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Abstract In this paper, the authors consider the inverse piston problem for the system

of one-dimensional isentropic flow and obtain that, under suitable conditions, the piston

velocity can be uniquely determined by the initial state of the gas on the right side of the

piston and the position of the forward shock.
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1 Introduction and Main Result

Suppose that the piston originally located at the origin at t = 0 moves with the speed

v = φ(t) (t ≥ 0) in a tube, the length of which is assumed to be infinite, and that the gas on the

right side of the piston possesses an isentropic state at t = 0. In order to determine the state

of the gas on the right side of this piston, in Lagrangian representation this piston problem

reduces to the mixed initial-boundary value problem for the system





∂τ

∂t
− ∂u

∂x
= 0,

∂u

∂t
+

∂p(τ)

∂x
= 0

(1.1)

with the initial data

t = 0 : τ = τ+
0

(x)(> 0), u = u+
0
(x), ∀x ≥ 0 (1.2)

and the boundary condition

x = 0 : u = φ(t), ∀ t ≥ 0, (1.3)

where τ is the specific volume, u is the velocity and p = p(τ) is the pressure. For polytropic

gases

p = p(τ) = Aτ−γ , ∀ τ > 0, (1.4)

where γ > 1 is the adiabatic exponent and A is a positive constant.
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Suppose that

φ(0) > u+
0
(0). (1.5)

The motion of the piston produces a forward shock x = x2(t) passing through the origin at

least for a short time T0 (see [2, 6, 7]), such that the corresponding piecewise C1 solution on

the domain

D(T0) = {(t, x) | 0 ≤ t ≤ T0, x ≥ 0} (1.6)

is written as

(τ, u) =

{
(τ

0
(t, x), u

0
(t, x)), 0 ≤ x ≤ x2(t),

(τ+(t, x), u+(t, x)), x ≥ x2(t),
(1.7)

where (τ
0
(t, x), u

0
(t, x)), (τ+(t, x), u+(t, x)) ∈ C1 satisfy system (1.1) in the classical sense on

their domains respectively and verify the Rankine-Hugoniot conditions
{

[τ ]x′
2(t) + [u] = 0,

[u]x′
2(t) − [p(τ)] = 0

(1.8)

and the entropy condition
{

λ1(τ0
(t, x2(t))) < x′

2(t) < λ2(τ0
(t, x2(t))),

x′
2(t) > λ2(τ+(t, x2(t)))

(1.9)

on x = x2(t), in which [τ ] = τ+(t, x2(t)) − τ
0
(t, x2(t)), etc. and

−λ1(τ) = λ2(τ) =
√
−p′(τ). (1.10)

Introducing the Riemann invariants






r =
1

2

(
u −

∫ ∞

τ

√
−p′(η)dη

)
=

1

2
u −

√
Aγ

γ − 1
τ− γ−1

2 ,

s =
1

2

(
u +

∫ ∞

τ

√
−p′(η)dη

)
=

1

2
u +

√
Aγ

γ − 1
τ− γ−1

2

(1.11)

as new unknown functions, (1.1)–(1.3) can be reduced to the following problem





∂r

∂t
+ λ(r, s)

∂r

∂x
= 0,

∂s

∂t
+ µ(r, s)

∂s

∂x
= 0,

(1.12)

t = 0 : (r, s) = (r+
0

(x), s+
0

(x)), ∀x ≥ 0, (1.13)

x = 0 : s = −r + φ(t), ∀ t ≥ 0, (1.14)

where




r+
0

(x) =
1

2
u+

0
(x) −

√
Aγ

γ − 1
(τ+

0
(x))−

γ−1

2 ,

s+

0
(x) =

1

2
u+

0
(x) +

√
Aγ

γ − 1
(τ+

0
(x))−

γ−1

2

(1.15)
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with

s+
0
(x) − r+

0
(x) > 0, ∀x ≥ 0 (1.16)

and

−λ(r, s) = µ(r, s) =
√
−p′(τ(s − r)) =

(γ−1
2 )

γ+1

γ−1

(Aγ)
1

γ−1

(s − r)
γ+1

γ−1 . (1.17)

In the special case that the piston moves with a constant speed up and the initial state is a

constant state (τ+, u+) (τ+ > 0) with

up > u+, (1.18)

(1.13) and (1.14) become, respectively,

t = 0 : (r, s) = (r+, s+), ∀x ≥ 0 (1.19)

and

x = 0 : s = −r + up, ∀ t ≥ 0, (1.20)

where




r+ =
1

2
u+ −

√
Aγ

γ − 1
(τ+)−

γ−1

2 ,

s+ =
1

2
u+ +

√
Aγ

γ − 1
(τ+)−

γ−1

2

(1.21)

with

s+ − r+ > 0

and

up > r+ + s+, (1.22)

and the solution to the previous problem is the typical forward shock

(r, s) =

{
(r

0
, s

0
), 0 ≤ x ≤ V t,

(r+, s+), x ≥ V t,
(1.23)

where V is the speed of propagation of the typical forward shock

V = G(r+, s+, r
0
, s

0
) (1.24)

satisfying the entropy condition
{

λ(r
0
, s

0
) < V < µ(r

0
, s

0
),

V > µ(r+, s+),
(1.25)

in which r0 , s0 and (1.24) are uniquely determined by

r
0

+ s
0

= up (1.26)
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and the Rankine-Hugoniot conditions

(r
0

+ s
0
) − (r+ + s+) =

√
−(p(τ(s

0
− r

0
)) − p(τ(s+ − r+)))(τ(s

0
− r

0
) − τ(s+ − r+)) , (1.27)

V =

√
−p(τ(s

0
− r

0
)) − p(τ(s+ − r+))

τ(s
0
− r

0
) − τ(s+ − r+)

(1.28)

(see [1, 2]).

