Chinese Annals of Mathematics, Series B © The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2007

Analytic Extension of Functions from Analytic Hilbert Spaces**

Kai WANG*

Abstract Let M be an invariant subspace of H_v^2 . It is shown that for each $f \in M^{\perp}$, f can be analytically extended across $\partial \mathbb{B}_d \setminus \sigma(S_{z_1}, \dots, S_{z_d})$.

Keywords Analytic Hilbert space, Spectrum, Analytic extension 2000 MR Subject Classification 47B35, 47B20

Let $d \geq 1$ and

$$\mathbb{B}_d = \Big\{ z \in \mathbb{C}^d : |z|^2 = \sum_{i=1}^d |z_i|^2 < 1 \Big\}.$$

In this note, we mainly consider the reproducing kernel space H_v^2 (v > 0) over \mathbb{B}_d with reproducing kernel

$$K^{v}_{\lambda}(z) = \frac{1}{(1 - \langle z, \lambda \rangle)^{v}} = \sum_{n=0}^{\infty} a^{(v)}_{n} \langle z, \lambda \rangle^{n},$$

where

$$\langle z, \lambda \rangle = \sum_{i=1}^{d} z_i \overline{\lambda}_i$$
 and $a_0^{(v)} = 1$, $a_n^{(v)} = \frac{v(v+1)\cdots(v+n-1)}{n!}$ for $n \ge 1$.

When v = 1, the Hilbert space H_v^2 is the Symmetric Fock space, which was deeply studied by Arveson [2]. When v = d, the space H_v^2 is the usual Hardy space $H^2(\mathbb{B}_d)$, and when v = d + 1, it is the usual Bergman space $L_a^2(\mathbb{B}_d)$ on the unit ball. We refer the reader to [4] for details.

Let M be an invariant subspace of H_v^2 , that is, $pM \subset M$ for any polynomial p. Let $S_p = P_{M^{\perp}}M_p|_{M^{\perp}}$ be the compression operator on M^{\perp} for a polynomial p, where $P_{M^{\perp}}$ is the orthogonal projection onto M^{\perp} . Those operators carry key information about the invariant subspace (see [1, 2, 9, 10, 12, 17]). We denote the Taylor spectrum (see [6, 16]) of the tuple $\{S_{z_1}, \dots, S_{z_d}\}$ by $\sigma(S_{z_1}, \dots, S_{z_d})$, and write $\{S_1, \dots, S_d\}$ for $\{S_{z_1}, \dots, S_{z_d}\}$.

The following notations are standard. For any ordered *d*-tuple of nonnegative integers $\alpha = (\alpha_1, \dots, \alpha_d), z = (z_1 \dots, z_d) \in \mathbb{C}^d$, write

$$|\alpha| = \alpha_1 + \dots + \alpha_d, \quad \alpha! = \alpha_1! \cdots \alpha_d!, \quad z^{\alpha} = z_1^{\alpha_1} \cdots z_d^{\alpha_d}, \quad S^{\alpha} = S_1^{\alpha_1} \cdots S_d^{\alpha_d}.$$

Manuscript received December 2, 2005. Revised April 19, 2006. Published online April 30, 2007.

^{*}School of Mathematical Sciences, Fudan University, Shanghai 200433, China.

E-mail: 031018009@fudan.edu.cn

^{**}Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education.

Theorem 1 Let M be an invariant subspace of H_v^2 . Then for any $f \in M^{\perp}$, f can be analytically extended across $\partial \mathbb{B}_d \setminus \sigma(S_1, \dots, S_d)$.

