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Abstract In this paper, the authors introduce the concept of h-quasiconvex functions on

Carnot groups G. It is shown that the notions of h-quasiconvex functions and h-convex

sets are equivalent and the L
∞ estimates of first derivatives of h-quasiconvex functions are

given. For a Carnot group G of step two, it is proved that h-quasiconvex functions are

locally bounded from above. Furthermore, the authors obtain that h-convex functions are

locally Lipschitz continuous and that an h-convex function is twice differentiable almost

everywhere.
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1 Introduction

Convex functions have played a very important role in PDEs, especially in fully nonlinear

elliptic PDEs in Euclidean space R
n (see [4, 5]), while quasiconvex functions have many inter-

esting properties similar to convex functions in R
n and play an important role in mathematical

programming (see [1, 9, 10, 13, 16]). Recently, some interesting properties and notions of con-

vex functions on the Carnot groups have been investigated by Danielli-Garofalo-Nhieu, and

Lu-Manfredi-Stroffolini and others (see [2, 6, 7, 14, 15, 19–21]). In this paper, motivated by

ideas from the papers indicated above, we introduce the concept of h-quasiconvex functions in

a Carnot group G, and give some interesting properties similar to those of h-convex functions

on G. In particular, we show that notions of h-quasiconvex functions and h-convex sets are

equivalent, give L∞ estimates of first derivatives of h-quasiconvex functions, and prove that

h-quasiconvex functions on a Carnot group G of step two are locally bounded from above.

Furthermore, for a Carnot group G of step two, we obtain that h-convex functions are locally

Lipschitz continuous and that a h-convex function is twice differentiable almost everywhere.

We begin by recalling some basic facts about Carnot groups (see [12, 17, 18]). A Carnot

group G is a stratified, nilpotent Lie group of step r, with Lie algebra G= V1 ⊕ V2 ⊕ · · · ⊕ Vr.

This means that [V1, Vj ] = Vj+1 for j = 1, 2, · · · , r − 1, whereas [V1, Vr] = {0}. We assume

that a scalar product 〈 · , · 〉 is given on G for which the Vj ’s are mutually orthogonal. Let
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mj = dimVj , j = 1, · · · , r, and denote by N = m1 + · · · + mr the topological dimension of

G. The notation {Xj,1, · · · , Xj,mj
}, j = 1, · · · , r, will indicate a fixed orthonormal basis of the

j-th layer Vj . Element of Vj are assigned the formal degree j. As a rule, we will use letters

g, g′, g0, p, q for points in G, and use the letter e for the group identity in G, whereas we will

reserve the letters Z, Z ′, Z0, for elements of the Lie algebra G. We will denote by Lg0
(g) = g0g

the left-translations on G by an element g0 ∈ G. Recall that the exponential map exp : G → G

is a global analytic diffeomorphism [22], which allows to define analytic maps ξi : G → Vi for

i = 1, 2, · · · , r, by letting g = exp(ξ1(g)+ · · ·+ξr(g)) for g ∈ G. The mapping ξ : G → G defined

by ξ(g) = ξ1(g)+ · · ·+ ξr(g) is the inverse of the exponential mapping. The stratification of the

Lie algebra allows us to define a natural family of non-isotropic dilation ∆λ : G → G as follows

∆λξ(g) = λξ1(g) + λ2ξ2(g) + · · · + λrξr(g). (1.1)

Therefore the exponential map induces a group of dilations on G via the formula

δλ(g) = exp ◦∆λ ◦ exp−1(g), g ∈ G. (1.2)

For g ∈ G, the projection of the exponential coordinates of g onto the layer Vj , j = 1, · · · , r,

are defined as follows

xj,s(g) = 〈ξj(g), Xj,s〉, s = 1, · · · , mj . (1.3)

In the sequel it will be convenient to have a separate notation for the first two layers V1 and

V2. For simplicity, we set m = m1, k = m2, and indicate

{X1, · · · , Xm} = {X1,1, · · · , X1,m}, {Y1, · · · , Yk} = {X2,1, · · · , X2,k}. (1.4)

We indicate with

xi(g) = 〈ξ1(g), Xi〉, i = 1, · · · , m, ys(g) = 〈ξ2(g), Ys〉, s = 1, · · · , k, (1.5)

the projections of the exponential coordinates of g onto V1 and V2. Let x(g) = (x1(g), · · · ,

xm(g)), y(g) = (y1(g), · · · , yk(g)). We will often identify g ∈ G with its exponential coordinates

g = (x(g), y(g), · · · ), (1.6)

where the dots indicate the (N − (m + k))-dimensional vector

(x3,1(g), · · · , x3,m3
(g), · · · , xr,1(g), · · · , xr,mr

(g)).

