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Abstract Let Q3 be the common conformal compactification space of the Lorentzian
space forms R3

1, S3

1 and H3

1. We study the conformal geometry of space-like surfaces in
Q3. It is shown that any conformal CMC-surface in Q3 must be conformally equivalent
to a constant mean curvature surface in R3

1, S3

1 or H3

1. We also show that if x : M → Q3

is a space-like Willmore surface whose conformal metric g has constant curvature K, then
either K = −1 and x is conformally equivalent to a minimal surface in R3

1, or K = 0 and
x is conformally equivalent to the surface H1( 1√

2
) × H1( 1√

2
) in H3

1.
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1 Introduction

In the study of the classical conformal geometry of Rn, it is preferable to consider in its

conformal compactification Sn, on which the Moebius group acts transitively. At the same

time, it unifies the study of the three standard Riemannian space forms, making the Euclidean

geometry, the spherical geometry and the hyperbolic geometry as its sub-geometries.

Interestingly, in Lorentzian geometry we have similar constructions. Let R3
1, S3

1 and H3
1 be

the three-dimensional Lorentzian space forms of curvature 0, 1 and −1, respectively (cf. [10]),

where

R3
1 = (R3, ( , )), (u, v) = u1v1 + u2v2 − u3v3, (1.1)

S3
1 = {u ∈ R4

1 | u2
1 + u2

2 + u2
3 − u2

4 = 1}, (1.2)

H3
1 = {u ∈ R4

1 | u2
1 + u2

2 − u2
3 − u2

4 = −1}, (1.3)

together with the induced metric. Let Q3 be the quadric in RP 4 defined by

Q3 = {[x] ∈ RP 4 | x2
1 + x2

2 + x2
3 − x2

4 − x2
5 = 0}. (1.4)

As well-known Q3 is a compact manifold homeomorphic to S2 × S1/{±1}. There is a standard

conformal structure of Lorentzian type on Q3 with the conformal group O(3, 2)/{±1} (cf. [5]).
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And there are conformal embeddings of R3
1, S3

1 and H3
1 into Q3 separately defined by

σ : R3
1 → Q3, σ(u) =

[(1

2
(1 − (u, u)), u,

1

2
(1 + (u, u))

)]
, (1.5)

τ : S3
1 → Q3, τ(u) = [(u, 1)], (1.6)

̺ : H3
1 → Q3, ̺(u) = [(1, u)]. (1.7)

In this paper we study the geometry of surfaces in Q3 under the conformal group O(3, 2)/{±1}.
By using conformal embeddings σ, τ or ̺, respectively, we can regard surfaces in R3

1, S3
1 or H3

1

as surfaces in Q3.

Let x : M → Q3 be an immersed space-like surface without umbilical point. Similar to

the conformal geometry of surfaces in S3, here one can also define a conformal Gauss map

ξ : M → R5
2 of the surface x (cf. [1, 4]). With this construction at hand, the surface theory can

be developed as usual: the conformal Gauss map is interpreted as the mean curvature sphere

(see Section 4); it induces an invariant conformal metric g = 〈dξ, dξ〉; the critical surfaces with

respect to the volume functional of g are called Willmore surfaces in Q3.

Let π : E → M be the canonical line bundle over M defined by π−1(p) = Ry, where

[y] = x(p). For any non-zero local section y : U → E, there exists a unique y∗ : U → R5
2,

such that y∗ ⊥ {ξ, dξ}, 〈y∗, y∗〉 = 0 and 〈y∗, y〉 = 1. We write g = e2ω|dz|2 for some complex

coordinate z. Then s = e−2ω〈ξzz , y∗〉y is independent of the choice of y and z, and thus it is a

global section of E. A surface in Q3 is called conformal CMC if s is a non-zero parallel section

with respect to the standard connection on E. Willmore surfaces in Q3 are exactly the surfaces

with s ≡ 0.

Our main results are as follows:

Theorem 1.1 Let x : M → Q3 be a space-like conformal CMC-surface in Q3. Then x is

conformally equivalent to a constant mean curvature surface in R3
1, S3

1 or H3
1.

