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1 Introduction and Preliminaries

In this paper, we study the controllability of semilinear functional differential systems defined

non-densely. More precisely, we consider the controllability problem of the following neutral

system on a general Banach space X (with the norm ‖ · ‖):

d

dt
[x(t) − g(t, xt)] = A[x(t) − g(t, xt)] + Cu(t) + F (t, xt), 0≤t≤a,

x0 = φ ∈ C([−r, 0]; X),
(1.1)

where the state variable x( · ) takes values in Banach space X and the control function u( · ) is

given in L2([0, a]; U), the Banach space of admissible control functions with U a Banach space.

C is a bounded linear operator from U into X , the unbounded linear operators A is not defined

densely on X , that is, D(A) 6= X . And F, g : [0, a] × C([−r, 0]; X) → X are appropriate

functions to be specified later. Let r > 0 be a constant, we denote by C([−r, 0]; X) the space

of continuous functions from [−r, 0] to X with the sup-norm ‖φ‖C = max
s∈[−r,0]

‖φ(s)‖, and for a

function x we define xt ∈ C([−r, 0]; X) by xt(s) = x(t + s), s ∈ [−r, 0].

The problem of controllability of linear and nonlinear systems represented by ODE in finite

dimensional space has been extensively studied. Many authors have extended the controllability

concept to infinite dimensional systems in Banach space with unbounded operators (see [1–11]

and the references therein). Triggiani [5] established sufficient conditions for controllability

of linear and nonlinear systems in Banach space. Exact controllability of abstract semilinear

equations has been studied by Lasiecka and Triggian [6]. Quinn and Carmichael [7] have shown

that the controllability problem in Banach space can be converted into a fixed pointed problem
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for a single-valued mapping. Kwun et al. [8] investigated the controllability and approximate

controllability of delay Voltera systems by using a fixed point theorem. Recently Balachandran

and his cooperators have studied the (local) controllability of abstract semilinear functional

differential systems (see [9]) and the controllability of abstract integro-differential systems (see

[10]). In paper [11] the author has extended the problem to neutral systems with unbounded

delay.

In all these work the linear operator A is always defined densely in X and satisfies the

Hille-Yosida condition so that it generates a C0-semigroup or analytic semigroup. However,

as indicated in [12], we sometimes need to deal with the non-densely defined operators, for

example, when we look at a one-dimensional heat equation with Dirichlet condition on [0, 1]

and consider A = ∂2

∂2x
in C([0, 1]; R), in order to measure the solution in the sup-norm we take

the domain

D(A) = {x ∈ C2([0, 1]; R); x(0) = x(1) = 0},

then it is not dense in C([0, 1]; R) with the sup-norm. The example presented in Section 3

shows the advantage of the non-densely defined operators in handling practical problems. See

[12] for more examples and remarks concerning the non-densely defined operators.

Up to now, there are very few papers (see [13]) in this direction dealing with the controllabil-

ity problems for the important case that the linear parts are defined non-densely. The purpose

of this paper is just to investigate the controllability for the non-densely defined system (1.1).

The obtained result can be regarded as a continuation and an extension of those for densely

defined control systems.

Throughout this paper we will always suppose the following hypothesis for equation (1.1):

Hypothesis (H0) The operator A : D(A) ⊂ X → X satisfies the Hille-Yosida condition,

i.e., there exist M ≥ 0 and w ∈ R such that (w, +∞) ⊂ ρ(A) and

sup{(λ − w)n‖R(λ, A)n‖, n ∈ N, λ > w} ≤ M,

where R(λ, A) = (λI − A)−1.

Remark 1.1 According to [14], if operator A satisfies the Hille-Yosida condition, then A

generates a non-degenerate, locally Lipschitz continuous integrated semigroup. For the theory

of integrated semigroup we refer the readers to paper [14] and [15]. Here, for the sake of brevity,

we give directly the definition of integral solutions for equation (1.1) by virtue of this theory.

