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Abstract A linear system arising from a polynomial problem in the approximation theory

is studied, and the necessary and sufficient conditions for existence and uniqueness of its

solutions are presented. Together with a class of determinant identities, the resulting theory

is used to determine the unique solution to the polynomial problem. Some homogeneous

polynomial identities as well as results on the structure of related polynomial ideals are

just by-products.
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1 Introduction and Motivation

Let m ≥ 0 be an integer, F be a field, and F[x, y] be the polynomial ring in two variables,

x and y, over F. We use the standard notation: Fm[x, y] denotes the set of homogeneous

polynomials of degree m, and F≤m[x, y] denotes the space of all polynomials of degree at most

m. Hence Fm[x, y] ⊂ F≤m[x, y], and F≤m[x, y] is a linear subspace of F[x, y] with

M := dim F≤m[x, y] =
(m + 1)(m + 2)

2
.

Let Jm be the set of all ideals in F[x, y] complemented to F≤m[x, y], i.e., Jm is the set of all

ideals J ⊂ F[x, y] such that

F[x, y] = J ⊕ F≤m[x, y].

Note that every ideal J ∈ Jm can be generated by a collection of m + 2 polynomials

xiym+1−i − hi, 0 ≤ i ≤ m + 1, where hi ∈ F≤m[x, y], 0 ≤ i ≤ m + 1. More precisely, we have

that

J ∈ Jm ⇒ J = 〈xiym+1−i − hi : i = 0, · · · , m + 1〉

for some polynomials hi ∈ F≤m[x, y], 0 ≤ i ≤ m + 1, where 〈S〉 denotes the ideal generated

by the polynomials in S. Unfortunately, the converse is not true. Namely, not every collection

of polynomials hi ∈ F≤m[x, y], 0 ≤ i ≤ m + 1, generates an ideal in Jm this way. Actually,

m + 2 polynomials hi ∈ F≤m[x, y], 0 ≤ i ≤ m + 1, generate an ideal J = 〈xiym+1−i − hi : i =
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0, · · · , m + 1〉 complemented to F≤m[x, y] if and only if they satisfy the following equation

yhi+1 − xhi =

m+1∑

j=0

cij(x
jym+1−j − hj), 0 ≤ i ≤ m (1.1)

for some collection of constants cij ∈ F.

Now a natural question about this crucial system (1.1) arises. For a given matrix C = (cij),

where cij ∈ F, does there exist any collection of polynomials hi ∈ F≤m[x, y], which solves (1.1)?

If (1.1) has solutions for hi, how many solutions and what solution formula can we have? This

question, especially, how to present the solutions, is very interesting and challenging to us,

though it looks simple. We here aim to discuss this question and give a complete answer to the

question, together with two kinds of solution formulas for hi.

To find solutions for the above polynomial problem, one may write

hi =

m∑

n=0

h
(n)
i , h

(n)
i =

n∑

j=0

h
(n)
ij xjyn−j, 0 ≤ i ≤ m + 1, (1.2)

where the h
(n)
ij ’s are constants in F. Then upon equating the coefficients of monomials in (1.1),

each set of h
(n)
ij with fixed n will satisfy an over-determined linear system, with one exceptional

case of n = m in which h
(m)
ij will satisfy a linear system with a square coefficient matrix.

Therefore, the polynomial problem is transformed into a problem of how to determine solutions

of the resulting linear systems, which are of the same type.

The polynomial problem mentioned above can also be used to classify ideal projections (see

[1]) onto polynomials in two variables. The study of the problem itself was stimulated by Carl

de Boor’s conjecture, made at one of the Mid Southeast Chapter Fall Conferences in Gatlinburg,

that every ideal projection is a limit of interpolating projections (see [3]).

In this paper, we would like to study the resulting linear system from the above polynomial

problem. We will first develop a solution theory for the linear system in a general case, and

then we apply the resulting solution theory to prove the existence and uniqueness of solutions

for the polynomial problem, together with a set of determinant identities. We will also present

two kinds of solution formulas for the unique solution of the polynomial problem, and a set of

interesting homogenous polynomial identities. A few concluding remarks are given at the end

of the paper.