As a perturbation of the simplest piston problem mentioned above, in [2, 7], the piston

problem (1.1)–(1.3) is globally studied and we have the following

Theorem 1.1 Suppose that τ+
0

(x), u+
0
(x) and φ(t) ∈ C1 and

τ+
0

(0) = τ+, u+
0
(0) = u+, φ(0) = up. (1.29)

Suppose furthermore that

|τ+
0

(x) − τ+|, |u+
0
(x) − u+| ≤ ε, ∀x ≥ 0, (1.30)

|φ(t) − φ(0)| ≤ ε, ∀ t ≥ 0, (1.31)

|τ+′

0
(x)|, |u+′

0
(x)| ≤ η

1 + x
, ∀x ≥ 0, (1.32)

|φ′(t)| ≤ η

1 + t
, ∀ t ≥ 0, (1.33)

where ε > 0 and η > 0 are suitably small. Then, the piston problem (1.1)–(1.3) admits a unique

global piecewise C1 solution

(τ(t, x), u(t, x)) =

{
(τ

0
(t, x), u

0
(t, x)), 0 ≤ x ≤ x2(t),

(τ+(t, x), u+(t, x)), x ≥ x2(t)
(1.34)

on the domain

D = {(t, x) | t ≥ 0, x ≥ 0}. (1.35)

This solution, containing only one forward shock x = x2(t) passing through the origin with

x′
2(0) = V , satisfies the following estimates: on the domain

D+ = {(t, x) | t ≥ 0, x ≥ x2(t)}, (1.36)

we have

|τ+(t, x) − τ+|, |u+(t, x) − u+| ≤ K1ε, (1.37)
∣∣∣
∂τ+

∂x
(t, x)

∣∣∣,
∣∣∣
∂τ+

∂t
(t, x)

∣∣∣,
∣∣∣
∂u+

∂x
(t, x)

∣∣∣,
∣∣∣
∂u+

∂t
(t, x)

∣∣∣ ≤ K2η

1 + t
; (1.38)

on the domain

D− = {(t, x) | t ≥ 0, 0 ≤ x ≤ x2(t)}, (1.39)
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we have

|τ
0
(t, x) − τ

0
|, |u

0
(t, x) − u

0
| ≤ K3ε, (1.40)

∣∣∣
∂τ

0

∂x
(t, x)

∣∣∣,
∣∣∣
∂τ

0

∂t
(t, x)

∣∣∣,
∣∣∣
∂u

0

∂x
(t, x)

∣∣∣,
∣∣∣
∂u

0

∂t
(t, x)

∣∣∣ ≤ K4η

1 + t
. (1.41)

Besides,

|x′
2(t) − V | ≤ K5ε, ∀ t ≥ 0, (1.42)

|x′′
2(t)| ≤ K6η

1 + t
, ∀ t ≥ 0. (1.43)

Here and henceforth, Ki (i = 1, 2, · · · ) are positive constants independent of ε and η.

In this paper, we consider the corresponding inverse piston problem: supposing that we know

the original state (τ+
0

(x), u+
0

(x)) of the gas on the right side of this piston and the position of

the forward shock x = x2(t) ∈ C2 with

x2(0) = 0, (1.44)

x′
2(0) = V, (1.45)

can we determine the piston velocity v = φ(t)? As in [3], this problem can be easily solved in

the local sense. In this paper we will globally give an affirmative answer to this problem. We

have

Theorem 1.2 Suppose that the position of the forward shock x = x2(t) ∈ C2 (t ≥ 0) with

(1.44)–(1.45) is prescribed and, for suitably small ε > 0 and η > 0, we have

|x′
2(t) − V | ≤ ε, ∀ t ≥ 0, (1.46)

|x′′
2 (t)| ≤ η

1 + t
, ∀ t ≥ 0, (1.47)

where V satisfies (1.24)–(1.25). Then, for any given τ+
0

(x) and u+
0
(x) ∈ C1 (x ≥ 0) satisfying

τ+
0

(0) = τ+, u+
0
(0) = u+, (1.48)

|τ+
0

(x) − τ+|, |u+
0
(x) − u+| ≤ ε, ∀x ≥ 0, (1.49)

|τ+′

0
(x)|, |u+′

0
(x)| ≤ η

1 + x
, ∀x ≥ 0, (1.50)

we can uniquely determine the piston velocity v = φ(t) (t ≥ 0) with

φ(0) = up, (1.51)

|φ(t) − up| ≤ K7ε, ∀ t ≥ 0, (1.52)

|φ′(t)| ≤ K8η

1 + t
, ∀ t ≥ 0, (1.53)

where up is the same as in (1.18), such that by Theorem 1.1 the corresponding direct piston

problem (1.1)–(1.3) admits a unique global piecewise C1 solution (τ(t, x), u(t, x)) in which the

forward shock passing through the origin is just x = x2(t).
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Remark 1.1 The inverse piston problem under consideration can be regarded as a pertur-

bation of the simplest inverse piston problem: to determine the constant piston velocity under

the condition that the constant speed of propagation of the forward typical shock V and the

constant initial state (τ+, u+) of the gas on the right side of the piston are given.