Definition 1.1 Let φ ∈ C([−r, 0]; X). A function x : [−r, a] → X is said to be an integral

solution of equation (1.1) on [−r, a], if the following conditions hold:

( i ) x is continuous on [0, a];

( ii )
∫ t

0
[x(s) − g(s, xs)]ds ∈ D(A) on [0, a];

(iii)

x(t) =





φ(0) − g(0, φ) + g(t, xt) + A

∫ t

0

[x(s) − g(s, xs)]ds

+

∫ t

0

[Cu(s) + F (s, xs)]ds, t ≥ 0,

φ(t), −r ≤ t < 0.
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Let A0 be the part of A on D(A) defined by

D(A0) = {x ∈ D(A) : Ax ∈ D(A)},

A0x = Ax.

Then A0 generates a C0-semigroup {T0(t)}t≥0 on D(A) (see [16] for the theory of C0-semigroup)

and the integral solution in Definition 1.1 (if it exists) is given by

x(t) =





T0(t)[φ(0) − g(0, φ)] + g(t, xt)

+ lim
λ→+∞

∫ t

0 T0(t − s)B(λ)[Cu(s) + F (s, xs)]ds, t ≥ 0,

φ(t), −r ≤ t < 0,

(1.2)

where B(λ) = λR(λ, A).

Remark 1.2 We should point out here that, from Definition 1.1, it is not difficult to

verify that if x is an integral solution of equation (1.1) on [−r, a], then for all t ∈ [0, a],

x(t) − g(t, xt) ∈ D(A). In particular, φ(0) − g(0, φ) ∈ D(A).

Now we give the definition of the controllability for non-densely defined system (1.1).

Definition 1.2 The system (1.1) is said to be controllable on the interval [0, a], if for every

initial function φ ∈ C([−r, 0]; X) with φ(0) − g(0, φ) ∈ D(A) and x1 ∈ D(A), there exists a

control u ∈ L2([0, a]; U) such that the integral solution x( · ) of (1.1) satisfies x(a) = x1.

2 Main Result

To consider the controllability of system (1.1) we impose the following assumptions on it.

(H1) F : [0, a] × C([−r, 0]; X) → X satisfies the following conditions:

( i ) For each t ∈ [0, a], the function F (t, · ) : C([−r, 0]; X) → X is continuous and for each

φ ∈ C([−r, 0]; X) the function F ( · , φ) : [0, a] → X is strongly measurable;

(ii) For each positive number k, there is a function fk ∈ L1([0, a]) such that

sup
‖φ‖C≤k

‖F (t, φ)‖ ≤ fk(t) and lim inf
k→+∞

1

k

∫ a

0

fk(s)ds = γ < ∞.

(H2) The function g : [0, a] × C([−r, 0]; X) → X is Lipschitz continuous, that is, there is a

constant L0, 0 < L0 < 1, such that

‖g(t2, φ2) − g(t1, φ1)‖ ≤ L0(|t2 − t1| + ‖φ2 − φ1‖C)

for 0 ≤ t1, t2 ≤ a, φ1, φ2 ∈ C([−r, 0]; X). We also assume that there is a constant L > 0 such

that the inequality

‖g(t, φ)‖ ≤ L(‖φ‖C + 1)

holds for all t ∈ [0, a], φ ∈ C([−r, 0]; X).

(H3) The operator C : U → X is bounded and linear. The linear operator W : L2([0, a]; U)

→ D(A) defined by

Wu = lim
λ→+∞

∫ a

0

T0(a − s)B(λ)Cu(s)ds
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induces a bounded invertible operator W̃ defined on L2([0, a]; U)/ kerW (see Appendix for the

construction of W̃−1).

Theorem 2.1 Suppose that the C0-semigroup T0(t) is compact. Let φ ∈ C([−r, 0]; X) with

φ(0) − g(0, φ) ∈ D(A). If the assumptions (H0)–(H3) are satisfied, then the system (1.1) is

controllable on interval [0, a] provided that

(1 + aMM‖C‖‖W̃−1‖)(L + MMγ) < 1, (2.1)

where M = sup
t∈[0,a]

‖T0(t)‖.