2 Linear System

Let m ≥ n be two fixed non-negative integers. The system of linear equations that the

constants h
(n)
ij satisfy reads as






xi+1,0 = di0, 0 ≤ i ≤ m,

xi+1,j − xi,j−1 = dij , 0 ≤ i ≤ m, 1 ≤ j ≤ n,

−xin = di,n+1, 0 ≤ i ≤ m,

(2.1)

where dij ∈ F, 0 ≤ i ≤ m, 0 ≤ j ≤ n + 1, are a set of given constants and xij , 0 ≤ i ≤

m + 1, 0 ≤ j ≤ n, are a set of unknowns. Obviously, there are totally (m + 1)(n + 2) linear
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equations and (m+2)(n+1) unknowns, and so the linear system (2.1) is over-determined when

m > n. We show the existence of solutions and present the solution formula for (2.1) as follows.

Theorem 2.1 Let m ≥ n be two non-negative integers. Suppose that dij ∈ F, 0 ≤ i ≤

m, 0 ≤ j ≤ n + 1, are a set of given constants. Then

(a) the system (2.1) of linear equations in xij , 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n, is consistent if

and only if
n+1∑

k=0

di+k,k = 0, 0 ≤ i ≤ m − n − 1; (2.2)

(b) the linear system (2.1) has the unique solution given by





xi+1,j =

j∑

k=0

di−j+k,k, 0 ≤ j ≤ i ≤ m,

xi,j−1 = −

n+1∑

k=j

di−j+k,k , 0 ≤ i < j ≤ n + 1,

(2.3)

if it is consistent.

Proof Step 1 The cases of j = 0 and j = n + 1 of the solution in (2.3) are given by

the first set of equations, and the last set of equations with i ≤ n, of the linear system (2.1),

respectively.

Step 2 Let 1 ≤ j ≤ i ≤ m. Then we have

xi+1,j =

j∑

k=1

(xi−j+k+1,k − xi−j+k,k−1) + xi−j+1,0 =

j∑

k=1

di−j+k,k + di−j,0 =

j∑

k=0

di−j+k,k .

Step 3 Let 0 ≤ i < j ≤ n. Then we have

xi,j−1 = −

n∑

k=j

(xi−j+k+1,k − xi−j+k,k−1) + xi−j+n+1,n

= −

n∑

k=j

di−j+k,k − di−j+n+1,n+1 = −

n+1∑

k=j

di−j+k,k.

Step 4 The above three steps imply that if there exists a solution of (2.1), then the solution

must be determined by (2.3).

Step 5 Note that from the above deduction, we know that the solution (2.3) is equivalent

to the first and second sets of equations, and the third set of equations with i ≤ n, in (2.1).

So what we have to check is the third set of equations with i > n in (2.1). This requires the

following compatibility conditions

n∑

k=0

di−n+k,k = xi+1,n = −di+1,n+1, n ≤ i ≤ m − 1,

the first of which is from the solution (2.3) and the second of which is exactly the third set of

equations with i > n in (2.1). Obviously, these conditions are equivalent to the ones in (2.2).

The proof is finished.
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If n = m, then there is no condition posed in (2.2). The system (2.1) is not over-determined,

and there is the unique solution for whatever constants of dij .

Corollary 2.1 If n = m, then the system (2.1) has the unique solution defined by (2.3) for

all constants of dij .

But if n = m − 1, we need to check one condition for the existence of solutions.

Corollary 2.2 If n = m−1, then the system (2.1) has the unique solution defined by (2.3)

iff
n+1∑
k=0

dkk = 0.

If n = 0, no equation appears in the second set of equations in (2.1), but we need a set of

conditions for dij .

Corollary 2.3 If n = 0, then the system (2.1) has the unique solution

x00 = −d01, xi+1,0 = di0, 0 ≤ i ≤ m,

iff di0 + di+1,1 = 0, 0 ≤ i ≤ m − 1.

One can also observe the linear system (2.1) and the conditions in (2.2) in a geometric

way. In Figures 1 and 2, the two rectangles on the (i, j) plane are divided into three areas. The

n + 1

m + 1m − n10

A[1] A[2]A[3]

m
n

j

i

Figure 1 Different areas for the linear system

i m − n − 1 m

mn + 1
n + 1

j

no condition

B[1] B[3] B[2]

sum= 0

no condition

Figure 2 Different areas for the conditions of existence

three areas in Figure 1 correspond to different situations of the linear system (2.1). The first

subsystem and the last subsystem in the linear system determine the boundary conditions at

the integer points on the line j = n from i = 0 to i = m and on the line j = 0 from i = 1 to
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i = m + 1, respectively. The second subsystem determines the solutions xij at other integer

points by going diagonally up or down on the lines i = j + k for −(n + 1) ≤ k ≤ m + 1, one

step each time from the two boundaries. In Area A[1] and Area A[2] of Figure 1, the solutions

xij can be determined by the first and second formulas in (2.3), respectively. However, in Area

A[3] of Figure 1, both formulas work for determining xij , and thus there are conditions on the

lines i = j + k from k = 1 to k = m − n, which are exactly the m − n conditions in (2.2).