Theorem 1.2 will be proved in Section 2. Then the corresponding discussion in Eulerian

representation will be given in Section 3.

2 Proof of Theorem 1.2

By (1.15) and (1.21), it follows from (1.48)–(1.50) that

r+

0
(0) = r+, s+

0
(0) = s+, (2.1)

|r+
0

(x) − r+|, |s+
0
(x) − s+| ≤ C1ε, ∀x ≥ 0, (2.2)

|r+′

0
(x)|, |s+′

0
(x)| ≤ C2η

1 + x
, ∀x ≥ 0. (2.3)

Here and henceforth, Ci (i = 1, 2, · · · ) are positive constants independent of ε and η.

From Lemma 6.1 in Chapter 6 of [2], we have

Lemma 2.1 Suppose that (2.1)–(2.3) hold for suitably small ε > 0 and η > 0. Then the

Cauchy problem






∂r

∂t
+ λ(r, s)

∂r

∂x
= 0,

∂s

∂t
+ µ(r, s)

∂s

∂x
= 0,

t = 0 : (r, s) = (r+
0

(x), s+
0

(x)), x ≥ 0

(2.4)

admits a unique global C1 solution (r, s) = (r̃+(t, x), s̃+(t, x)) on the domain

D̂+ = {(t, x) | t ≥ 0, x ≥ ξt}, (2.5)

where ξ is a constant satisfying

ξ > µ(r+, s+). (2.6)

Moreover, we have

s̃+(t, x) − r̃+(t, x) > 0, ∀ (t, x) ∈ D̂+, (2.7)

|r̃+(t, x) − r+|, |s̃+(t, x) − s+| ≤ K9ε, ∀ (t, x) ∈ D̂+, (2.8)
∣∣∣
∂r̃+

∂x
(t, x)

∣∣∣,
∣∣∣
∂r̃+

∂t
(t, x)

∣∣∣,
∣∣∣
∂s̃+

∂x
(t, x)

∣∣∣,
∣∣∣
∂s̃+

∂t
(t, x)

∣∣∣ ≤ K10η

1 + t
, ∀ (t, x) ∈ D̂+. (2.9)

Proof of Theorem 1.2

Step 1 We first solve Cauchy problem (2.4) on the domain D+ defined by (1.36).
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Let

ξ =
1

2
(V + µ(r+, s+)). (2.10)

Noting (1.25), we have

V > ξ > µ(r+, s+). (2.11)

Hence, for suitably small ε > 0, by (1.44)–(1.46) we have

D+ ⊆ D̂+.

Hence, by Lemma 2.1, Cauchy problem (2.4) admits a unique global C1 solution (r, s) =

(r+(t, x), s+(t, x)) on the domain D+ and we have

s+(t, x) − r+(t, x) > 0, ∀ (t, x) ∈ D+, (2.12)

|r+(t, x) − r+|, |s+(t, x) − s+| ≤ C3ε, ∀ (t, x) ∈ D+, (2.13)
∣∣∣
∂r+

∂x
(t, x)

∣∣∣,
∣∣∣
∂r+

∂t
(t, x)

∣∣∣,
∣∣∣
∂s+

∂x
(t, x)

∣∣∣,
∣∣∣
∂s+

∂t
(t, x)

∣∣∣ ≤ C4η

1 + t
, ∀ (t, x) ∈ D+. (2.14)

Then, we obtain the value of (r, s) on the right side of x = x2(t)

(r, s) = (r̃+(t), s̃+(t)) = (r+(t, x2(t)), s+(t, x2(t))), ∀ t ≥ 0, (2.15)

and we have

r̃+(0) = r+, s̃+(0) = s+, (2.16)

s̃+(t) − r̃+(t) > 0, ∀ t ≥ 0, (2.17)

|r̃+(t) − r+|, |s̃+(t) − s+| ≤ C3ε, ∀ t ≥ 0. (2.18)

Besides, noting (1.46), we also have

∣∣∣
dr̃+(t)

dt

∣∣∣,
∣∣∣
ds̃+(t)

dt

∣∣∣ ≤ C5η

1 + t
, ∀ t ≥ 0. (2.19)

Step 2 By the Rankine-Hugoniot conditions, we now find the value of (r, s) on the left side

of x = x2(t).