Proof By means of the assumption (H3), for arbitrary function x( · ) we define the control

u(t) = W̃−1{x1 − T0(a)[φ(0) − g(0, φ)] − g(a, xa)

− lim
λ→+∞

∫ a

0

T0(a − s)B(λ)F (s, xs)ds}(t).

Using this control we will show that the operator S defined by

(Sx)(t) = T0(t)[φ(0) − g(0, φ)] + g(t, xt)

+ lim
λ→+∞

∫ t

0

T0(t − s)B(λ)[Cu(s) + F (s, xs)]ds, 0 ≤ t ≤ a

has a fixed point x( · ). Then from (1.2) x( · ) is a integral solution of system (1.1), and it is

easy to verify that

x(a) = (Sx)(a) = x1,

which implies that the system is controllable. Subsequently we will prove that S has a fixed

point by applying Sadovskii fixed point theorem.

Let y( · ) : [−r, a] → X be the function defined by

y(t) =

{
T0((t)φ(0), t ≥ 0,

φ(t), −r ≤ t < 0.

Then y0 = φ and the map t → yt is continuous. We can assume that

N = sup{‖yt‖C : 0 ≤ t ≤ a}.

For each z ∈ C([0, a]; D(A)), z(0) = 0, we denote by z the function defined by

z(t) =

{
z(t), 0 ≤ t ≤ a,

0, −r ≤ t < 0.

If x( · ) satisfies (1.2), we can decompose it as x(t) = z(t) + y(t), 0 ≤ t ≤ a, which implies

xt = zt + yt for every 0 ≤ t ≤ a and the function z( · ) satisfies

z(t) = −T0(t)g(0, φ) + g(t, xt) + lim
λ→+∞

∫ t

0

T0(t − s)B(λ)[Cu(s) + F (s, zs + ys)]ds, 0 ≤ t ≤ a.

Let P be the operator on C([0, a]; D(A)) defined by

(Pz)(t) = −T0(t)g(0, φ) + g(t, xt) + lim
λ→+∞

∫ t

0

T0(t − s)B(λ)[Cu(s) + F (s, zs + ys)]ds.
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Obviously that the operator S has a fixed point is equivalent to that P has one, so it turns out

that we only need to prove that P has a fixed point.

For each positive integer k, let

Bk = {z ∈ C([0, a]; D(A)) : z(0) = 0, ‖z(t)‖ ≤ k, 0 ≤ t ≤ a}.

Then for each k, Bk is clearly a bounded closed convex set in C([0, a]; D(A)). Obviously, P is

well defined on Bk. We claim that there exists a positive integer k such that PBk ⊆ Bk. If

it is not true, then for each positive number k, there is a function zk( · ) ∈ Bk, but Pzk 6∈ Bk,

that is, ‖Pzk(t)‖ > k for some t(k) ∈ [0, a], where t(k) denotes t is dependent on k. However,

on the other hand, we have

k < ‖(Pzk)(t)‖

=
∥∥∥ − T0(t)g(0, φ) + g(t, zk,t + yt) + lim

λ→+∞

∫ t

0

T0(t − s)B(λ)Cuk(s)ds

+ lim
λ→+∞

∫ t

0

T0(t − s)B(λ)F (s, zk,s + ys)ds
∥∥∥

=
∥∥∥ − T0(t)g(0, φ) + g(t, zk,t + yt) + lim

λ→+∞

∫ t

0

T0(t − s)B(λ)CW̃−1
{
x1 − T0(a)[φ(0)