When G is a group of step two, (1.6) simply becomes g = (x(g), y(g)). Such identification of G

with its Lie algebra is justified by the Baker-Campbell-Hausdorff formula (see, e.g. [22])

exp Z exp Z ′ = exp
(

Z + Z ′ +
1

2
[Z, Z ′] +

1

12
{[Z, [Z, Z ′]] − [Z ′, [Z, Z ′]]} + · · ·

)

, (1.7)

where Z, Z ′ ∈ G and the dots indicate a finite linear combination of terms containing commu-

tators of order three and higher.

We denote by X and Y the system of left-invariant vector fields on G defined by

Xi(g) = (Lg)∗(Xi), i = 1, · · · , m, Ys(g) = (Lg)∗(Ys), s = 1, · · · , k,
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where (Lg)∗ denotes the differential of Lg. System X defines a basis for the so-called horizontal

subbundle HG of the tangent bundle TG. For a given function f : G → R, the action of Xj on

f is specified by the equation

Xjf(g) = lim
t→0

f(g exp(tXj)) − f(g)

t
=

d

dt
f(g exp(tXj))

∣

∣

∣

t=0
.

The sub-Laplacian associated with a basis X is the second-order partial differential operator

on G given by

L =
m

∑

j=1

X2
j . (1.8)

We denote by dg the bi-invariant Haar measure on G obtained by pushing forward Lebesgue

measure on G via the exponential map. One has dg(δλ(g)) = λQdg(g), so that the number

Q = m1 + 2m2 + · · · + rmr

plays the role of a dimension with respect to the group dilations. For this reason Q is called

the homogeneous dimension of G. Such a number is larger than the topological dimension N

of G defined above.

The Euclidean distance to the origin | · | on G induces a homogeneous pseudo-norm | · |G on

G and (via the exponential map) one on the group G in the following way (see [11]). For ξ ∈ G,

with ξ = ξ1 + · · · + ξr, ξi ∈ Vi, we let

|ξ|G =
(

r
∑

i=1

(|ξi|)
2r!/i

)2r!

, (1.9)

and then define a pseudo-norm on G by the equation

N(g) = NG(g) = |ξ|G , if g = exp ξ. (1.10)

The function N is usually referred to as non-isotropic gauge. It defines a pseudo-distance on G

d(g, g′) = N(g−1g′). (1.11)

This is called the gauge pseudo-distance, and it is equivalent to the Carnot-Carathéodory

distance ρ( · , · ) generated by the system X (see [3]). We let B(g, R) = {g′ ∈ G | d(g, g′) < R}.

For a given open set Ω ⊂ G, the classe Γk(Ω) represents the collection of all functions having

continuous derivatives up to order k with respect to the vector fields X1, X2, · · · , Xm.

Given a point g0 ∈ G, the horizotal plane through g0 as the m-dimensional embedded

submanifold of G given by

Hg0
= Lg0

(exp(V1 × {0})),

where 0 denotes the (N − m)-dimensional zero vector in G, with N = dimV1 + · · · + dimVr.

This paper, except for the introduction, is divided into two sections. In Section 2 we give

the definition of h-quasiconvex functions and the main results. We will give the proofs of main

theorems in Section 3.
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2 Definitions and Main Results

We first introduce the definition of h-quasiconvexity which generalizes the notion of h-

convexity in the Carnot group G.

Given two points g, g′ ∈ G, for λ ∈ [0, 1] we will denote

gλ = gλ(g; g′)
def
= gδλ(g−1g′) (2.1)

the twisted “convex combination” of g and g′ based at g. Note (2.1), and we recall the following

notion of h-convexity in [14], which is called weak H-convexity in [6]: A subset Ω of a Carnot

group G is called h-convex if for any g ∈ Ω, and every g′ ∈ Ω ∩ Hg, we have gλ ∈ Ω for every

λ ∈ [0, 1]. Furthermore, given an h-convex open set Ω ⊂ G, a function u : Ω → R is called

h-convex if for any g ∈ Ω, and for every g′ ∈ Ω ∩ Hg, we have for every λ ∈ [0, 1]

u(gλ) ≤ (1 − λ)u(g) + λu(g′).