On the forward shock x = x2(t), the Rankine-Hugoniot conditions are

{
[τ(s − r)]x′

2(t) + [r + s] = 0,

[r + s]x′
2(t) − [p(τ(s − r))] = 0,

(2.20)

where [τ ] = τ(t, x2(t) + 0) − τ(t, x2(t) − 0), etc. Denote the value of (r, s) on the left side of

x = x2(t) as (r, s) = (r̃−(t), s̃−(t)) and x′
2(t) = d. (2.20) can be rewritten as

{
(τ(s̃− − r̃−) − τ(s̃+ − r̃+))d + (r̃− + s̃− − r̃+ − s̃+) = 0,

(r̃− + s̃− − r̃+ − s̃+)d − (p(τ(s̃− − r̃−)) − p(τ(s̃+ − r̃+))) = 0.
(2.21)
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Similarly to [4, Lemma 3.1] (also see [3]), in a neighbourhood of (r+, s+, r
0
, s

0
, V ), (2.21) can

be rewritten as
{

r̃− = g(r̃+, s̃+, d),

s̃− = h(r̃+, s̃+, d),
(2.22)

where g( · ), h( · ) ∈ C2 and

{
r
0

= g(r+, s+, V ),

s
0

= h(r+, s+, V ).
(2.23)

Hence, the value of (r, s) on the left side of x = x2(t) can be uniquely determined as

{
r = r̃−(t) = g(r̃+(t), s̃+(t), x′

2(t)),

s = s̃−(t) = h(r̃+(t), s̃+(t), x′
2(t)).

(2.24)

Moreover, noting (1.44)–(1.47), (2.16), (2.18)–(2.19) and (2.23), we have

r̃−(0) = r
0
, s̃−(0) = s

0
, (2.25)

|r̃−(t) − r
0
|, |s̃−(t) − s

0
| ≤ C6ε, ∀ t ≥ 0, (2.26)

∣∣∣
dr̃−(t)

dt

∣∣∣,
∣∣∣
ds̃−(t)

dt

∣∣∣ ≤ C7η

1 + t
, ∀ t ≥ 0. (2.27)

Besides, noting (1.25) and (1.45)–(1.46), we have

λ(r̃−(t), s̃−(t)) < x′
2(t) < µ(r̃−(t), s̃−(t)). (2.28)

Step 3 We finally solve the generalized Cauchy problem






∂r

∂t
+ λ(r, s)

∂r

∂x
= 0,

∂s

∂t
+ µ(r, s)

∂s

∂x
= 0,

x = x2(t) : (r, s) = (r̃−(t), s̃−(t)), t ≥ 0

(2.29)

on the domain D− defined by (1.39).

Due to (2.28), the generalized Cauchy problem (2.29) always admits a unique local C1

solution (r, s) = (r−(t, x), s−(t, x)) (see [6]). For the time being we assume that on any existence

domain of (r, s) = (r−(t, x), s−(t, x)), we have

|r−(t, x) − r
0
|, |s−(t, x) − s

0
| ≤ δ, (2.30)

where δ > 0 is suitably small. At the end of the proof, we will explain that this hypothesis is

reasonable.

Let
{

t = x2(t) − x,

x = t.
(2.31)
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Then, by (1.25), (1.44)–(1.46) and (2.30), the generalized Cauchy problem (2.29) on the domain

D− reduces to the following Cauchy problem





∂r

∂t
+ λ(x, r, s)

∂r

∂x
= 0,

∂s

∂t
+ µ(x, r, s)

∂s

∂x
= 0,

t = 0 : (r, s) = (r̃−(x), s̃−(x)), ∀x ≥ 0

(2.32)

on the domain D− = {(t, x) | t ≥ 0, x ≥ θ(t)}, where

(r(t, x), s(t, x)) = (r−(x, x2(x) − t), s−(x, x2(x) − t)), (2.33)

λ(x, r, s) =
1

x′
2(x) − λ(r, s)

, (2.34)

µ(x, r, s) =
1

x′
2(x) − µ(r, s)

(2.35)

and x = θ(t) ∈ C2 with θ(0) = 0 is determined by

x2(x) = t. (2.36)

Besides, by (1.25), (1.45)–(1.46) and (2.30), we have

1

x′
2(x)

> λ(x, r, s) > µ(x, r, s), (2.37)

and it follows from (2.26)–(2.27) that

|r̃−(x) − r
0
|, |s̃−(x) − s

0
| ≤ C8ε, ∀x ≥ 0, (2.38)

|r̃′−(x)|, |s̃′−(x)| ≤ C9η

1 + x
, ∀x ≥ 0. (2.39)

Obviously, problem (2.32) admits a unique local C1 solution (r, s) = (r(t, x), s(t, x)) =

(r−(x, x2(x) − t), s−(x, x2(x) − t)) on the domain D−(δ0) = {(t, x) | 0 ≤ t ≤ δ0, x ≥ θ(t)},
where δ0 > 0 is a small number (see [6]). Since the system in (2.32) depends explicitly on x, in

order to get the global existence of C1 solution on D−, we need a uniform a priori estimate on

the C1 norm of C1 solution (r(t, x), s(t, x)) on any existence domain D−(T ).

Noting (2.26), we have

|r(t, x) − r0 |, |s(t, x) − s0 | ≤ C6ε, ∀ (t, x) ∈ D−(T ). (2.40)

In what follows, we want to get a uniform a priori estimate on the C0 norm of ∂r
∂x

, ∂r
∂t

, ∂s
∂x

and
∂s
∂t

on D−(T ). For this purpose, instead of the usual Lax transformation, we introduce

w = eq(r,s) ∂r

∂t
, (2.41)

where q(r, s) ∈ C1 satisfies

∂q

∂s
=

1

λ(r, s) − µ(r, s)

∂λ

∂s
. (2.42)
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By (2.32)–(2.35), it is easy to get





∂w

∂t
+ λ(x, r, s)

∂w

∂x
=

∂λ(r, s)

∂r
λ(x, r, s)e−q(r,s)w2,

t = 0 : w = −eq(er−(x),es−(x))λ(x, r̃−(x), s̃−(x))r̃′−(x), ∀x ≥ 0.