Theorem 1.2 Let x : M → Q3 be a space-like umbilic free Willmore surface whose confor-

mal metric g has constant curvature K. Then either K = −1 and x is conformally equivalent

to a minimal surface in R3
1, or K = 0 and x is conformally equivalent to the minimal surface

H1( 1√
2
) × H1( 1√

2
) in H3

1.

We mention that there have been a lot of interesting results concerning Willmore surfaces

in S3 (cf. [2, 4, 7, 8, 11, 12]). These are then generalized to Lorentzian conformal geometry

in [1, 6]. Also note that similar results on conformal CMC-surfaces and Willmore surfaces of

constant Moebius curvature in S3 have been obtained (see [9]).

This paper is organized as follows. In Section 2, we introduce the conformal space Q3

as the common compactification space of the three dimensional Lorentzian space forms. The

conformal surfaces theory in Q3 is established in Section 3. Then we investigate conformal

CMC-surfaces and prove Theorem 1.1 in Section 4. Finally, in Section 5, we study Willmore

surfaces in Q3 and prove Theorem 1.2.

2 The Conformal Space Q3

Let R5
2 be the space R5, equipped with the inner product

〈x, y〉 = x1y1 + x2y2 + x3y3 − x4y4 − x5y5. (2.1)
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Let Q3 be the quadric in the real projective space RP 4 given by (1.4). We define

S2 × S1 = {x ∈ R5
2 | x2

1 + x2
2 + x2

3 = x2
4 + x2

5 = 1}. (2.2)

Then the standard projection π : S2 × S1 → Q3 is a 2-1 covering. For any local section

Z : U → S2 × S1 ⊂ R5
2 of π defined on an open set U ⊂ Q3, we can define a metric

〈dZ, dZ〉 = dZ1 ⊗ dZ1 + dZ2 ⊗ dZ2 + dZ3 ⊗ dZ3 − dZ4 ⊗ dZ4 − dZ5 ⊗ dZ5,

which is independent of the choice of Z. It determines a global Lorentzian metric h on Q3.

Moreover, if we define on S2 × S1 the standard Lorentzian metric g(S2) ⊕ −g(S1), then the

projection π : S2 × S1 → (Q3, h) is a 2:1 isometric covering. It is known from a theorem of

Cahen and Kerbrat (cf. [5]) that the conformal group of (Q3, [h]) is exactly the orthogonal

group O(3, 2)/{±1}, which keeps the inner product (2.1) in R5
2 invariant and acts on Q3 by

T ([x]) = [xT ], T ∈ O(3, 2). (2.3)

Let R3
1 be the Lorentzian space equipped with the inner product (1.1). Let σ : R3

1 → Q3 be

the conformal embedding of R3
1 in Q3 defined by (1.5). We introduce the light-cone at infinity

as

C∞ = {[(−a, u, a)] ∈ RP 4 | (u, u) = 0, a ∈ R}. (2.4)

Then we have

Q3 = σ(R3
1) ∪ C∞. (2.5)

Thus Q3 is a compactification of R3
1 by attaching the light-cone C∞ to R3

1 at infinity.

Let γ = {u ∈ R3
1 | (u − p, u − p) = εr2} be the two-sheet hyperboloid (with ε = −1) or

the one-sheet hyperboloid (with ε = 1) in R3
1 centered at p with radius r. Then γ defines an

inversion γ in R3
1 by

γ : R3
1 → R3

1 ∪ C∞, γ(u) = p+
εr2(u− p)

(u − p, u− p)
, u ∈ R3

1.

It is a conformal transformation in R3
1 which fixes every point on γ and takes the light cone

centered at p to the cone at infinity. If we define a vector γ ∈ R5
2 by

γ =
1

r

(1

2
(1 − (p, p) + εr2), p,

1

2
(1 + (p, p) − εr2)

)
, (2.6)

then 〈γ, γ〉 = ε, and γ defines a reflection Tγ ∈ O(3, 2):

Tγ : R5
2 → R5

2, Tγ(x) = x− 2ε〈x, γ〉γ. (2.7)

It is straightforward to check the following commuting diagram

σ ◦ γ(u) = Tγ ◦ σ(u), u ∈ R3
1. (2.8)

