2.2, any two augmented spinor structures on A% (n) differ by an element in Hom(A%(n)). More

exactly, we have a lemma.

Lemma 3.3 For any two o, = {{{, \*), ega), J@ €@} € SP(n), a = 1,2, by Theorem
2.2 there exists only one isomorphism ® : A% (n) — AL(n), such that

(1) <I>-el(.1) zel(.z) @, foralli=1,---,2n,

(i) (@), 2N =, )V, for all pv € 5,

(i) J@ d=a. JDG — S,

(iv) ®(eM) =e?.

If we denote the relation among the above o1,09,® by
09 = P * 01,

then given any two of 01,09, ®, we can determine the third by the equality oo = ® * 07.

4 Tensor Product

Given two augmented spinor structures oy, 02 on A%(n) and AL (m) respectively, we try to
build an augmented spinor structure on A& (n + m) as follows. For the simplicity of notations
we denote A% (n) and AL (m) by §1> , §2> respectively.

Firstly we introduce super algebra structures on g;, i = 1,2, and then use these super
structures to define the desired augmented spinor structure on

§1>®§2) =Al(n+m).

—
Definition 4.1 In an augmented spinor space S = A§(n), define a composition as

N —
S =8T+ S5, where

(6 Q= —O[},
N
in which € = (v/—1)"e1ea---ea,. The above decomposition is called a superstructure on S .

The elements in ST and S~ are called even and odd elements, respectively.

Definition 4.2 For any augmented spinor space ?, define a superstructure of Homc(g))
as
— T4 —
Homeg(S) = (Home(S))" + (Home(S)) ™,

where

(Home(S))* = {f € Home(S) | &f = fe,
(Home(S))™ = {f € Home(S) | f = —fe).
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— — )
Here (Home(S))" and (Home(S))™ are even and odd parts, respectively.

Now we are going to define an augmented spinor structure on A% (n) ® Ag(m).

(1) Define a Hermitian product on spinor tensor space A% (n) ® A& (m) by
(u1 ® ug, v1 ® va) = (u1, v )\ Wua, v2)®),  where uy,v1 € AH(n), uz, vy € AG(m).
(2) Define a super algebra structure on Home (AL (n))@Home (Af(m)) as

(i ® 1) (f2 ® go) = (=D)12V191l( £, £, @ g1g0),

where
( 1)|fz|~|g1| _ 1, either fo or g; is even,
—1, both fy and ¢; are odd.

(f1 © 1)7(f2® g2) is denoted by (f1®g1) - (f28ga)-
There is a super algebra isomorphism

Home (A¢(n)) ® Home (Ag(m)) = Home (Ag (n) @ Ag(m))
such that
(ei€5) > (e:21) - (1Qe;).

From the above definitions, it is easy to check that

1)
1)
(18e:)(18e;) + (18e;)(18e;)

—26;5, fori,j=1,---,2n,

i®
® 0, fori=1,---2n, j=1,---2m,

—26;5, forid,j=1,---2m.

It means a Clifford algebra generated by {61@)1, cean®1,1Req, - - - ,1®egm}, and a Clifford
action on A} (n) ® AL (m). We can check that the inner product {, )) is invariant under the
action of the set {e;®1, 1®e;)}, i.e.,

((ei®1) (w1 @ ug), (e;81)(v1 @ v2)) = (U1 @ g, vy ® v2)),
((1®e))(u1 ® uz), (10e;)(v1 ® v2)) = (U1 @ ug,v1 @ va)),

for all uy,v1 € AL(n), ug,ve € AG(m).

(3) In Grassmann algebra, let K, Ky be the Jack maps of A% (n), A (m) respectively.
Then H - (K1®K>5) is a complex conjugate linear map, which is defined as a Jack map on
AL(n) ® AL (m), where H is a linear map.

(4) Define a Jack-orientation € of A% (n) ® A5(m) to be €1 ® €2, where €1, €2 are the
Jack-orientations of A% (n), AL (m) respectively.

It is easy to see that the above (1)—(4) define an augmented spinor structure on

AL(n) @ AG(m) = Ag(n+m).

Theorem 4.1 Given two augmented spinor structures o1,02 on AL (n), AL(m), respec-

tively, the above construction shows an augmented spinor structure o on AL(n+m) = A&(n) ®
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AL(m). In other words, if we denote the above augmented spinor structure o by o1 X o2, then
we have a map

SP(n) x SP(m) — SP(n+m) : (01,02) — 01 X 02.

Theorem 4.2 The naive augmented spinor spaces provide naive augmented structures

09,059,509 on

Ac(n), Ag(m), Ac(n+m)
respectively. For any augmented spinor structures oi,o9,0s, by using Lemma 3.3 there are
®,; € Hom(S;) such that

o =®;x0?, Vi=1,2,3,
where

S1=A&(n), S2=A&(m), S3=AL(n+m).

We denote ®; = oi/og. Then Theorem 4.1 gives a map
U@™) x U@2™) — U(2"+™) . (01/0?,02/03) — (o7 X 02)/03,

where U(2™) is the set of the unitary homomorphisms in Hom(A§ (n)).

é
5 Group Actions on S

Now we define the subset Spin(2n) in Cs,(—1) by
Spin(2n) = {ug - - ugp | (ui, w;) = 1,u; € R*™},

where

R?" = Spang{er, -, ean}.

Let
Spin®(2n) = {e“go | go € Spin(2n), e’ € U(1)} C Cy,(—1) @ C.

Definition 5.1 Let ? be the naive augmented spinor space. Define a Spinc(2n)—gr0up
action
. C — —
Spin~(2n) x S — S
— —
S —

by the restriction of the algebra action (Cap(—1) @ C) x S.