− g(0, φ)] − g(a, zk,a + ya) − lim
λ→+∞

∫ a

0

T0(a − τ)B(λ)F (τ, zk,τ + yτ )dτ
}

(s)ds

+ lim
λ→+∞

∫ t

0

T0(t − s)B(λ)F (s, zk,s + ys)ds
∥∥∥,

where uk is the corresponding control of xk, xk = zk + y. Since

‖B(λ)‖ ≤
λM

λ − ω
→ M, λ → +∞,

∫ t

0

‖F (s, zk,s + ys)‖ds ≤

∫ a

0

fk+N (s)ds,

there holds

k < M‖g(0, φ)‖ + L(k + N + 1) +

∫ t

0

MM‖C‖‖W̃−1‖{‖x1‖ + M‖φ(0)‖

+ M‖g(0, φ)‖ + L(k + N + 1) +

∫ a

0

MM‖F (τ, zk,τ + yτ )‖dτ}(s)ds

+

∫ t

0

MM‖F (s, zk,s + ys)‖ds

≤ M‖g(0, φ)‖ + L(k + N + 1) + aMM‖C‖‖W̃−1‖{‖x1‖ + M‖φ(0)‖

+ M‖g(0, φ)‖ + L(k + N + 1) + MM

∫ a

0

fk+N (τ)dτ} + MM

∫ a

0

fk+N (s)ds

= M∗ + (1 + aM‖C‖‖W̃−1‖)
(
Lk + MM

∫ a

0

fk+N (s)ds
)

= M∗ + (1 + aMM‖C‖‖W̃−1‖)
[
Lk + (k + N)

MM

k + N

∫ a

0

fk+N (s)ds
]
.
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Dividing on both sides by k and taking the lower limit, we get

(1 + aMM‖C‖‖W̃−1‖)(L + MMγ) ≥ 1.

This contradicts (2.1). Hence for some positive number k, PBk ⊆ Bk.

Now we define the operators P1, P2 on Bk by

(P1z)(t) = −T ((t)g(0, φ) + g(t, zt + yt)

and

(P2z)(t) = lim
λ→+∞

∫ t

0

T0(t − s)B(λ)[Cuk(s) + F (s, zs + ys)]ds

for z ∈ Bk and 0 ≤ t ≤ a, respectively. In order to apply Sadovskii fixed point theorem, we

need to prove that P1 verifies a contraction condition while P2 is a compact operator.

From condition (H2) it is obvious that P1 verifies a contraction condition since L0 < 1.

In order to show the compactness of P2, firstly we prove that P2 is continuous on Bk. Let

{zn} ⊆ Bk with zn → z in Bk. Then for each s ∈ [0, a], zn,s → zs, and by H1(i), we have

F (s, zn,s + ys) → F (s, zs + ys), n → ∞.

Since

‖F (s, zn,s + ys) − F (s, zs + ys)‖ ≤ 2fk+N (s),

by the dominated convergence theorem we have

‖P2zn − P2z‖ = sup
0≤t≤a

∥∥∥ lim
λ→+∞

∫ t

0

T0(t − s)B(λ)C[un(s) − u(s)]ds

+ lim
λ→+∞

∫ t

0

T0(t − s)B(λ)[F (s, zn,s + ys) − F (s, zs + ys)]ds
∥∥∥

→ 0, as n → +∞,

i.e., P2 is continuous.

Next we prove that the family {P2z : z ∈ Bk} is a equicontinuous family of functions. To

do this, let ǫ > 0 small, 0 < t1 < t2. Then

‖(P2z)(t2) − (P2z)(t1)‖ ≤ lim
λ→+∞

∫ t1−ǫ

0

‖T0(t2 − s) − T0(t1 − s)‖‖B(λ)‖‖C‖‖u(s)‖ds

+ lim
λ→+∞

∫ t1

t1−ǫ

‖T0(t2 − s) − T0(t1 − s)‖‖B(λ)‖‖C‖‖u(s)‖ds

+ lim
λ→+∞

∫ t2

t1

‖T0(t2 − s)‖‖B(λ)‖‖C‖‖u(s)‖ds

+ lim
λ→+∞

∫ t1−ǫ

0

‖T0(t2 − s) − T0(t1 − s)‖‖B(λ)‖‖F (s, zs + ys)‖ds

+ lim
λ→+∞

∫ t1

t1−ǫ

‖T0(t2 − s) − T0(t1 − s)‖‖B(λ)‖‖F (s, zs + ys)‖ds

+ lim
λ→+∞

∫ t2

t1

‖T0(t2 − s)‖‖B(λ)‖‖F (s, zs + ys)‖ds.
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Noting that