Thus all inversions in R3
1 ∪C∞ generate the conformal group O(3, 2) in (Q3, [h]).
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Let R4
1 be the Lorentzian space with inner product

(u, v) = u1v1 + u2v2 + u3v3 − u4v4. (2.9)

Let S3
1 = {x ∈ R4

1 | (x, x) = 1} be the de Sitter space in R4
1. Let τ : S3

1 → Q3 be the conformal

embedding defined by (1.6). Denote

S2
∞ = {[(u, 0)] | u ∈ R4

1\{0}, u2
1 + u2

2 + u2
3 = u2

4}. (2.10)

Then we have

Q3 = τ(S3
1) ∪ S2

∞. (2.11)

Hence Q3 is viewed here as a conformal compactification of S3
1 by attaching a sphere S2

∞ at

infinity of R4
1.

Let R4
2 be the space R4, equipped with the inner product

(u, v) = u1v1 + u2v2 − u3v3 − u4v4. (2.12)

There is a hyperboloid H3
1 = {x ∈ R4

2 | (x, x) = −1} in R4
2, which could also be embedded into

Q3 via ̺ : H3
1 → Q3 (1.7). Set

T2
∞ = {[(0, u)] | u ∈ R4

2\{0}, u2
1 + u2

2 = u2
3 + u2

4}. (2.13)

It follows that

Q3 = ̺(H3
1) ∪ T2

∞. (2.14)

So Q3 is also a conformal compactification of H3
1 by attaching a torus T2

∞ at infinity of R4
2.

We note that R3
1, S3

1 and H3
1 are the Lorentzian space forms of curvature 0, 1 and −1,

respectively. Thus Q3 is the common conformal compactification of the Lorentzian space forms.

3 Conformal Geometry of Surfaces in Q3

In this section we study the geometry of surfaces in Q3 under the conformal group O(3, 2).

Two surfaces in Q3 (or in R3
1, S

3
1,H

3
1 ⊂ Q3) are said to be conformally equivalent if there exists

T ∈ O(3, 2) taking one surface to the other.

Consider a space-like surface x : M → Q3. That means x∗h, the pull-back of the standard

Lorentzian metric on Q3, is positive difinite over M . Let y : U → R5
2\{0} be a local lift of

x with x = [y] defined on an open set U of M . By the definition of h we can find a positive

function λ on U such that x∗h = λ2〈dy, dy〉. Since x is space-like, we can write

〈dy, dy〉 =
1

2
e2ρ(dz ⊗ dz + dz ⊗ dz) (3.1)

for a local complex coordinate {z}. From (3.1) and the fact that 〈y, y〉 = 0, we get

〈y, yz〉 = 〈y, yz〉 = 0, 〈yz, yz〉 = 0, 〈yz, yz〉 =
1

2
e2ρ = −〈y, yzz〉. (3.2)
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It follows that

V = span{y, yzz} ⊕ {αyz + αyz | α ∈ C} (3.3)

is a 4-dimensional non-degenerate subspace in R5
2 of signature (+,−,+,+). It is easy to verify

that V is independent to the choice of local life y and complex coordinate z. So there is a

well-defined map ξ : M → R5
2 (up to signs) such that

ξ ⊥ V, R5
2 = V ⊕ Rξ, 〈ξ, ξ〉 = −1. (3.4)

Denote

H4
1 = {X ∈ R5

2 | 〈X,X〉 = −1} ⊂ R5
2. (3.5)

We call ξ : M → H4
1 ⊂ R5

2 the conformal Gauss map of x.

Denote 〈yzz , ξ〉 = Ω. It is essentially the Hopf differential of the surface x, yet is dependent

on the choice of y and z. Nevertheless, the vanishing of Ω at a point p is a well-defined property,

which is also invariant under the action of the conformal group O(3, 2). Such points are exactly

the umbilical points of x. By (3.3) and (3.4) we have

〈ξz , ξ〉 = 0, 〈ξz , y〉 = −〈ξ, yz〉 = 0,

〈ξz , yz〉 = −Ω, 〈ξz , yz〉 = −〈ξ, yzz〉 = 0.

