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Abstract We prove the Murphy and Cohen’s conjecture that the maximum number of

collisions of n + 1 elastic particles moving freely on a line is
n(n+1)

2
if no interior particle

has mass less than the arithmetic mean of the masses of its immediate neighbors. In fact,

we prove the stronger result that, for the same conclusion, the condition that no interior

particle has mass less than the geometric mean, rather than the arithmetic mean, of the

masses of its immediate neighbors suffices.
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1 Introduction

We consider a system of n + 1 hard balls (rods) moving freely on a straight line, where the

only interaction is the elastic collision between two adjacent balls. In an elastic collision of

two adjacent hard balls, their velocities are redistributed according to the laws of conservation

of energy and momentum. It is well known that such a dynamical system is isomorphic to

a billiard inside a polyhedral angle. It is also assumed that multiple collisions, i.e., collisions

essential between three or more hard balls, do not occur, corresponding to the fact that if the

billiard ball hits a corner, its further motion is not defined (with some exceptions).

Estimates of the number of collisions in hard ball systems, more generally in semi-dispersing

billiards, have been studied for a long time because of their importance for proper generalization

of the Boltzmann equation. Sinai [8] proved the existence of a uniform estimate of the number

of collisions of billiard trajectories in a polyhedral angle. Gal’perin [3] obtained an explicit

estimate for a system of elastic particles (balls of zero radii) on a line. And Sevryuk [7] gave

a uniform estimate for billiards in a polyhedral angle in terms of a geometrical characteristic

of the angle. The most general results on this problem were obtained by Burago, Ferleger

and Kononenko [2]. In particular, they provided an explicit estimate depending only on the

masses of balls for generalized hard ball systems on simply connected Riemannian spaces of

non-positive sectional curvature. However, the maximum number of collisions that a hard ball

system may undergo was known only for systems of three identical balls in Euclidean space
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of dimension at least 2, besides being known for one-dimensional systems of three balls with

different masses which are almost trivial under the billiard approach. Due to Foch, an example

of initial conditions which led three identical hard balls to four collisions was known (cf. [5,

Appendix B]). Thurston and Sandri [9] discovered a system of three identical balls suffering

four collisions as well. Then Sandri et al. [6] conjectured that four is the maximum number of

collisions in 1964. A rigorous proof was published until 1993 by Murphy and Cohen [4].

One of the features of a hard ball system in one dimension is that the balls always remain

the same order on the line. Since we are only interested in upper bounds of the number of

collisions, the information on length or distance of the system can be completely ignored for

our purpose. It allows us to reduce directly the original system to an action of a reflection

group, generated by n orthogonal reflections, acting on a sphere in n-dimensional Euclidean

space E
n, and then to a numbers game. This natural method reveals the geometric meaning

of the constructions of “relative mass” and “relative velocity” appeared in [5]. The numbers

game is intimately related to Coxeter groups (see, for example, [1, Chapter 4]) although the

main interests there are different from ours.

We number the hard balls 0, 1, · · · , n in the order of increasing coordinates and write mi

for the mass of ball i. In [5], Murphy and Cohen showed that for some initial conditions at

least n(n+1)
2 collisions occur and conjectured that if mi ≥ mi−1+mi+1

2 , i = 1, · · · , n−1, then the

maximum number of collisions is n(n+1)
2 . The purpose of this paper is to prove the following

theorem.

Theorem 1.1 If

mi ≥
√

mi−1mi+1, i = 1, · · · , n − 1,

then the maximum number of collisions is
n(n+1)

2 .

Remark 1.1 Since
√

ab ≤ a+b
2 for a, b > 0, and equality holds if and only if a = b, Theorem

1.1 proves the conjecture of Murphy and Cohen with a weaker assumption. To see why and

how the number n(n+1)
2 arises, consider the simplest case of equal mass: m0 = m1 = · · · = mn.

Suppose that vi−1 and vi are the velocities of ball i − 1 and ball i respectively (1 ≤ i ≤ n)

before an elastic collision between them. Then the post-collision velocities v′i−1 and v′i are, in

general, given by

v′i−1 =
(mi−1 − mi)vi−1 + 2mivi

mi−1 + mi

, v′i =
2mi−1vi−1 + (mi − mi−1)vi

mi−1 + mi

.

In the case of equal mass, the two collision balls simply exchange their velocities. The conse-

quences will become apparent if we observe changes of the inversion number of the sequence of

velocities (v0, v1, · · · , vn), which remains constant between collisions. The inversion number of

a sequence of numbers q = (q0, q1, · · · , qn) is defined as the number of its inversions, that is,

inv (q) = card {(i, j)
∣

∣ i < j, qi > qj}.

It is obvious that

0 ≤ inv (q) ≤ n(n + 1)

2
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and inv (q) = 0, iff q is an increasing sequence. When vi−1 > vi, a collision between ball

i − 1 and i exchanges the values of the two velocities in the sequence of velocities so that its

inversion number decreases 1. The collisions then sort the sequence by binary exchanges until

the sequence is in increasing order, after which there can be no more collision. Therefore, the

total number of collisions equals the inversion number of the sequence of the initial velocities.

In the proof of Theorem 1.1, we will construct a sequence (depending on the time) with the

similar property: its inversion number remains constant between collisions and decreases at

least 1 in any collision.