Throughout the paper, the open set Ω will be assumed to be h-convex. Similarly to [20],

we give the following definition of quasiconvex functions.

Definition 2.1 Let G be a Carnot group and Ω ⊂ G. A function u : Ω → R is called

h-quasiconvex if for any g ∈ Ω, and for every g′ ∈ Ω ∩ Hg, we have for every λ ∈ [0, 1]

u(gλ) ≤ max{u(g), u(g′)}.

Here, gλ is as in (2.1).

Example 2.1 Let H
1 be the Heisenberg group with coordinates (x, y, z), the group oper-

ation (x, y, z)(x′, y′, z′) = (x + x′, y + y′, z + z′ + 2(x′y − xy′)) and Lie algebra G generated by

the left-invariant vector fields

X1 =
∂

∂x
+ 2y

∂

∂z
, X2 =

∂

∂y
− 2x

∂

∂z
, X3 =

∂

∂z
.

Let u(g) = −xy for g ∈ H
+1 = {(x, y, z) | x ≥ 0, y ≥ 0}. It is immediate to check that H

+1 is h-

convex. From the arithmetic-geometric mean inequality, if u(g) ≤ u(g′) for any g ∈ H
+1, and for

every g′ ∈ H
+1∩Hg , we have u(gλ) = u(gδλ(g−1g′)) ≤ u(g) for every λ ∈ [0, 1]. Therefore u(g) is

h-quasiconvex. It is easy to see XiXiu(g) = 0 (i = 1, 2) and XiXju(g) = −1 (i, j = 1, 2, i 6= j).

From [6, Theorem 5.11] we derive that u(g) is not h-convex. Hence for g ∈ H
+1 the function

u(g) = −xy provides us an example of h-quasiconvexity which is not h-convex.

Our main results are the following three theorems.

Theorem 2.1 Let G be a Carnot group and Ω ⊂ G. If u : Ω → R is h-quasiconvex,

g ∈ G, r > 0, and f : R → R is non-decreasing, then u ◦ Lg : Lg−1(Ω) → R, u ◦ δr : δ 1
r
(Ω) → R

and f ◦ u are h-quasiconvex. Furthermore, if {uα : Ω → R}α∈A is an arbitrary family of

h-quasiconvex functions, then sup
α∈A

uα is h-quasiconvex. Finally, a function u : G → R is h-

quasiconvex if and only if for any a ∈ R the level sets Ωa = {g ∈ G | u(g) ≤ a} are h-convex.

Theorem 2.2 Let Ω ⊂ G be an open set and u : Ω → R be an h-quasiconvex and continuous

function with u(q) ≤ u(p) for any p ∈ Ω and q ⊂ Ω ∩ Hp. Let BR be a ball such that B3R ⊂ Ω.
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Then u is locally Lipschitz and we have the bound

‖Xu‖L∞(BR) ≤ C‖u‖L∞(B3R), (2.2)

where C is a constant independent of u and R.

Theorem 2.3 Let G be a Carnot group of step two and Ω ⊂ G. If u : Ω → R is an

h-quasiconvex function, then it is locally bounded from above, and furthermore if u : Ω → R is

an h-convex function, then it is locally Lipschitz.

Remark 2.1 Applying Theorem 2.3 and [7, Theorem 1.1], we can prove that if G is a Carnot

group of step two and u : G → R is an h-convex function, then for every i, j = 1, · · · , m the

horizontal second derivatives XiXju exist a.e. in G. This result is the version of the Busemann-

Feller-Alexandrov theorem for the class of h-convex functions in Carnot groups of step two. In

addition, by the idea similar to that in [7, Theorem 4.3], we can derive an interesting property

of sub-Laplacian as follows: Let G be a Carnot group G of step two, and Ω ⊂ G be a bounded

open set. If u ∈ Γ3(Ω), then for any D ⋐ Ω we have for some constant C > 0 depending on G,

Ω and D
∫

D

Ludg ≤ C(oscΩu). (2.3)

It is worth noting at this point that any convexity conditon is not needed for the functions in

(2.3), while the functions in [7, Theorem 4.3] are 2h-convex.