In Figure 2, Areas B[1], B[2] and B[3] correspond to Areas A[1], A[2] and A[3] in Figure 1,

respectively. Thus, there is no condition for dij in Areas B[1] and B[2]. The conditions in (2.2)

mean that the sum of dij at the integer points on each line i = j + k for 0 ≤ k ≤ m − n − 1 in

the rectangle is zero, which is the required conditions in Area B[3] of Figure 2.

3 Applications

The linear system (2.1) is the condition that each set of h
(n)
ij with fixed n needs to satisfy,

and thus it can be used to prove the uniqueness of solutions for (1.1).

Theorem 3.1 Let m ≥ 0 be an integer. Suppose that C = (cij)(m+1)×(m+2) is a given

matrix, where cij ∈ F, 0 ≤ i ≤ m, 0 ≤ j ≤ m + 1; and

A =




−x y 0

−x y

. . .
. . .

0 −x y




(m+1)×(m+2)

. (3.1)

Then there exists a unique collection of polynomials hi ∈ F≤m[x, y], 0 ≤ i ≤ m+1, which solves

the polynomial problem (1.1). Moreover, the unique collection can be given by

hi = xiym+1−i − (−1)i det((A + C)i), 0 ≤ i ≤ m + 1, (3.2)

where (A+C)i denotes the matrix generated from A+C by deleting its i-th column, or by (1.2)

with the coefficients being recursively defined by






h
(m)
i+1,j =

j∑

k=0

ci−j+k,k , 0 ≤ j ≤ i ≤ m,

h
(m)
i,j−1 = −

m+1∑

k=j

ci−j+k,k, 0 ≤ i < j ≤ m + 1,

(3.3)





h
(n)
i+1,j =

j∑

k=0

m+1∑

l=0

ci−j+k,lh
(n+1)
lk , 0 ≤ j ≤ i ≤ m,

h
(n)
i,j−1 = −

n+1∑

k=j

m+1∑

l=0

ci−j+k,lh
(n+1)
lk , 0 ≤ i < j ≤ n + 1,

(3.4)

where 0 ≤ n ≤ m − 1.

Proof Existence and First Solution Formula Set

h̃i = xiym+1−i − hi, 0 ≤ i ≤ m + 1.
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Then the original polynomial problem (1.1) becomes

yh̃i+1 − xh̃i = −

m+1∑

j=0

cij h̃j , 0 ≤ i ≤ m. (3.5)

On the other hand, we obviously have

det

[
ci0 ci1 · · · cii − x ci,i+1 + y · · · ci,m+1

A + C

]
= 0, 0 ≤ i ≤ m, (3.6)

where A is defined by (3.1) and C = (cij)(m+1)×(m+2). The Laplace expansions of those

determinants about the first row yield

m+1∑

j=0

cij r̃j − xr̃i + yr̃i+1 = 0, 0 ≤ i ≤ m, (3.7)

if we set

r̃i = (−1)i det((A + C)i), 0 ≤ i ≤ m + 1, (3.8)

where (A + C)i denotes the matrix generated from A + C by deleting its i-th column. This

implies that the polynomials r̃i defined above are a solution to (3.5). Note that xiym+1−i − r̃i,

0 ≤ i ≤ m + 1, are all polynomials in F≤m[x, y], and thus there is at least one solution to the

polynomial problem (1.1), defined by (3.2).

Uniqueness and Second Solution Formula First, equating the coefficients of the mono-

mials of the highest degree m + 1 in the polynomial problem (1.1) leads to





h
(m)
i+1,0 = ci0, 0 ≤ i ≤ m,

h
(m)
i+1,j − h

(m)
i,j−1 = cij , 0 ≤ i ≤ m, 1 ≤ j ≤ m,

−h
(m)
im = ci,m+1, 0 ≤ i ≤ m.