Since {y, yzz, yz, yz, ξ} is a local frame in R5
2, we get

ξz = βy − 2e−2ρΩyz (3.6)

for some function β. It follows that

〈ξz , ξz〉 = 0, 〈ξz , ξz〉 = 2e−2ρ|Ω|2. (3.7)

So ξ : M → H4
1 is a conformal immersion at any non-umbilical point of x, and hence shares the

same complex coordinate z. This justifies the name of the conformal Gauss map.

From now on, suppose x : M → Q3 is a umbilic free surface. Then ξ : M → H4
1 induces an

invariant metric g = 〈dξ, dξ〉, which is called the conformal metric of x. Write

g = 〈dξ, dξ〉 =
1

2
e2ω(dz ⊗ dz + dz ⊗ dz). (3.8)

From (3.7) we get

e2ω = 4e−2ρ|Ω|2. (3.9)

Since

W = {αξz + αξz | α ∈ C} ⊕ Rξ (3.10)

is a 3-dimensional subspace in R5
2 with signature (+,+,−), we know that W⊥ is a 2-dimensional

subspace in R5
2 with a non-degenerate metric of signature (+,−). By (3.4) and (3.6) we have

y ∈ W⊥. So there exists a unique y∗ ∈ W⊥ such that W⊥ = span{y, y∗} and

〈y, y〉 = 〈y∗, y∗〉 = 0, 〈y∗, y〉 = 1. (3.11)
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Hence {y, y∗, ξz, ξz , ξ} is a conformally invariant moving frame in R5
2, which depends on the

choice of {y, z}. Define

ϕ = 〈yz, y∗〉, H = e−2ω〈ξzz , y∗〉, Ω = 〈ξzz , y〉, Ω∗ = 〈ξzz , y∗〉. (3.12)

Taking derivatives of the frame {y, y∗, ξz, ξz , ξ} yields

yz = ϕy − 2e−2ωΩξz , (3.13)

y∗z = −ϕy∗ − 2Hξz − 2e−2ωΩ∗ξz , (3.14)

ξzz = Ω∗y + Ωy∗ + 2ωzξz , (3.15)

ξzz = e2ωHy +
1

2
e2ωξ. (3.16)

Using the identities yzz = yzz , y
∗
zz = y∗zz and ξzzz = ξzzz, we get the integrability conditions as

follows:

ϕz − ϕz = 2e−2ω(ΩΩ
∗ − ΩΩ∗), (3.17)

Ωz = ϕΩ, (3.18)

Ω∗
z + ϕΩ∗ = e2ω(Hz + ϕH), (3.19)

4e−4ω(ΩΩ
∗

+ ΩΩ∗) = −(1 +K). (3.20)

Here K = −4e−2ωωzz is the Gauss curvature of the conformal metric g.

Now Let us make it clear how these quantities depends on the choice of {y, z}. Let {ỹ, τ}
be another pair of local lift and complex coordinate defined on V . Then on U ∩ V holds

ỹ = λy, τ = τ(z)

for some non-zero real function λ and a holomorphic function τ(z), which implies that

ỹ∗ = λ−1y∗, e2eω = e2ω
∣∣∣
dz

dτ

∣∣∣
2

.

It follows that

ϕ̃ = (ϕ+ λ−1λz)
dz

dτ
, H̃ = λ−1H, Ω̃ = λΩ

(dz
dτ

)2

, Ω̃∗ = λ−1Ω∗
(dz
dτ

)2

. (3.21)

Thus we know that the complex function F and the complex 4-form Φ given by

F = e−4ωΩΩ
∗
, Φ = ΩΩ∗dz4 (3.22)

are independent of the choice of {y, z}, which are globally defined conformal invariants on M .

From (3.21) we get

H̃τ + ϕ̃H̃ = λ−1(Hz + ϕH)
dz

dτ
. (3.23)

Thus the equation Hz + ϕH = 0 is conformally invariant.

Next consider the canonical line bundle π : E → M with π−1(p) = Ry, where [y] = x(p).