Proof First, we will show that $\sigma(S_1, \dots, S_d) \subseteq \mathbb{B}_d$. For given μ , $|\mu| > 1$ and the function $f_{\mu}(z) = \langle z, \mu \rangle - |\mu|^2$, from the proof of Theorem 4.5 in [11], the multiplication operator $M_{f_{\mu}}$ acting H_v^2 is invertible with the inverse $M_{1/f_{\mu}}$. A simple analysis shows that $S_{f_{\mu}}$ acting on M^{\perp} is invertible with the inverse $S_{1/f_{\mu}}$ and hence $0 \notin \sigma(S_{f_{\mu}})$. Therefore, by the spectral mapping theorem (see [16, Theorem 4.8]), $\mu \notin \sigma(S_1, \dots, S_d)$. It follows that

$$\sigma(S_1,\cdots,S_d)\subseteq \mathbb{B}_d.$$

Letting I be the identity operator on M^{\perp} , by [16, Theorem 4.8], we have

$$\sigma\Big(I - \sum_{i=1}^d \lambda_i S_i^*\Big) = \Big\{1 - \sum_{i=1}^d \lambda_i \overline{z}_i : z \in \sigma(S_1, \cdots, S_d)\Big\}.$$

For $\lambda \in \overline{\mathbb{B}}_d$, $z \in \overline{\mathbb{B}}_d$, we have

$$\operatorname{Re}\left(1-\sum_{i=1}^{d}\lambda_{i}\overline{z}_{i}\right)\geq 1-|\lambda||z|\geq 0,$$

and hence we get

$$\operatorname{Re}\left(1-\sum_{i=1}^{d}\lambda_{i}\overline{z}_{i}\right)>0, \text{ if } \lambda\in\mathbb{B}_{d} \text{ or } \lambda\neq z.$$

This implies that for any point $\lambda \in \mathbb{B}_d \cup (\partial \mathbb{B}_d \setminus \sigma(S_1, \cdots, S_d))$,

$$\sigma\left(I - \sum_{i=1}^{d} \lambda_i S_i^*\right) \subseteq \{w \in \mathbb{C} : \operatorname{Re} w > 0\}.$$

Choose an open set U of \mathbb{C}^d satisfying $\mathbb{B}_d \cup (\partial \mathbb{B}_d \setminus \sigma(S_1, \cdots, S_d)) \subseteq U$, and

$$\operatorname{Re}\left(1-\sum_{i=1}^{d}\lambda_{i}\overline{z}_{i}\right)>0\quad\text{for each }\lambda\in U,\ z\in\sigma(S_{1},\cdots,S_{d}).$$

This means that for any $\lambda \in U$,

$$\sigma\left(I - \sum_{i=1}^{d} \lambda_i S_i^*\right) \subseteq \{\operatorname{Re} w > 0 : w \in \mathbb{C}\}.$$

Since w^{-v} is analytic on the domain $\{\operatorname{Re} w > 0 : w \in \mathbb{C}\}$, we see that the operator value function

$$\lambda \to \left(I - \sum_{i=1}^d \lambda_i S_i^*\right)^{-v}$$

is analytic on U.

Furthermore, given any $f \in M^{\perp}$ and $\lambda \in \mathbb{B}_d$, we have

$$\left\langle \left(I - \sum_{i=1}^{d} \lambda_i S_i^*\right)^{-v} f, 1 \right\rangle = \sum_{n=0}^{\infty} a_n^{(v)} \sum_{|\alpha|=n} \frac{n!}{\alpha!} \lambda^{\alpha} \langle S^{*\alpha} f, 1 \rangle = \sum_{n=0}^{\infty} a_n^{(v)} \sum_{|\alpha|=n} \frac{n!}{\alpha!} \lambda^{\alpha} \langle M_z^{*\alpha} f, 1 \rangle$$
$$= \sum_{n=0}^{\infty} a_n^{(v)} \sum_{|\alpha|=n} \frac{n!}{\alpha!} \lambda^{\alpha} \langle f, z^{\alpha} \rangle = \langle f, K_\lambda \rangle = f(\lambda).$$

Since

$$\left(I - \sum_{i=1}^{d} \lambda_i S_i^*\right)^{-\iota}$$

is analytic in U, it follows that the analytic function

$$f(\lambda) = \left\langle \left(I - \sum_{i=1}^{d} \lambda_i S_{z_i}^*\right)^{-v} f, 1 \right\rangle$$

has an analytic continuation across $\partial \mathbb{B}_d \setminus \sigma(S_1, \cdots, S_d)$. This leads to the desired result.