(3.9)

Second, equating the coefficients of the monomials of degree 1 ≤ n + 1 ≤ m in the polynomial

problem (1.1) leads to





h
(n)
i+1,0 = d

(n)
i0 := −

m+1∑

l=0

cilh
(n+1)
l0 , 0 ≤ i ≤ m,

h
(n)
i+1,j − h

(n)
i,j−1 = d

(n)
ij := −

m+1∑

l=0

cilh
(n+1)
lj , 0 ≤ i ≤ m, 1 ≤ j ≤ n,

−h
(n)
in = d

(n)
i,n+1 := −

m+1∑

l=0

cilh
(n+1)
l,n+1 , 0 ≤ i ≤ m,

(3.10)

where 0 ≤ n ≤ m − 1. Now, we see that all the coefficients h
(n)
ij are recursively defined from

n = m to n = 0 by the linear systems in (3.9) and (3.10). Note that all of these linear systems

are of the same type as the one in (2.1), and thus it follows from the existence of solutions and

Theorem 2.1 that there is a unique solution to the polynomial problem (1.1) and the solution

can be defined by (1.2), with (3.3) and (3.4). The proof is finished.
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The solutions in the cases of m = 0 and m = 1 are as follows. If m = 0, we have

h0 = −c01, h1 = c00;

and if m = 1, we have





h0 = −(c01 + c12)y − c02x − c01c12 + c02c11,

h1 = −c12x + c00y + c00c12 − c02c10,

h2 = (c00 + c11)x + c10y − c00c11 + c01c10.

Let us now show some polynomial identities of cij from the existence of solutions of (1.1).

First, based on Theorem 2.1, there are the conditions, defined by (2.2), for the existence of

solutions of the linear systems in (3.10), although the linear system (3.9) always has a unique

solution. Using the definitions of d
(n)
i+k,k in (3.10), we see that those conditions given by (2.2)

are altogether equivalent to

n+1∑

k=0

m+1∑

l=0

ci+k,lh
(n+1)
lk = 0, 0 ≤ n ≤ m − 1, 0 ≤ i ≤ m − n − 1. (3.11)

Second, collecting the constant terms in (1.1) leads to

m+1∑

l=0

cilh
(0)
l0 = 0, 0 ≤ i ≤ m. (3.12)

Noting that all the coefficients h
(n)
lk are homogeneous polynomials in cij of degree m − n + 1,

we can sum up the results in (3.11) and (3.12) to yield the following theorem.

Theorem 3.2 Let h
(n)
ij be recursively defined by (3.3) and (3.4). Then we have the following

homogeneous polynomial identities of cij:

n∑

k=0

m+1∑

l=0

ci+k,lh
(n)
lk = 0, 0 ≤ n ≤ m, 0 ≤ i ≤ m − n. (3.13)

Actually, we can prove the identities in (3.13) directly from (3.7). First, when 0 ≤ n ≤ m−1,

the coefficients of xkyn+1−k with 0 ≤ k ≤ n + 1 in each pair of h̃i = r̃i and hi = xiym+1−i − r̃i

are the same, and thus collecting the coefficients of xkyn+1−k of the identities in (3.7) leads to





m+1∑

l=0

cilh
(n+1)
l0 + h

(n)
i+1,0 = 0,

m+1∑

l=0

ci+k,lh
(n+1)
lk − h

(n)
i+k,k−1 + h

(n)
i+k+1,k = 0, 1 ≤ k ≤ n,

m+1∑

l=0

ci+n+1,lh
(n+1)
l,n+1 − h

(n)
i+n+1,n = 0,

where 0 ≤ i ≤ m−n−1. Adding up those equalities, we obtain (3.11), which gives the identities

with n > 0 in (3.13). On the other hand, computing the constant terms of the identities in

(3.7) yields (3.12), which gives the identities with n = 0 in (3.13).
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Theorem 3.2 provides a set of interesting identities of cij . In particular, when n = m and

n = 1, we obtain from (3.13) that

m∑

k=0

m+1∑

l=0

cklh
(m)
lk = 0

and

m+1∑

l=0

cilh
(1)
l0 +

m+1∑

l=0

ci+1,lh
(1)
l1 = 0, 0 ≤ i ≤ m − 1,

respectively. The first equation gives the following identity

m+1∑

l=1

l−1∑

k=0

k∑

p=0

cklcl−k−1+p,p −
m∑

l=0

m∑

k=l

m+1∑

p=k+1

cklcl−k−1+p,p = 0,

which can also be verified directly. However, the identities defined by both the second equation

and the equation (3.12) are far away from obvious.

Theorem 3.1 also immediately implies a number of interesting conclusions for the structure

of the manifold Jm.

Theorem 3.3 (a) The set of coefficients of polynomials hi that satisfy the algebraic equation

(1.1) is a polynomial image of F
(m+1)(m+2) in F

m(m+1)(m+2)
2 , and the induced polynomial map

is a bijection. Hence (cf. [4, p. 196]) the set of coefficients of polynomials hi (thus the set

Jm) is an irreducible algebraic variety in F
m(m+1)(m+2)

2 , and the dimension of this variety is

(m + 1)(m + 2).