We define a standard connection ∇ on E by

∇y = (ϕdz + ϕdz)y. (3.24)
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Using (3.21) we can easily verify that ∇ is independent of the choice of {y, z}, and hence is

globally defined on E. Note that s = e−2ω〈ξzz , y∗〉y = Hy is a global section of E, and

∇s = ((Hz + ϕH)dz + (Hz + ϕH)dz)y.

We call a surface in Q3 a conformal CMC (constant mean curvature) surface if s is a nonzero

parallel section of (E,∇), or equivalently, if

Hz + ϕH = 0, H 6= 0. (3.25)

We observe that according to (3.16), s = Hy is nothing else but the mean curvature vector

of the immersion ξ : M → H4
1. This is part of the reason why conformal CMC surfaces are so

called. On the other hand, the condition that H = 0 characterizes ξ : M → H4
1 as a harmonic

map, which amounts to say that x : M → Q3 is a Willmore surface (cf. [1]). Such surfaces are

exactly the critical surfaces with respect to the induced area

W (M) =
i

2

∫

M

e2ωdz ∧ dz. (3.26)

This conformally invariant functional is viewed as the generalization of the usual Willmore

functional of a surface in S3 (cf. [1, 4]).

4 Conformal CMC-Surfaces in Lorentzian Space Forms

In this section, we study the relationship between the geometry of surfaces in the Lorentzian

space forms and the conformal geometry of surfaces in Q3.

Let f : M → R3
1 be a space-like surface in R3

1. Let z be a complex coordinate of f , such

that

(df, df) =
1

2
e2ρ(dz ⊗ dz + dz ⊗ dz), (4.1)

where ( , ) is the Lorentzian inner product in R3
1 given in (1.1). Let n be the unit normal of f

in R3
1 with (n, n) = −1. The structure equations of f : M → R3

1 is given by

fzz = 2ρzfz − Ωn, fzz = −1

2
e2ρHn, nz = −Hfz − 2Ωe−2ρfz, (4.2)

where Ωdz2 = (fzz , n)dz2 is the Hopf-form of f and H = k1+k2
2 is the mean curvature of f . We

have the relation ‖Ω‖2 = e−4ρ|Ω|2 = (k1−k2)2
16 , where k1 and k2 are principal curvatures of f .

Let σ : R3
1 → Q3 be the conformal embedding defined by (1.5). Then

x = σ ◦ f =
[(1

2
(1 − (f, f)), f,

1

2
(1 + (f, f))

)]
: M → Q3 (4.3)

is a surface in Q3. There is a standard lift of x given by

y =
(1

2
(1 − (f, f)), f,

1

2
(1 + (f, f))

)
, (4.4)

which satisfies 〈dy, dy〉 = (df, df). It follows from (4.2) that under a given coordinate z,

yz = (−(fz, f), fz, (fz, f)),

yzz = 2ρz(−(fz, f), fz, (fz, f)) − Ω(−(n, f), n, (n, f)),

yzz = −1

2
e2ρH(−(n, f), n, (n, f)) − 1

2
e2ρ(1,0,−1).
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Since the conformal Gauss map ξ ⊥ {y, yz, yz, yzz} and 〈ξ, ξ〉 = −1, we get

ξ = H
(1

2
(1 − (f, f)), f,

1

2
(1 + (f, f))

)
+ (−(n, f), n, (n, f)), (4.5)

which implies that

〈yzz, ξ〉 = (fzz, n) = Ω.

Thus p ∈ M is an umbilical point of x = σ ◦ f if and only if p is an umbilical point for

f : M → R3
1, i.e., k1(p) = k2(p).

Now let c be the light-like vector in R5
2 given by

c = (1,0,−1), 0 ∈ R3
1, 〈c, c〉 = 0. (4.6)

By (4.4) and (4.5) we get

〈y, c〉 = 1, 〈ξ, c〉 = H. (4.7)

It follows from (3.16), (4.7) and (3.9) that

H = e−2ωHzz −
1

2
H =

1

16‖Ω‖2
(∆H − 8‖Ω‖2H), (4.8)

where ∆ is the Laplacian operator of the metric (df, df). We note that H = 0 is exactly the

Euler-Lagrange equation for Willmore functional of surfaces in R3
1. Thus H = 0 if and only if

f : M → R3
1 is a Willmore surface in R3

1.