Using an easy argument, we obtain the following corollary from Theorem 1.

Corollary 1 Let M be an invariant subspace of H_v^2 . Then

$$\bigcup_{f \in M^{\perp}} \{\lambda \in \partial \mathbb{B}_d : f \text{ is not analytic at } \lambda\} \subseteq \sigma(S_1, \cdots, S_d).$$

In the classical Hardy space $H^2(\mathbb{D})$, by the elegant Beurling theorem, any invariant subspace M is generated by an inner function η . Arveson [1] showed that, in this case, $\sigma(S) = Z(\eta)$ and $\sigma_e(S) = Z_{\partial}(\eta)$, where

$$Z(\eta) = \{\lambda \in \mathbb{D} : \eta(\lambda) = 0\} \cup \{\lambda \in \mathbb{T} : \eta \text{ is not analytic at } \lambda\},\$$
$$Z_{\partial}(\eta) = Z(\eta) \cap \mathbb{T}.$$

In higher dimensions, one see a similar result from the above corollary. When the dimension d > 1, any inner functions η on \mathbb{B}_d is not analytic at any point in $\partial \mathbb{B}_d$ (see [14]). Hence, the function $P_{M^{\perp}}K_{\lambda} = (1 - \overline{\eta(\lambda)}\eta)K_{\lambda}$ is not analytic at any point in $\partial \mathbb{B}_d$. If $M = [\eta]$ is an invariant subspace of $H^2(\mathbb{B}_d)$ generated by η , by the above corollary, a simple argument shows that

$$\sigma(S_1, \cdots, S_d) = \{\lambda \in \mathbb{B}_d : \eta(\lambda) = 0\} \cup \partial \mathbb{B}_d.$$

Another important type of invariant subspaces is that generated by polynomials (see [1, 4, 7, 8, 17]). For a polynomial p, let [p] denote the invariant subspace of H_v^2 generated by p. Then $S_p = 0$ since for any $f_1, f_2 \in [p]^{\perp}$,

$$\langle S_p f_1, f_2 \rangle = \langle p f_1, f_2 \rangle = 0.$$

From $S_p = p(S_1, \dots, S_d)$, applying [16, Theorem 4.8] shows

$$\sigma(S_1,\cdots,S_d)\subseteq Z(p),$$

where $Z(p) = \{\lambda \in \mathbb{C}^d : p(\lambda) = 0\}$. Combing this fact with Theorem 1, we have

Corollary 2 Let p be a polynomial. Then for each function $f \in H_v^2$ and $f \perp [p]$, f can be analytically extended across $\partial \mathbb{B}_d \setminus Z(p)$.

In the case v = d, H_v^2 is the usual Hardy space. It follows from Corollary 2 that $f \in H^2(\mathbb{B}_d)$ has an analytic continuation across $\partial \mathbb{B}_d \setminus Z(p)$ if $f \perp [p]$. The following example shows that there exists a function $f \in [p]^{\perp}$ such that f can not be analytically extended across each point in $\partial \mathbb{B}_d \setminus Z(p)$.

Example 1 Consider the invariant subspace [z - w] of the Hardy space $H^2(\mathbb{B}_2)$. It is easy to check $[z - w]^{\perp} = \overline{\text{span}}\{(z + w)^n; n = 0, 1, \cdots, \}$. Let B(z) be a Blaschke product satisfying that the closure of its zero set contains the unit circle. Then $B(\frac{z+w}{\sqrt{2}})$ is in $[z - w]^{\perp}$, and it can not be analytically extended across each point in $\{(\frac{\sqrt{2}}{2}e^{i\theta}, \frac{\sqrt{2}}{2}e^{i\theta}); 0 \le \theta \le 2\pi\}$.

We will show by the next example that in some cases, for any fixed point in $\partial \mathbb{B}_d \cap \sigma(S_1, \cdots, S_d)$, there is a function in M^{\perp} such that it can not be analytically extended across this point.