3 The Proofs of Theorems

Proof of Theorem 2.1 Without loss of generality, we assume that Ω = G. For every

p ∈ G, any g ∈ G, and every g′ ∈ Hg, noting pg′ ∈ Hpg, we have for every λ ∈ [0, 1]

u(pgδλ(g−1g′)) = u(pgδλ((pg)−1(pg′))) ≤ max{u(pg), u(pg′)},

which establishes the first part of Theorem 2.1.

From the fact that g′ ∈ Hg if and only if δrg
′ ∈ Hδrg and the equation

δr(gλ) = (δrg)(δr(δλ(g−1g′)) = (δrg)δλ((δrg)−1δrg
′)

we obtain the second part of Theorem 2.1. From Definition 2.1 and the notion of h-convexity

in [6], we can derive the remaining parts of Theorem 2.1 .

Proof of Theorem 2.2 The proof is similar to that of [20, Theorem 2.10], but the proof of

Theorem 2.2 is more complicated. For the convenience of reader, we include a complete proof

here. Given a kernel K ∈ C∞
0 (G), K ≥ 0, suppK ⊂ B(e, 1), we have

∫

G K(g)dg = 1. Consider

the corresponding approximation to the identity {Kǫ = ǫ−QK ◦ δ1/ǫ}ǫ>0 associated with it. Let

uǫ = Kǫ ⋆ u. Then uǫ ∈ C∞(Ωǫ), where Ωǫ = {p ∈ Ω | dist(p, ∂Ω) > ǫ}. By the hypothesis

u ∈ C(Ω), we have uǫ → u uniformly on compact subsets of Ω. Moreover, we have that the

group convolution preserves h-quasiconvexity using the proof similar to that of (4.7) in [20].

Let p, q be two points in Ωǫ, we introduce the function ϕ : [0, 1] → R defined by

ϕ(λ) = uǫ(pδλ(p−1q)). (3.1)
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Clearly, ϕ(0) = uǫ(p). By the hypothesis and Definition 2.1, for any p ∈ Ωǫ and q ∈ Ωǫ∩Hp,

we derive

ϕ′(0) = lim
λ→0+

uǫ(pδλ(p−1q)) − uǫ(p)

λ
≤ 0. (3.2)

For a Carnot group G of step two, let g = exp(ξ(g)), ξ(g) = ξ1(g) + ξ2(g), ξ1(g) =
m
∑

α=1
xα(g)eα, and ξ2(g) =

k
∑

β=1

yβ(g)ǫβ. For g = p, p−1q, from the definition (1.2), using (1.7) we

obtain for the function ϕ(λ) defined in (3.1)

ϕ(λ) = uǫ

(

exp
(

ξ1(p) + λξ1(p
−1q) + ξ2(p) + λ2ξ2(p

−1q) +
λ

2
[ξ1(p), ξ1(p

−1q)]
))

= uǫ

(

x1(p) + λx1(p
−1q), · · · , xm(p) + λxm(p−1q),

y1 + λ2y1(p
−1q) +

λ

2

m
∑

α,α′=1

b1
αα′xα(p)xα′ (p−1q),

· · · ,

yk + λ2yk(p−1q) +
λ

2

m
∑

α,α′=1

bk
αα′xα(p)xα′ (p−1q)

)

. (3.3)

Differentiating (3.3) with respect to λ, and setting λ = 0, we have

ϕ′(0) =

m
∑

α=1

[ ∂uǫ

∂xα
(p) +

1

2

k
∑

β=1

m
∑

α′=1

b
β
α′αxα′(p)

∂uǫ

∂yβ
(p)

]

xα(p−1q) = 〈Xuǫ(p), ζ〉, (3.4)

where ζ = ξ1(q) − ξ1(p) and in the last equality we have used [6, Lemma 5.3]. Similarly, for a

Carnot group G of higher step, we have that (3.4) holds also by using [6, (5.11)].

Now we fix a gauge ball B(p0, R) ⊂ B(p0, 3R) ⊂ Ωǫ. For any fixed p ∈ B(p0, R) and every

q ∈ Hp, when q 6= p, from (3.2) and (3.4), we get

〈

Xuǫ(p),
ζ

‖ζ‖

〉

≤ 0. (3.5)

Passing to the supremum on all q ∈ ∂B(p, R) ∩ Hp in (3.5) for ǫ > 0 small enough, and noting

that p ∈ B(p0, R) is arbitrary, we can derive

‖Xuǫ‖L∞(B(p0,R)) ≤ 0. (3.6)

From [6, (3.6), Theorem 2.5], letting ǫ → 0, we obtain for p, q ∈ B(p0, R),

|u(p) − u(q)| ≤ C‖u‖L∞(B(p0,3R))d(p, q), (3.7)

where C > 0 is an absolute constant. Thus u is locally Lipschitz. Applying [6, Theorem

2.4], from (3.7) we drive that weak derivatives X1u, · · · , Xmu exist dg-a.e. in Ω and belong to

L∞
loc(Ω). Furthermore, we obtain (2.2).