‖u(s)‖ ≤ ‖W̃−1‖
[
‖x‖ + M‖φ(0) − g(0, φ)‖ + ‖g(a, za + ya)‖

+ lim
λ→+∞

∫ a

0

‖T0(a − τ)‖‖B(λ)‖‖F (τ, zτ + yτ )‖dτ
]

≤ ‖W̃−1‖
[
‖x1‖ + M‖φ(0) − g(0, φ)‖ + L(k + N + 1) + MM

∫ a

0

fk+N (τ)dτ
]

and fk+N ∈ L1, we see that ‖(P2z)(t2) − (P2z)(t1)‖ tends to zero independently of z ∈ Bk as

t2− t1 → 0 with ǫ sufficiently small since the compactness of T0(t) (t > 0) imples the continuity

of T0(t) (t > 0) in t in the uniform operators topology. Hence, P2 maps Bk into a equicontinuous

family functions.

It remains to prove that V (t) = {(P2z)(t) : z ∈ Bk} is relatively compact in X . Let

0 < t ≤ a be fixed and 0 < ǫ < t. For z ∈ Bk, we define

(P2,ǫz)(t) = lim
λ→+∞

∫ t−ǫ

0

T0(t − s)B(λ)[Cu(s) + F (s, zs + ys)]ds

= T0(ǫ) lim
λ→+∞

∫ t−ǫ

0

T0(t − ǫ − s)B(λ)[Cu(s) + F (s, zs + ys)]ds.

Using the estimation on ‖u(s)‖ as above and by the compactness of T0(t) (t > 0), we obtain

that Vǫ(t) = {(P2,ǫz)(t) : z ∈ Bk} is relatively compact in X for every ǫ, 0 < ǫ < t. Moreover,

for every z ∈ Bk, we have

‖(P2z)(t) − (P2ǫz)(t)‖ ≤ lim
λ→+∞

∫ t

t−ǫ

‖T0(t − s)B(λ)[Cu(s) + F (s, zs + ys)]‖ds

≤

∫ t

t−ǫ

MM
{
‖C‖‖W−1‖

[
‖x1‖ + M‖φ(0)‖

+ MM

∫ a

0

fk+N (τ)dτ
]

+ fk+N (s)
}

ds.

Therefore there are relatively compact sets arbitrarily close to the set V (t) = {(P2z)(t) : z ∈

Bk}. Hence the set V (t) is also relatively compact in X .

Thus, by Arzela-Ascoli theorem P2 is a compact operator. These arguments enable us to

conclude that P = P1 + P2 is a condense mapping on Bk, and by the fixed point theorem of

Sadovskii there exists a fixed point z( · ) for P on Bk. If we define x(t) = z(t)+y(t),−r ≤ t ≤ a,

it is easy to see that x( · ) is an integral solution of (1.1) satisfying x0 = φ, x(a) = x1, which

shows system (1.1) is controllable. The proof is completed.

3 An Example

As an application of Theorem 2.1, we consider the following system

∂

∂t
[z(t, x) − h(t, z(t − r, x))] =

∂2

∂x2
[z(t, x) − h(t, z(t − r, x))] + Cu(t)

+ f(t, z(t− r, x)), 0 ≤ t ≤ a, 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0,

u(θ, x) = φ(θ, x), −r ≤ θ ≤ 0, 0 ≤ x ≤ π.

(3.1)
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To write system (3.1) in the form of (1.1), we choose X = C([0, π]) and consider the operator

A defined by

Af = f ′′

with the domain

D(A) = {f( · ) ∈ X : f ′′ ∈ X, f(0) = f(π) = 0}.