If f : M → R3
1 is a constant mean curvature surface with H 6= 0, then we know from (4.8)

that H = − 1
2H 6= 0 is also a constant. From (3.13) and (4.7) we get ϕ = 2e−2ωΩHz = 0.

Thus x = σ ◦ f : M → Q3 satisfies Hz + ϕH = 0. Thus any CMC-surface in R3
1 is a conformal

CMC-surface in Q3 (under the conformal embedding σ : R3
1 → Q3).

When the ambient space is S3
1 or H3

1, we have similar conclusions. For a space-like surface

f : M → S3
1 ⊂ R4

1, let n be the normal vector of f with (n, n) = −1, and H be its mean

curvature. Using the embedding τ : S3
1 → Q3 defined by (1.6), we get a surface x = [(f, 1)] :

M → Q3 with the lift y = (f, 1), whose conformal Gauss map is computed out as

ξ = H(f, 1) + (n, 0). (4.9)

For the time-like vector c ∈ R5
2 given by

c = (0,−1), 0 ∈ R4
1, (4.10)

we have

〈c, c〉 = −1, 〈y, c〉 = 1, 〈ξ, c〉 = H. (4.11)

In case of a space-like surface f : M → H3
1 we can do almost the same, with

ξ = H(1, f) + (0, n), c = (1,0), 0 ∈ R4
2, (4.12)

〈c, c〉 = 1, 〈y, c〉 = 1, 〈ξ, c〉 = H. (4.13)

It is straightforward to verify that any CMC-surface in S3
1 or H3

1 is a conformal CMC-surface

in Q3 (under the conformal embedding τ or ̺, respectively).
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Now we come to the proof of Theorem 1.1. Let x : M → Q3 be a conformal CMC-surface.

Then by (3.25) we have Hz + ϕH = 0 and H 6= 0. Since

ỹ = Hy = e−2ω〈ξzz , y∗〉y

is independent of the choice of {y, z}, it defines a global lift of x. Moreover,

ϕ̃ = 〈ỹz, ỹ∗〉 =
〈
(Hy)z,

1

Hy∗
〉

=
1

H (Hz + ϕH) = 0.

Since H̃ỹ = Hy, we get H̃ = 1. Thus, by taking new y = ỹ as the lift of x if necessary, we may

assume that ϕ = 0 and H = 1. It follows from (3.18) and (3.19) that both Ωdz2 and Ω∗dz2 are

holomorphic 2-forms on M . By (3.17) we get Ω∗/Ω = Ω∗/Ω, which implies that Ω∗ = µΩ for

some real constant µ. From (3.13) and (3.14) we get

y∗ − µy + 2ξ = c (4.14)

for some constant vector c ∈ R5
2. It follows that

〈y, c〉 = 1, 〈ξ, c〉 = −2, 〈c, c〉 = −2µ− 4. (4.15)

First we consider the case that µ = −2. Then c is a light-like vector in R5
2. Taking a

conformal transformation T ∈ O(3, 2), if necessary, we may assume that c = (1,0,−1) ∈ R5
2.

Since 〈y, c〉 = 1, we can write y by (4.4) for some f : M → R3
1. From the fact that 〈dy, dy〉 =

(df, df), we know that f is an immersion, and the conformal Gauss map ξ is given by (4.5). It

follows from (4.7) and (4.15) that H = −2. Thus f : M → R3
1 is a constant mean curvature

surface in R3
1.

Next we consider the case that µ = −2 + 1
2r

2 for some r > 0. Then c is a time-like vector

in R5
2. Taking a conformal transformation T ∈ O(3, 2), if necessary, we may assume that

c = r(0,−1) ∈ R5
2. Since 〈y, c〉 = 1, we can write y = r−1(f, 1) for some f : M → S3

1. From

the fact that 〈dy, dy〉 = r−2(df, df), we know that f is an immersion, and the conformal Gauss

map ξ is given by (4.9). It follows from (4.11) and (4.15) that H = −2r−1. Thus f : M → S3
1

is a constant mean curvature surface in S3
1.