(b) If the hi’s satisfy (1.1), then the coefficients of h
(m)
i and the constants cjk are linear

functions of each other. Hence the determining constants cjk are uniquely determined by the

ideal J ∈ Jm.

Conversely, given arbitrary polynomials h
(m)

i ∈ Fm[x, y], there exists a unique ideal J =

〈xiym+1−i − hi : i = 0, · · · , m + 1〉 ∈ Jm such that the leading polynomials h
(m)
i of hi is h

(m)

i .

This is in stark contrast with the one-dimensional case where every polynomial h ∈ F≤m[x]

defines an ideal J = 〈xm+1 − h〉 ∈ Jm, even if the leading coefficient of h is zero.

(c) If J = 〈xiym+1−i − hi : i = 0, · · · , m + 1〉 ∈ Jm is a polynomial ideal defined by the

matrix C from Theorem 3.1, then the columns of the matrix A + C define generators for the

first syzygy module, Syz(J) (cf. [5, p. 1980]), of the ideal J , where the matrix A is given by

(3.1). Since these rows are linearly independent over the ring F[x, y], we conclude that the set

of rows of the matrix A + C is the module basis for Syz(J).

In particular, if J ∈ Jm, then Syz(J) is a free submodule of the module (F[x, y])m+1.

4 Concluding Remarks

Theorem 3.1 shows the correspondence between the matrices C, the ideals J ∈ Jm and

the polynomials hi defined by the equation (3.2). It would be interesting to classify the ideals

J ∈ Jm by considering properties of the matrices C. Let J(C) stand for the ideal generated by

the matrix C via the polynomials hi(C):

J(C) = 〈xiym+1−i − hi(C) : i = 0, · · · , m + 1〉.
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Now, for instance, it is clear from (3.2) that C = 0 implies that J(C) is a monomial ideal

generated by {xiym+1−i : i = 0, · · · , m + 1}. If the structure of the matrix C resembles that of

the matrix A, i.e., if

C =




−a b 0
−a b 0

. . .
. . .

0 −a b




(m+1)×(m+2)

,

then

J(C) = 〈(x − a)i(y − b)m+1−i : i = 0, · · · , m + 1〉.

More generally, if we choose

C =




−a0 b0 0

−a1 b1

. . .
. . .

0 −am bm




(m+1)×(m+2)

,

where ai and bi are arbitrary constants in F, then the collection of polynomials that solves (1.1)

reads

hi(C) = xiym+1−i − (−1)i

i−1∏

j=0

(x − aj)

m∏

j=i

(y − bj), 0 ≤ i ≤ m + 1.

The special choices of the constants cij ∈ F in (3.5) can also provide three-term recurrence

relations for the involved polynomials as in the theory of orthogonal polynomials in one variable.

Like the above examples, the resulting polynomials in two variables may possess some specific

properties as expected.

Here are a few open questions:

(1) For what C, the ideal J(C) is regular? Prime? Primary?

(2) What relationship does exist between the structure of C and the cardinality of the variety

V (C) := {(x, y) ∈ F
2 : f(x, y) = 0 for all f ∈ J(C)}?

If #V (C) = 1, then J⊥(C), the space of all functional annihilating J , is the space of

polynomials of dimension m, which is invariant with respect to differentiation. Hence

(3) How can one describe all D-invariant m-dimensional subspaces of F[x, y]?

On the other hand, the solution presented in Theorem 3.1 can also be used to solve the

Cauchy problem of partial differential equations. For example, the collection of polynomials in

(3.8) provides a polynomial solution: ui = r̃i, 0 ≤ i ≤ m + 1, to the following linear system of

partial differential equations:

q∂p
x∂q−1

y ui+1 − p∂p−1
x ∂q

yui = −

m+1∑

j=0

cij∂
p
x∂q

yuj , 0 ≤ i, p, q ≤ m,
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with the initial conditions
m+1∑

j=0

cijuj|x=0,y=0 = 0.

It is not clear to us yet how to solve this Cauchy type problem generally.

We also remark that all results of this paper could be extended to the case of multivariate

polynomials like multivariate polynomial interpolations (see [2]). The technique using determi-

nant identities, like the determinant identities in (3.6) in the proof of the existence of solutions

to the polynomial problem (1.1) can also be applied to present solutions to other polynomial

problems.
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