We have D(A) = {f( · ) ∈ X : f(0) = f(π) = 0} 6= X , and

ρ(A) ⊃ (0, +∞),

‖(λI − A)−1‖ ≤
1

λ
for λ > 0.

This implies that A satisfies the Hille-Yosida condition on X .

It is well known that A generates a compact C0-semigroup {T0(t)}t≥0 on D(A) such that

‖T0(t)‖ ≤ e−t for t ≥ 0.

In addition, we set that, for 0 ≤ t ≤ a and φ = φ( · , x) ∈ C([−r, 0]; X),

F (t, φ) = f(t, φ(−r, x)), g(t, φ) = h(t, φ(−r, x)).

A case that the system (3.1) can be handled by using the classical semigroup theory is when

the function is assumed to satisfy

f(t, 0) = h(t, 0) = 0 for all 0 ≤ t ≤ a. (3.2)

In this case, the functions F and g take their values in the space D(A) and the operator A

generates a strongly continuous semigroup on D(A). However, here the integrated semigroup

theory allows the ranges of F and g to be X without the condition (3.2). Now it is easy to

adapt our previous result to obtain the controllability of system (3.1). We assume that

( i ) For the function f : [0, a] × R → R the following three conditions are satisfied:

(1) For each t ∈ [0, a], f(t, · ) is continuous.

(2) For each z ∈ X , f( · , z) is measurable.

(3) There are positive functions h1, h2 ∈ L1([0, a]) such that

|f(t, z)| ≤ h1(t)‖z‖ + h2(t)

for all (t, z) ∈ [0, a] × C([0, a]; X). Clearly, these conditions ensure that F yields the condition

(H1) with γ = ‖h1( · )‖L1 .

( ii ) The function h : [0, a] × R → R is Lipschitz continuous such that condition (H2) holds

for positive constants L0 < 1 and L.

(iii) C : U → X is a bounded linear operator.

(iv) The linear operator W : U → X defined by

Wu = lim
λ→+∞

∫ a

0

T0(t − s)Cu(s)ds

satisfies the condition (H3). Thus, all the conditions of Theorem 2.1 are verified. Therefore, from

Theorem 2.1, for any initial function φ with φ(0, 0) − g(0, φ(·0)) = φ(0, π) − g(0, φ(·π)) = 0,



Controllability of Neutral Functional Differential Systems 251

the system (3.1) is controllable on [0, a] provided that (1 + a‖C‖‖W̃−1‖)(L + γ) < 1 (here

M = M = 1).

Appendix

Construction of W̃−1 (see [7]). Let

Y =
L2([0, a]; U)

kerW
.

Since kerW is closed, Y is a Banach space under the norm

‖[u]‖Y = inf
u∈[u]

‖u‖L2 = inf
W eu=0

‖u + ũ‖L2,

where [u] denotes the equivalence class of u.

Define W̃ ; Y → D(A) by

W̃ [u] = Wu, u ∈ [u].

Then W̃ is one-to-one and

‖W̃ [u]‖X ≤ ‖W‖‖[u]‖Y .

We claim that V = RangeW is a Banach space with the norm

‖v‖V = ‖W̃−1v‖Y .

This norm is equivalent to the graph norm on D(W̃−1) = RangeW . W̃ is bounded and since

D(W̃ ) = Y is closed, W̃−1 is closed, and so the above norm makes RangeW = V a Banach

space.

Moreover,

‖Wu‖V = ‖W̃−1Wu‖Y = ‖W̃−1W̃ [u]‖ = ‖[u]‖ = inf
u∈[u]

‖u‖ ≤ ‖u‖,

so W ∈ L(L2([0, a]; U), V ). Since L2([0, a]; U) is reflexive and kerW is weakly closed, the

infimum in the definition of the norm on Y is attained. For any v ∈ V , we can therefore choose

a control u ∈ L2([0, a]; U) such that u = W̃−1v.
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