(2.43)

By (2.37), each characteristic passing through any given point (t, x) = (0, β) (β ≥ 0) intersects

the boundary x = θ(t) (t ≥ 0) of D− in a finite time. Let x = x1(t, β) be the forward

characteristic passing through a point (0, β) and (T , x1(T , β)) be the intersection point of x =

x1(t, β) with x = θ(t).

Noting (1.44), (1.46), (2.30) and (2.33), for suitably small ε > 0 and δ > 0, we have

T

V − 1
4λ(r0 , s0)

≤ x1(T , β) = β +

∫ T

0

λ(x, r, s)(τ, x1(τ, β))dτ ≤ β +
T

V − 1
2λ(r0 , s0)

. (2.44)

Hence

T ≤ M0β, (2.45)

where

M0 =
(4V − λ(r

0
, s

0
))(2V − λ(r

0
, s

0
))

−2λ(r
0
, s

0
)

> 0. (2.46)

Noting (2.32), on x = x1(t, β) we have

r(t, x) = r(t, x1(t, β)) = r̃−(β), (2.47)

s(t, x) = s(t, x1(t, β)) = s̃−(α(t, β)), (2.48)

where α(t, β) is the x-coordinate of the intersection point of the backward characteristic passing

through (t, x1(t, β)) with the x axis. Then, it follows from (2.43) that on x = x1(t, β) we have

w(t, x) = w(t, x1(t, β)) =
−eq(er−(β),es−(β))λ(β, r̃−(β), s̃−(β))r̃′−(β)

1 + B
, (2.49)

where

B =

∫ t

0

∂λ

∂r
(r̃−(β), s(τ, x1(τ, β)))λ(β, r̃−(β), s̃−(β))λ(x1(τ, β), r̃−(β), s(τ, x1(τ, β)))

· r̃′−(β)eq(er−(β),es−(β))−q(er−(β),s(τ,x1(τ,β)))dτ.

Hence, by (2.41), we get

∂r

∂t
(t, x1(t, β)) =

−eq(er−(β),es−(β))−q(er−(β),s(t,x1(t,β)))λ(β, r̃−(β), s̃−(β))r̃′−(β)

1 + B
. (2.50)

By (1.46), (2.38) and (2.47)–(2.48) and noting (1.25), on x = x1(t, β) we have

1

2
(V − λ(r

0
, s

0
)) < x′

2(x) − λ(r, s) < 2(V − λ(r
0
, s

0
)). (2.51)
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Then, noting (2.38) and (2.47)–(2.48), we get

e2|q||λ| ≤ M1,
∣∣∣
∂λ

∂r

∣∣∣λ2
e2|q| ≤ M2, (2.52)

where M1 and M2 are two positive constants independent of ε and η.

We choose η > 0 so small that

C9M0M2η <
1

2
. (2.53)

Then, it follows from (2.50) that

∣∣∣
∂r

∂t
(t, x1(t, β))

∣∣∣ ≤ M1
C9η

1 + β

(
1 − M2

C9η

1 + β
T

)−1

. (2.54)

Thus, noting (2.45) and (2.53), we get

∣∣∣
∂r

∂t
(t, x1(t, β))

∣∣∣ ≤ C9M1
η

1 + β
(1 − C9M0M2η)−1 ≤ 2C9M1

η

1 + β
≤ C10η

1 + t
, 0 ≤ t ≤ T. (2.55)

Hence, noting (2.34) and (2.51), we get

∣∣∣
∂r

∂x
(t, x1(t, β))

∣∣∣ ≤ C11η

1 + t
, 0 ≤ t ≤ T. (2.56)

Finally, we obtain

∣∣∣
∂r

∂t
(t, x)

∣∣∣,
∣∣∣
∂r

∂x
(t, x)

∣∣∣ ≤ C12η

1 + t
, ∀ (t, x) ∈ D−(T ). (2.57)

Similarly, we have

∣∣∣
∂s

∂t
(t, x)

∣∣∣,
∣∣∣
∂s

∂x
(t, x)

∣∣∣ ≤ C13η

1 + t
, ∀ (t, x) ∈ D−(T ). (2.58)

Thus, we get a unique global C1 solution (r, s) = (r(t, x), s(t, x)) to (2.32) on D−. Noting

(2.31), for the generalized Cauchy problem (2.29), we obtain the unique global C1 solution

(r, s) = (r−(t, x), s−(t, x)) = (r(x2(t) − x, t), s(x2(t) − x, t)) (2.59)

on the domain D−. Noting (2.40) and (2.59) we immediately obtain that

|r−(t, x) − r
0
|, |s−(t, x) − s

0
| ≤ C14ε, ∀ (t, x) ∈ D−, (2.60)

which also implies that hypothesis (2.30) is reasonable. Besides, noting (1.46), it follows from

(2.57)–(2.58) that

∣∣∣
∂r−

∂t
(t, x)

∣∣∣,
∣∣∣
∂r−

∂x
(t, x)

∣∣∣,
∣∣∣
∂s−

∂t
(t, x)

∣∣∣,
∣∣∣
∂s−

∂x
(t, x)

∣∣∣ ≤ C15η

1 + t
, ∀ (t, x) ∈ D−. (2.61)

Hence, we get the piston velocity

φ(t) = r−(t, 0) + s−(t, 0), ∀t ≥ 0. (2.62)

Moreover, noting (2.25) and (1.26), we see that (1.51)–(1.53) hold.