Example 2 Fix $\lambda_0 \in \partial \mathbb{B}_d$, and let M be the invariant subspace of H_v^2 defined by

$$M = \{ f \in H_v^2 : f(\xi \lambda_0) = 0, \text{ where } \xi \in \mathbb{C}, |\xi| < 1 \}.$$

Using the same argument as in Corollary 2, one can verify that

$$\sigma(S_1, \cdots, S_d) \subseteq \{\xi \lambda_0 : \xi \in \mathbb{C}, \ |\xi| \le 1\}$$

Applying Theorem 1 shows that f is analytic in $\overline{\mathbb{B}}_d \setminus \{\xi \lambda_0 : \xi \in \mathbb{C}, |\xi| = 1\}$ for any $f \in M^{\perp}$.

It is not difficult to check that the set span{ $K_{\xi\lambda_0}$: $|\xi| < 1$ } is dense in M^{\perp} . From [11, Example 2], we have $\langle z, \lambda_0 \rangle^n \perp \langle z, \lambda_0 \rangle^m$ if $m \neq n$. It follows that if $\xi \to 0$,

$$\frac{K_{\xi\lambda_0}(z) - K_0(z)}{\overline{\xi}} = \frac{\frac{1}{(1 - \langle z, \xi\lambda_0 \rangle)^v} - 1}{\overline{\xi}} = \sum_{n=1}^{\infty} a_n^{(v)} \overline{\xi}^{n-1} \langle z, \lambda_0 \rangle^n \to a_1^{(v)} \langle z, \lambda_0 \rangle$$

in the norm of H_v^2 . Hence $\langle z, \lambda_0 \rangle \in M^{\perp}$. Using the same argument, we have $\langle z, \lambda_0 \rangle^n \in M^{\perp}$ for any n > 0. Since

$$K_{\xi\lambda_0}(z) = \sum_{n=0}^{\infty} a_n^{(v)} \overline{\xi}^n \langle z, \lambda_0 \rangle^n \in \overline{\operatorname{span}}\{1, \langle z, \lambda_0 \rangle, \langle z, \lambda_0 \rangle^2, \cdots\} \quad \text{for any } |\xi| < 1,$$

this means

$$M^{\perp} = \overline{\operatorname{span}}\{1, \langle z, \lambda_0 \rangle, \langle z, \lambda_0 \rangle^2, \cdots \}.$$

Below, we will show that there is $G_{\xi_0} \in M^{\perp}$ such that G_{ξ_0} can not be analytically extended across the point $\xi_0 \lambda_0$ for any $\xi_0 \in \mathbb{C}$, $|\xi_0| = 1$. First, we calculate the norm of $\langle z, \lambda_0 \rangle^n$. Noticing

$$\|K_{\xi\lambda_0}\|^2 = K_{\xi\lambda_0}(\xi\lambda_0) = \frac{1}{(1-|\xi|^2)^v} = \sum_{n=0}^{\infty} a_n^{(v)} |\xi|^{2n},$$
$$\|K_{\xi\lambda_0}\|^2 = \left\|\sum_{n=0}^{\infty} a_n^{(v)} \xi^n \langle z, \lambda_0 \rangle^n\right\|^2 = \sum_{n=0}^{\infty} |\xi|^{2n} \|a_n^{(v)} \langle z, \lambda_0 \rangle^n\|^2,$$

and comparing the coefficients of $|\xi|^{2n}$, we get

$$\|\langle z, \lambda_0 \rangle^n \|^2 = \frac{1}{a_n^{(v)}}.$$

 Set

$$g(w) = \sum_{n=2}^{\infty} \frac{w^n}{n \ln n}.$$

Then it is analytic in the unit disk $\{|w| < 1\}$, but it can not be analytically extended across the point w = 1. Let

$$G_{\xi_0}(z) = g(\langle z, \xi_0 \lambda_0 \rangle) = \sum_{n=2}^{\infty} \frac{\langle z, \xi_0 \lambda_0 \rangle^n}{n \ln n}.$$