2 Proof of Theorem 1.1

Let

1i = (δi0, δi1, · · · , δin)T ∈ E
n+1, i = 0, 1, · · · , n,

where δij is the Kronecker delta. Write vi for the velocity of ball i and set

m =
n

∑

j=0

√
mj 1j, v =

n
∑

j=0

√
mj vj1j ∈ E

n+1.

Then the momentum and energy of the system read (m,v) and 1
2‖v‖2 respectively, where ( · , · )

is the standard scalar product on E
n+1 and ‖ · ‖ is the norm determined by the scalar product.

For i = 1, · · · , n, let

αi =

1i√
mi

− 1i−1√
mi−1

∥

∥

∥

1i√
mi

− 1i−1√
mi−1

∥

∥

∥

and σi be the orthogonal reflection with respect to the hyperplane passing through the origin

with αi as a unit normal, that is,

σi : β 7→ β − 2(αi, β)αi.

It is readily seen that

(αi,m) = 0, (αi, αi) = 1, i = 1, · · · , n,

(αi, αj) = 0, |i − j| > 1,

(αi, αi+1) = − 1

mi

· 1
√

1
mi

+ 1
mi−1

· 1
√

1
mi+1

+ 1
mi

, i = 1, · · · , n − 1,

and m, α1, · · · , αn form a basis of E
n+1 as a vector space. A collision between ball i − 1 and

ball i is now realized geometrically by the reflection σi, according to momentum conservation

(m,v) = (m, σi(v)) and energy conservation ‖v‖2 = ‖σi(v)‖2. A necessary condition for the

collision really to take place is vi−1 > vi, equivalently, (αi,v) < 0, since

(αi,v) = −(αi, σi(v)) =
vi − vi−1

√

1
mi

+ 1
mi−1

.
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If

|i − j| > 1,

then

(αi, αj) = 0,

i.e., σi commutes with σj . It reflects the fact that several binary collisions may take place

simultaneously.

We are now in a position to play a numbers game. Let p = (p1, · · · , pn) be thought of as a

position in the game. A position p is called nonnegative if pi is nonnegative for all i = 1, · · · , n.

Choose the weights

kij = −2(αi, αj), 1 ≤ i, j ≤ n.

Thus

kii = −2, kij = kji, 1 ≤ i, j ≤ n,

kij = 0, |i − j| > 1,

ki,i+1 =
1

mi

√

2
1

mi

+ 1
mi−1

· 2
1

mi+1
+ 1

mi

, i = 1, · · · , n − 1.

Moves in the game are defined as follows. A firing of i changes a position p by adding pikij

to the j-th component of p for all j. More explicitly, a firing of i changes p in the following

way: switch the sign of the i-th component, add pikij to each adjacent component pj , and leave

all other components unchanged. Such a move is called negative if pi < 0. A negative game

is one that is played with negative moves from a given starting position. The negative game

terminates when it arrives a nonnegative position.

A history of the original hard ball system generates an orbit of the action of the reflection

group generated by σ1, · · · , σn, which records the elastic collision sequence. And the orbit

corresponds to a negative play sequence of the numbers game with the weights kij by setting

p = (p1, · · · , pn) = ((α1,v), · · · , (αn,v)).

We will show that the negative game defined as above must always terminate in n(n+1)
2 steps

no matter what the starting position is and how it is played.

Let p = (p1, · · · , pn) be a position in the numbers game. To avoid analysis case by case,

from now on let

ki0 = ki,n+1 = p0 = pn+1 = pn+2 = · · · = 0

and the same symbol p denote the augmented position (0, p1, · · · , pn, 0, 0, · · · ). (The values of

p0, pn+1, pn+2, · · · do not change in the whole game.) Define

qi =
i

∑

j=0

pj, i = 0, 1, 2, · · · ,

q = (q0, q1, · · · , qn).
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We will call q the potential associated to the position p. Then a position is nonnegative if and

only if its potential is an increasing sequence. Suppose now we fire i, 1 ≤ i ≤ n. The augmented

position after the firing is

p′ = (p0, · · · , pi−2, pi−1 + piki,i−1,−pi, pi+1 + piki,i+1, pi+2, pi+3, · · · ),

and hence the potential associated to it becomes q′ = (q′0, q
′
1, · · · , q′n) where

q′j =



















qj , j ≤ i − 2,

qi − pi(1 − ki,i−1), j = i − 1,

qi−1 − pi(1 − ki,i−1), j = i,

qj − pi(1 − ki,i−1 + 1 − ki,i+1), j ≥ i + 1.

Using the elementary inequality 2
1
a
+ 1

b

≤
√

ab, for a, b > 0, we have

ki,i+1 ≤ 1

mi

√√
mimi−1 ·

√
mi+1mi =

√√
mi−1mi+1

mi

, i = 1, · · · , n − 1.

If

mi ≥
√

mi−1mi+1,

then

ki,i+1 ≤ 1,

i.e.,

(αi, αi+1) ≥ −1

2
, i = 1, · · · , n − 1.

It follows that, when pi < 0, equivalently, qi−1 > qi, the sequence

−pi(0, · · · , 0, 1 − ki,i−1, 1 − ki,i−1, 1 − ki,i−1 + 1 − ki,i+1, · · · )

is increasing. Therefore, the inversion number of the potential after firing i (1 ≤ i ≤ n)

inv (q′) ≤ inv (q0, · · · , qi−2, qi, qi−1, qi+1, · · · , qn) = inv (q) − 1.

The proof is completed since

0 ≤ inv (q) ≤ n(n + 1)

2
.
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