Theorem 1.2 is then proved.
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3 Related Problems in Eulerian Representation

In Eulerian representation, the system of one-dimensional isentropic flow is written as





∂ρ

∂t
+

∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+

∂(ρu2 + p(ρ))

∂x
= 0,

(3.1)

where ρ is the density, u is the velocity and p = p(ρ) is the pressure. For polytropic gases

p = p(ρ) = Aργ , ∀ ρ > 0, (3.2)

where γ > 1 is the adiabatic exponent and A is a positive constant. In this situation, the cor-

responding piston problem asks us to solve the following mixed initial-boundary value problem

for system (3.1) with the initial data

t = 0 : ρ = ρ+
0
(x)(> 0), u = u+

0
(x), ∀x ≥ 0 (3.3)

and the boundary condition

x = f(t) : u = ϕ(t), ∀ t ≥ 0 (3.4)

with

f(t) =

∫ t

0

ϕ(ξ)dξ. (3.5)

Suppose that

ϕ(0) > u+
0
(0). (3.6)

The motion of the piston produces a forward shock x = xf (t) passing through the origin at

least for a short time T1 (see [6]), such that the corresponding piecewise C1 solution on the

domain

Ω(T1) = {(t, x) | 0 ≤ t ≤ T1, x ≥ f(t)} (3.7)

is written as

(ρ, u) =

{
(ρ

0
(t, x), u

0
(t, x)), f(t) ≤ x ≤ xf (t),

(ρ+(t, x), u+(t, x)), x ≥ xf (t),
(3.8)

where (ρ
0
(t, x), u

0
(t, x)), (ρ+(t, x), u+(t, x)) ∈ C1 satisfy system (3.1) in the classical sense on

their domains respectively and verify the Rankine-Hugoniot conditions
{

[ρ]x′
f (t) − [ρu] = 0,

[ρu]x′
f (t) − [ρu2 + p(ρ)] = 0

(3.9)

and the entropy condition
{

λ1(ρ0
(t, xf (t))) < x′

f (t) < λ2(ρ0
(t, xf (t))),

x′
f (t) > λ2(ρ+(t, xf (t)))

(3.10)
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on x = xf (t), in which [ρ] = ρ+(t, xf (t)) − ρ
0
(t, xf (t)), etc. and

−λ1(ρ) = λ2(ρ) =
√

p′(ρ). (3.11)

In the special case that the piston moves with a constant speed up and the initial state is

a constant state (ρ+, u+) (ρ+ > 0) with up > u+, the solution to the previous problem is the

typical forward shock (see [1])

(ρ, u) =

{
(ρ

0
, up), upt ≤ x ≤ Ut,

(ρ+, u+), x ≥ Ut,
(3.12)

where U , the speed of propagation of the typical forward shock, and ρ
0

are determined by

Rankine-Hugoniot conditions





(ρ0up − ρ+u+)2 = (ρ0 − ρ+)(ρ0u2
p + p(ρ0) − ρ+u2

+ − p(ρ+)),

U =
ρ
0
up − ρ+u+

ρ
0
− ρ+

.
(3.13)

As a global perturbation of the simplest piston problem mentioned above, for the piston

problem (3.1) and (3.3)–(3.4) we have the following

Theorem 3.1 Suppose that ρ+
0
(x), u+

0
(x) ∈ C1 and f(t) ∈ C2 and

ρ+

0
(0) = ρ+, u+

0
(0) = u+, ϕ(0) = up. (3.14)

Suppose furthermore that

|ρ+
0
(x) − ρ+|, |u+

0
(x) − u+| ≤ ε, ∀x ≥ 0, (3.15)

|ϕ(t) − up| ≤ ε, ∀ t ≥ 0, (3.16)

|ρ+′

0
(x)|, |u+′

0
(x)| ≤ η

1 + x
, ∀x ≥ 0, (3.17)

|ϕ′(t)| ≤ η

1 + t
, ∀ t ≥ 0, (3.18)

where ε > 0 and η > 0 are suitably small. Then, the piston problem (3.1) and (3.3)–(3.4) admits

a unique global piecewise C1 solution

(ρ(t, x), u(t, x)) =

{
(ρ

0
(t, x), u

0
(t, x)), f(t) ≤ x ≤ xf (t),

(ρ+(t, x), u+(t, x)), x ≥ xf (t)
(3.19)

on the domain

Ω = {(t, x) | t ≥ 0, x ≥ f(t)}. (3.20)

This solution, containing only one forward shock x = xf (t) passing through the origin with

x′
f (0) = U , satisfies the following estimates: on the domain

Ω+ = {(t, x) | t ≥ 0, x ≥ xf (t)}, (3.21)
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we have

|ρ+(t, x) − ρ+|, |u+(t, x) − u+| ≤ K11ε, (3.22)
∣∣∣
∂ρ+

∂x
(t, x)

∣∣∣,
∣∣∣
∂ρ+

∂t
(t, x)