Proposition 5.1 For an arbitrary g = goe' € Spinc (2n), define a map
— — — —
g« : Hompg(S, S) — Homg(S, S)

by
o(f)=g-f-g%, VfeHomgp(S,S).

Then we have
g.(J) = e*J.
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Proof According to the definition of g., we have
(D) =g T gL = goe®Je g1 = goe?i sl g = e ],

So the Proposition is proved.

The next proposition gives the relations between U(n) action and Spin®(2n) action on the

naive model A% (n).
Definition 5.2 Leti: U(n) — Cap(—1) @ C be the composition of maps

U(n) 2 Home(AL(Q1, -+, Q) 5 Con(—1) ® C,

where A : U(n) — Home (AL(Q4, -+ ,8y,)) is a complex linear map defined by

A Qi A A Q) = (AA)Qi ) A== AMAN, ), VA = (4ij) € Un),
where (A(A)Q, -+, AA)Q,) = (Q1, -+, Q) A, and C,, is the naive isomorphism in Proposition
3.1.

Obviously, the above definition gives an imbedding of U(n) into Cs,(—1) ® C. It is notable
here that Spin®(2n) is also a subset of Cs,(—1) ® C.

Proposition 5.2 U(n) C Spin“(2n).
Proof It is sufficient to check T} (U(n)) C T1(Spin®(2n)) in T} (Can(—1) ® C). From [1,

Proposition 2.6, we know that

Tl(SpinC(2n)) = Spanp{Vv—1, eej € Ca,(—1) | i < j},
T1(U(n)) = Spang{Vv—10;;, V—=1(0s; +0;:), Zi; | i < j},
where (aij)a,g = 5ia5j,8a (Eij)aﬁ = 51‘(15]‘,3 - 5i66ja~ Letting h = (hij) S Tl(U(n)), we have
AE™M)(Qiy A AQ) = () A A (e76),

s

(ethﬂil) ANRIRIAN (ethQis) = Z hijEiLj(Qil Ao ANQ).

dt ‘t:o -~
i,j=1

So

€+ 1)+ (6 —u) (€5 +1¢5)— (65—
h:/\*(h):ZthLj:Zh”( )2( )(J 1)2(J ])
65 ]

1
=1 Z hij(V—1ea; + e2i—1) - (V—1ea; —ezj_1).
07

Ifh=+v-10;, \/—1(91‘]‘ + 03‘1‘), or Eij, then

haﬁ =+v-1 51'(151'5, vV _1(5ia5jﬁ + 5ja5iﬁ) or 5ia5jﬁ — 5@‘,851’(1,
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respectively. Therefore

1
V=10;; =h=X\(h) = Zv—l(v—l ez +e2i—1) - (V—1lez —e2i-1)
1
= 5(\/ —1 —egi—1e2),
1
V=1(0i5 +05i) = h = A\i(h) = §(€2i€2j71 — €2i-1€2j),

— 1
Zig = h = )\*(h) = 5(—621823‘ - 621'—1@2j—1)-

It means
Tl(U(n)) = SpanR{\/ —1 0“, vV —1(013‘ + 9]‘71)7 EU} C SpanR{\/ —1, €i€j} = Tl(SpinC(Qn)),

so the proposition is proved.

6 Examples

We write Pauli matrices for n = 1, and naive augmented spinor space for n = 2.
When n = 1, the basis of A% (1) can be represented by (1,€). Then

e1(1,9) = (e = )(1, Q) = (2, -1) = (1, Q)[eu],
e2(1,92) = —vV=1(e +)(1,9) = (-vV-192,—V~1) = (1, Q)[e2],

(=@ ) - (i )

The above [e1], [ea] are the Pauli matrices for n = 1.

where

When n = 2, since
A*C(91792) - A*C(Ql) ® AE’(QQ) - (1 ® 1) 1 ® 92791 ® 1591 ® QQ) - (1592591591 A QQ)7

by the following equalities

e1(1, 2, Q1,Q102) = (e1 — 01)(1, Q2, 21, 21Q2) = (1,2, 21, 21Q2)[e1],
62(159259159192) = V- (61 + Ll)(159259159192) = (159259159192)[62])
e3(1,Qa, Q1, 21Q2) = (€2 — 12)(1, 2, Q1, 21Q2) = (1, Q2, D1, 21Q9)es],
64(1,92,91,9192) ==V (52 + LQ)(LQQananQQ) = (1,92,91,9192)[64],
we can determine the Pauli matrices
00 -1 0 0 0 —/—1 0
fea] = 0o 0 -1 les] = 0 0 0 —/—1
=11 0 o o |’ S [/ 0 0 0 ’
01 0 0 0 —/—1 0 0
0O -1 0 0 0 —/—1 0 0
les] = 1 0 0 0 lea] = —v/—1 0 0 0
37 1o o o 1) 4T 0 0 0 =1
0 0 -1 0 0 0 v—1 0
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It is easy to check that
e = el®1, ey = 62®1, e3 = 1@63, e4 = 1@64.
The Jack map in the augmented spinor space is

J(1,92,Q1,01Q2) = —ezeq(1, D2, 1, 21Q0) = (1,0, 01, 2:1Q)[J],

where
00 0 -1
0 0 -1 O
171 = 0 1 0 0
1 0 0 0

lei]lej] + lejllei] = =261, ford,j=1,2,3,4,
- Tedl = [es] - ), for i =1,2,3,4.

The Jack-orientation in the augmented spinor space is e =1 € A%(2).

Applications of the augmented spinor spaces will be introduced in other papers.
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