This completes the proof of Theorem 2.2.

Proof of Theorem 2.3 The proof of the first part of Theorem 2.3 is similar to that of [21,

Theorem 1.4] once we have the following step I. We sketch its proof. Without loss of generality,
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we assume that Ω = G, and Lie algebra of Carnot group G is G= V1 ⊕ V2, with m = dimV1

and k = dimV2. The proof of the first part of Theorem 2.3 is divided into two steps:

Step I We first prove that given a Carnot group G, a function u : G → R is h-quasiconvex

if and only if for any p ∈ G and every q ∈ Hp the restriction of the composition u ◦ exp to the

segment [ξ(p), ξ(q)] is a quasiconvex function. Here p = exp(ξ(p)), q = exp(ξ(q)) and [ξ(p), ξ(q)]

denotes the convex closure of the {ξ(p), ξ(q)} in the Euclidean sense.

By [6, Proposition 4.4] and Definition 2.1, it is easy to prove the sufficiency for the above

conclusion. Next we prove the necessity. Suppose that u : G → R is h-quasiconvex. For any

p ∈ G and every q ∈ Hp, using [6, Proposition 4.4], we easily find ξ(pδλ(p−1q)) = (1− λ)ξ(p) +

λξ(q) ∈ [ξ(p), ξ(q)]. Therefore for any ξ(p1), ξ(p2) ∈ [ξ(p), ξ(q)], where pi = exp(ξ(pi)) ∈ G (i =

1, 2), we have ξ(pi) = ξ(pδλi
(p−1q)) for i = 1, 2. Thus we have for i = 1, 2,

pi = pδλi
(p−1q). (3.8)

Now we show that p2 ∈ Hp1
. From [6, Proposition 4.2], i.e., p−1

1 p2 ∈ He, this translates into

ξi(p
−1
1 p2) = 0 ∈ Vi, i = 2, · · · , r. (3.9)

From (1.1) and (1.2), for any g ∈ G we derive for every λ ∈ [0, 1]

δλ(g) = exp(λξ1(g) + λ2ξ2(g) + · · · + λrξr(g)). (3.10)

Using the hypothesis q ∈ Hp and [6, Proposition 4.2], we have p−1q ∈ He. Thus using (3.10),

we derive for every λ ∈ [0, 1]

δλ(p−1q) = exp(λξ1(p
−1q)). (3.11)

Noticing (exp(λξ1(p
−1q))

−1
= exp(−λξ1(p

−1q)), from (3.8), (3.11) and Baker-Campbell-

Hausdorff formula, we have

p−1
1 p2 = exp(−λ1ξ1(p

−1q)) exp(λ2ξ1(p
−1q)) = exp[(λ2 − λ1)ξ1(p

−1q)]. (3.12)

From (3.12), we get that (3.9) is valid. Thus p2 ∈ Hp1
. Again using [6, Proposition 4.4], for

any ξ(p1), ξ(p2) ∈ [ξ(p), ξ(q)] and every λ ∈ [0, 1], we have

u(exp((1 − λ)ξ(p1) + λξ(p2))) = u(exp(ξ(p1δλ(p−1
1 p2)))) ≤ max{u(exp(ξ(p1))), u(exp(ξ(p2)))}.

This proves that restriction of u ◦ exp to the segment [ξ(p), ξ(q)] is a quasiconvex function.

Step II From [6, Proposition 4.3], [20, Lemma 3.1], the result proved in the step I and the

invariance of h-quasiconvexity by left translations and dilations, using the method similar to

that of the first part of [21, Theorem 1.4], we can derive the first part of Theorem 2.3.

From the first part of Theorem 2.3, we have that h-convex function u on Carnot group G

of the step two is locally bounded from above. Therefore, it is locally Lipschitz using Theorem

3.18 due to Magnani in [15].
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