∣∣∣,
∣∣∣
∂u+

∂x
(t, x)

∣∣∣,
∣∣∣
∂u+

∂t
(t, x)

∣∣∣ ≤ K12η

1 + t
; (3.23)

on the domain

Ω− = {(t, x) | t ≥ 0, f(t) ≤ x ≤ xf (t)}, (3.24)

we have

|ρ
0
(t, x) − ρ

0
|, |u

0
(t, x) − u

0
| ≤ K13ε, (3.25)

∣∣∣
∂ρ

0

∂x
(t, x)

∣∣∣,
∣∣∣
∂ρ

0

∂t
(t, x)

∣∣∣,
∣∣∣
∂u

0

∂x
(t, x)

∣∣∣,
∣∣∣
∂u

0

∂t
(t, x)

∣∣∣ ≤ K14η

1 + t
. (3.26)

Besides,

|x′
f (t) − U | ≤ K15ε, ∀ t ≥ 0, (3.27)

|x′′
f (t)| ≤ K16η

1 + t
, ∀ t ≥ 0. (3.28)

Proof Take the Lagrange coordinates (t̃, m):





m =

∫ (t,x)

(0,0)

ρdx − ρudt,

t̃ = t

(3.29)

as new variables. Problem (3.1) and (3.3)–(3.4) reduces to (1.1)–(1.3) in which (t, x) is replaced

by (t̃, m) and

τ+
0

(m) =
1

ρ+
0
(x(m))

, u+
0
(m) = u+

0
(x(m)), (3.30)

φ(t̃) = ϕ(t̃), (3.31)

where x = x(m) is determined by

m =

∫ x

0

ρ+
0
(ξ) dξ.

By (3.14)–(3.18), it is easy to see that

τ+

0
(0) =

1

ρ+
= τ+, u+

0
(0) = u+, φ(0) = up, (3.32)

|τ+
0

(m) − τ+|, |u+
0
(m) − u+| ≤ C16ε, ∀m ≥ 0, (3.33)

|φ(t̃) − φ(0)| ≤ ε, ∀ t̃ ≥ 0, (3.34)

|τ+′

0
(m)|, |u+′

0
(m)| ≤ C17η

1 + m
, ∀m ≥ 0, (3.35)

|φ′(t̃)| ≤ η

1 + t̃
, ∀ t̃ ≥ 0. (3.36)
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By Theorem 1.1 we obtain that problem (1.1)–(1.3) corresponding to problem (3.1) and

(3.3)–(3.4) admits a unique global piecewise C1 solution

(τ(t̃, m), u(t̃, m)) =

{
(τ

0
(t̃, m), u

0
(t̃, m)), 0 ≤ m ≤ m2(t̃),

(τ+(t̃, m), u+(t̃, m)), m ≥ m2(t̃)
(3.37)

on the domain

{(t̃, m) | t̃ ≥ 0, m ≥ 0}. (3.38)

This solution, containing only one forward shock m = m2(t̃) passing through the origin with

m′
2(0) = V , where

V = ρ+(U − u+), (3.39)

satisfies the following estimates: on the domain

{(t̃, m) | t̃ ≥ 0, m ≥ m2(t̃)}, (3.40)

we have

|τ+(t̃, m) − τ+|, |u+(t̃, m) − u+| ≤ C18ε, (3.41)
∣∣∣
∂τ+

∂m
(t̃, m)

∣∣∣,
∣∣∣
∂τ+

∂t̃
(t̃, m)

∣∣∣,
∣∣∣
∂u+

∂m
(t̃, m)

∣∣∣,
∣∣∣
∂u+

∂t̃
(t̃, m)

∣∣∣ ≤ C19η

1 + t̃
; (3.42)

on the domain

{(t̃, m) | t̃ ≥ 0, 0 ≤ m ≤ m2(t̃)}, (3.43)

we have

|τ
0
(t̃, m) − τ

0
|, |u

0
(t̃, m) − u

0
| ≤ C20ε, (3.44)

∣∣∣
∂τ

0

∂m
(t̃, m)

∣∣∣,
∣∣∣
∂τ

0

∂t̃
(t̃, m)

∣∣∣,
∣∣∣
∂u

0

∂m
(t̃, m)

∣∣∣,
∣∣∣
∂u

0

∂t̃
(t̃, m)

∣∣∣ ≤ C21η

1 + t̃
. (3.45)

Besides,

|m′
2(t̃) − V | ≤ C22ε, ∀ t̃ ≥ 0, (3.46)

|m′′
2(t̃)| ≤ C23η

1 + t̃
, ∀ t̃ ≥ 0. (3.47)

Using the inverse transformation of (3.29)





x =

∫ (et,m)

(0,0)

τdm + udt̃,

t = t̃,

(3.48)

we get

m = m(t, x). (3.49)
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Then, by means of (ρ(t, x), u(t, x)) =
(

1
τ(t,m(t,x)) , u(t, m(t, x))

)
, it is easy to see that the original

piston problem (3.1) and (3.3)–(3.4) admits a unique global piecewise C1 solution

(ρ(t, x), u(t, x))

=





(ρ
0
(t, x), u

0
(t, x)) =

( 1

τ
0
(t, m(t, x))

, u
0
(t, m(t, x))

)
, f(t) ≤ x ≤ xf (t),

(ρ+(t, x), u+(t, x)) =
( 1

τ+(t, m(t, x))
, u+(t, m(t, x))

)
, x ≥ xf (t)

(3.50)

on the domain (3.20), where

xf (t) =

∫ t

0

(τ(σ, m2(σ))m′
2(σ) + u(σ, m2(σ)))dσ; (3.51)

moreover, (3.21)–(3.28) hold.