Finally we consider the case that µ = −2 − 1
2r

2 for some r > 0. Then c is a space-like

vector in R5
2. By using a conformal transformation T ∈ O(3, 2), if necessary, we may assume

that c = r(1,0) ∈ R5
2. Since 〈y, c〉 = 1, we can write y = r−1(1, f) for some f : M → H3

1.

From the fact that 〈dy, dy〉 = r−2(df, df), we know that f is an immersion, and the conformal

Gauss map ξ is given by (4.12). It follows from (4.13) that H = −2r−1. Thus f : M → H3
1 is a

constant mean curvature surface in H3
1.

Thus we complete the proof of Theorem 1.1.

5 Willmore Surfaces of Constant Curvature in Q3

In this section, we study Willmore surfaces in Q3 and prove Theorem 1.2.

Let x : M → Q3 be a Willmore surface of constant curvature K. Then H = 0. From (3.18)

and (3.19) we get

(ΩΩ∗)z = ΩzΩ
∗ + ΩΩ∗

z = 0. (5.1)
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Thus

ΩΩ∗dz4 = 〈ξzz , y〉〈ξzz , y∗〉dz4 (5.2)

is a globally defined holomorphic 4-form on M . We know that either Ω∗ ≡ 0 or Ω∗ 6= 0 on M

(except at some isolated points).

First we consider the case that Ω∗ ≡ 0. By (3.17) we get ϕz = ϕz, which implies that

d(ϕdz + ϕdz) = 0. Thus we can find λ > 0 such that ϕdz + ϕdz = −d logλ. It follows from

(3.24) that ∇(λy) = 0. Taking ỹ = λy, we have ϕ̃ = 0. By changing y to ỹ, if necessary,

we may assume that ϕ = 0. It follows from (3.14) that y∗ is a constant light-like vector in

R5
2. By making a conformal transformation T ∈ O(3, 2), if necessary, we may assume that

y∗ = c = (1,0,−1). Since 〈y, c〉 = 1, we can write y as (4.4) for some surface f : M → R3
1. It

follows from (4.7) that

H = 〈ξ, c〉 = 〈ξ, y∗〉 = 0.

Thus f : M → R3
1 is a minimal surface in R3

1. Since Ω∗ = 0, we get from (3.20) that K = −1.

Now we consider the case that Ω∗ 6= 0. Then F = e−4ωΩΩ
∗ 6= 0 is a globally defined

complex function on M . We write

F = |F |eiψ = |F |(cosψ + i sinψ). (5.3)

Let ∆ be the Laplacian operator of g. Using (3.17)–(3.19) we get

∆ logF = 4e−2ω(logF )zz = 4K − 16i|F | sinψ. (5.4)

It follows from (5.4) and (3.20) that

∆ log |F | = 4K, (5.5)

∆ψ = −16|F | sinψ, (5.6)

8|F | cosψ = −(1 +K). (5.7)

First we show that ψ must be a constant. Assume, on the contrary, that ψ is not a constant,

then we can find an open set U of M such that cosψ 6= 0 and ψz 6= 0 on U . In the following,

we consider ψ : U → R. From (5.7) we have

|F | = −1

8

(1 +K)

cosψ
. (5.8)

It follows from (5.6) and (5.8) that

ψzz = −4e2ω|F | sinψ =
1

2
(1 +K)e2ω tanψ. (5.9)

By (5.5) and (5.8) we get

e2ωK = (log |F |)zz = −(log | cosψ|)zz = ψzz tanψ +
ψzψz
cos2 ψ

. (5.10)

From (5.9) and (5.10) we get

0 < e−2ωψzψz = K cos2 ψ − 1 +K

2
sin2 ψ = λ(ψ). (5.11)
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Using (5.9) and (5.11) we can eliminate ω and obtain

ψzz =
1

2
(1 +K)

tanψ

λ(ψ)
ψzψz. (5.12)

Let η = ψz√
λ
. Then by (5.12) we get

ηz =
1

2λ(ψ)
((1 +K) tanψ + (1 + 3K) sinψ cosψ)ψzη. (5.13)

Let µ = µ(ψ) be a solution of the ODE

dµ

dψ
=

1

2λ(ψ)
((1 +K) tanψ + (1 + 3K) sinψ cosψ). (5.14)

Then we get from (5.13) that

ηz =
dµ

dψ
ψzη = µzη, (e−µη)z = 0. (5.15)

It follow that η = eµη0 for some non-zero holomorphic function η0. By (5.11) we have e2ω = |η|2.
Thus we get from (5.15) that

2ωzz = (log |η|2)zz = (2µ+ log |η0|2)zz = 2µzz = 2
d

dz

(ηz
η

)
.