This proves Theorem 3.1.

For the global inverse piston problem, we have

Theorem 3.2 Suppose that the position of the forward shock x = xf (t) ∈ C2 (t ≥ 0) with

xf (0) = 0, (3.52)

x′
f (0) = U (3.53)

is prescribed and, for suitably small ε > 0 and η > 0, we have

|x′
f (t) − U | ≤ ε, ∀ t ≥ 0, (3.54)

|x′′
f (t)| ≤ η

1 + t
, ∀ t ≥ 0. (3.55)

Then, for any given ρ+
0
(x) and u+

0
(x) ∈ C1 (x ≥ 0) satisfying

ρ+
0
(0) = ρ+, u+

0
(0) = u+, (3.56)

|ρ+

0
(x) − ρ+|, |u+

0
(x) − u+| ≤ ε, ∀x ≥ 0, (3.57)

|ρ+′

0
(x)|, |u+′

0
(x)| ≤ η

1 + x
, ∀x ≥ 0, (3.58)

we can uniquely determine the piston velocity v = ϕ(t) (t ≥ 0) with

ϕ(0) = up, (3.59)

|ϕ(t) − up| ≤ K17ε, ∀ t ≥ 0, (3.60)

|ϕ′(t)| ≤ K18η

1 + t
, ∀ t ≥ 0, (3.61)

where up is the same as in (3.12), such that by Theorem 3.1 the corresponding direct piston

problem (3.1) and (3.3)–(3.4) admits a unique global piecewise C1 solution (ρ(t, x), u(t, x)) in

which the forward shock passing through the origin is just x = xf (t).

Proof First, we solve Cauchy problem (3.1) and (3.3) on the domain Ω+ defined by (3.21).

By (3.56)–(3.58), just as we did in Lagrangian representation (cf. Lemma 2.1), Cauchy problem
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(3.1) and (3.3) admits a unique global C1 solution (ρ, u) = (ρ+(t, x), u+(t, x)) on the domain

Ω+ and we have

|ρ+(t, x) − ρ+|, |u+(t, x) − u+| ≤ C24ε, ∀ (t, x) ∈ Ω+, (3.62)
∣∣∣
∂ρ+

∂x
(t, x)

∣∣∣,
∣∣∣
∂ρ+

∂t
(t, x)

∣∣∣,
∣∣∣
∂u+

∂x
(t, x)

∣∣∣,
∣∣∣
∂u+

∂t
(t, x)

∣∣∣ ≤ C25η

1 + t
, ∀ (t, x) ∈ Ω+. (3.63)

By the Lagrange transformation (3.29), the forward shock in Eulerian representation x = xf (t)

reduces to the forward shock m = m2(t̃) in Lagrangian representation with

m2(t̃) =

∫ et
0

ρ+(σ, xf (σ))(x′
f (σ) − u+(σ, xf (σ)))dσ. (3.64)

Noting (3.52)–(3.55) and (3.62)–(3.63), we have

m2(0) = 0, (3.65)

m′
2(0) = V, (3.66)

|m′
2(t̃) − V | ≤ C26ε, ∀ t̃ ≥ 0, (3.67)

|m′′
2(t̃)| ≤ C27η

1 + t̃
, ∀ t̃ ≥ 0, (3.68)

where V is given by (3.39). Besides, τ+
0

(m) and u+
0
(m) defined by (3.30) satisfy

τ+
0

(0) = τ+, u+
0
(0) = u+, (3.69)

|τ+
0

(m) − τ+|, |u+
0
(m) − u+| ≤ C28ε, ∀m ≥ 0, (3.70)

|τ+′

0
(m)|, |u+′

0
(m)| ≤ C29η

1 + m
, ∀m ≥ 0. (3.71)

Thus, the inverse piston problem in Eulerian representation reduces to the corresponding one

in Lagrangian representation. By Theorem 1.2, in Lagrangian representation we can uniquely

determine the piston velocity v = φ(t̃) (t̃ ≥ 0) with (1.51)–(1.53) such that the corresponding

direct piston problem (1.1)–(1.3), where (t, x) is replaced by (t̃, m), admits a unique global

piecewise C1 solution (τ(t̃, m), u(t̃, m)) in which the forward shock passing through the origin

is just m = m2(t̃).

Using the inverse transformation (3.48), in Eulerian representation we get the piston path

x = f(t) =

∫ t

0

φ(ξ)dξ. (3.72)

Then, by (1.51)–(1.53), the piston velocity ϕ(t), which is nothing but φ(t), satisfies (3.59)–

(3.61). Thus, by Theorem 3.1 the corresponding direct piston problem (3.1) and (3.3)–(3.4)

admits a unique global piecewise C1 solution (ρ(t, x), u(t, x)) in which the forward shock passing

through the origin is just x = xf (t).

Theorem 3.2 is then proved.

Remark 3.1 The corresponding consideration on the one-dimensional gas dynamics system

(containing three equations) can be found in [5].
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