Thus we get from (5.13) that

2ωzz =
d

dz

( 1

λ(ψ)
((1 +K) tanψ + (1 + 3K) sinψ cosψ)ψz

)
. (5.16)

It follows from (5.16), (5.11) and (5.12) that

K = −4e−2ωωzz = −(1 +K)((1 +K) tan2 ψ + (1 + 3K) sin2 ψ)
1

λ(ψ)

− 2(1 + 3K)((1 +K) sin2 ψ + (1 + 3K) sin2 ψ cos2 ψ)
1

λ(ψ)

− 2
(1 +K

cos2 ψ
+ (1 + 3K) cos 2ψ

)
, (5.17)

where λ(ψ) is defined by (5.11). Let t = tan ψ
2 . Then we have

cosψ =
1 − t2

1 + t2
, sinψ =

2t

1 + t2
, tanψ =

2t

1 − t2
. (5.18)

From (5.17) and (5.18) we know that t = tan ψ
2 satisfies a non-trivial polynomial with constant

coefficients. Thus t and ψ is a constant, which contradicts our assumption that ψz 6= 0. We

conclude that ψ must be a constant.

Now we consider the case that ψ is a constant. By (5.6) we get sinψ = 0 and cosψ = ±1.

Thus (5.7) implies that 8|F | = ±(1 + K) is a constant. By (5.5) we get K = 0. Thus

F = |F | cosψ = − 1
8 . Since

F = e−4ωΩΩ
∗

= e−4ω|Ω|2Ω∗/Ω = −1

8
,
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we know that Ω∗/Ω = Ω∗/Ω is a negative function. If we change y to λy, then Ω∗/Ω will

change to λ−2Ω∗/Ω. Thus, by changing y to ỹ = λy for some suitable λ, if necessary, we may

assume that Ω∗/Ω = −1. Since Ω∗Ω is holomorphic and Ω∗ = −Ω, we know that both Ω and

Ω∗ are holomorphic. It follows from (3.18) that ϕ = 0. Since K = 0, we can choose z such that

g = |dz|2 and ω = 0. These properties are preserved under the coordinate change z → eiθz for

constant θ. Since F = ΩΩ
∗

= − 1
8 , we get |Ω|2 = |Ω∗|2 = 1

8 . Since Ω∗ = −Ω is holomorphic, we

know that both Ω and Ω∗ are constant. If we change z to eiθz for some constant θ, then Ω will

change to e−2iθΩ. Thus we may assume that Ω is a positive real number, which implies that

Ω∗ = −Ω = −
√

2
4 . It follows from (3.13) and (3.14) that y + y∗ = c for some constant vector

c ∈ R5
2. Since 〈c, c〉 = 2, by making a conformal transformation T ∈ O(3, 2), if necessary, we

may assume that c =
√

2(1,0). Since 〈c, y〉 = 1, We can write y = 1√
2
(1, f) for some surface

f : M → H3
1. Since 〈c, ξ〉 = 0, we get from (4.13) H = 0 and ξ = (0, n). We write z = u + iv.

From (3,13) we get yz = − 1√
2
ξz . It follows that

fu = −nu, fv = nv. (5.19)

Thus the principal curvatures of f are given by k1 = 1 and k2 = −1. Thus f : M → H3
1 is an

open part of the surface

H1
( 1√

2

)
× H1

( 1√
2

)
=

{
x ∈ R4

2

∣∣∣ x2
1 − x2

3 = x2
2 − x2

4 = −1

2

}
⊂ H3

1.

Thus we complete the proof of Theorem 1.2.
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