Since

$$a_n^{(v)} = \frac{v(v+1)\cdots(v+n-1)}{n!} > \frac{v}{n}$$
 for $n > 1$,

we have

$$\left\|\sum_{n=2}^{\infty} \frac{\langle z, \xi_0 \lambda_0 \rangle^n}{n \ln n}\right\|^2 = \sum_{n=2}^{\infty} \frac{1}{a_n^{(v)} n^2 \ln^2 n} < \frac{1}{v} \sum_{n=2}^{\infty} \frac{1}{n \ln^2 n} < \infty.$$

This implies that $G_{\xi_0} \in M_{\lambda_0}^{\perp}$ and it can not be extended across the point $\xi_0 \lambda_0$.

In the case $d = 1, v = 2, H_v^2$ is the classical Bergman space $L_a^2(\mathbb{D})$. As in the situation of the classical Hardy space over the unit disk, Bergman inner functions play an important role in the study of invariant subspaces of the Bergman space $L_a^2(\mathbb{D})$ (see [5, 13, 3] and references therein). A function Φ in $L_a^2(\mathbb{D})$ is called a Bergman inner function if

$$\int_{\mathbb{D}} (|\Phi(z)|^2 - 1) z^n dA = 0$$

for all nonnegative integers n, where dA is the normalized area measure. There are a number of references concerning analytic extension of Bergman inner functions. We refer the reader to [5, 13, 15] and the references therein for detailed results on this problem. Notice that if Φ is a Bergman inner function, then $\Phi \perp [z\Phi]$. Set

$$Z(\Phi) = \left\{ \lambda \in \mathbb{C} : |\lambda| = 1, \lim_{|z| < 1, \ z \to \lambda} \Phi(z) = 0 \right\} \cup \{\lambda \in \mathbb{C} : |\lambda| < 1, \ \Phi(\lambda) = 0 \}.$$

Then by Hedenmalm [12, Theorem 1.3], the operator S (acting on $[z\Phi]^{\perp}$) has spectrum

$$\sigma(S) = Z(\Phi) \cup \{0\}.$$

As an application of Theorem 1, we come to a well-known result that Φ can be analytically extended across $\partial \mathbb{D} \setminus Z(\Phi)$ (see the above mentioned references).

Acknowledgement The author would like to thank Professor Kunyu Guo for his suggestions and numerous stimulating discussions.

References

- [1] Arveson, W., Subalgebras of C*-algebras, Acta Math., 123, 1969, 141–224.
- [2] Arveson, W., Subalgebras of C*-algebras III: Multivariable operator theory, Acta Math., 181, 1998, 159– 228.
- [3] Aleman, A., Richter, S. and Sundberg, C., Beurling's theorem for the Bergman space, Acta Math., 177, 1996, 275–310.
- Chen, X. and Guo, K., Analytic Hilbert Modules, π-Chapman & Hall/CRC Reserarch Notes in Mathematics, 433, 2003.
- [5] Duren, P. and Schuster, A., Bergman Spaces, Math. Surveys and Monographs, 100, A.M.S., Providence, RI, 2004.
- [6] Eschmeier, J. and Putinar, M., Spectral Decompositions and Analytic Sheaves, London Mathematical Society Monographs New Series, 10, Clarendon Press, Oxford, 1996.
- [7] Guo, K., Characteristic spaces and rigidity for analytic Hilbert modules, J. Funct. Anal., 163, 1999, 133–151.
- [8] Guo, K., Equivalence of Hardy submodules generated by polynomials, J. Funct. Anal., 178, 2000, 343–371.
- [9] Guo, K., Defect operator for submodules of H_d^2 , J. Reine Angew. Math., 573, 2004, 181–209.
- [10] Guo, K., Defect operator, defect functions and defect indices for analytic submodules, J. Funct. Anal., 213, 2004, 380–411.
- [11] Guo, K., Hu, J. and Xu, X., Toeplitz algebras, subnormal tuples and rigidity on reproducing modules, J. Funct. Anal., 210, 2004, 214–247.
- [12] Hedenmalm, H., Spectral properites of invariant subspaces in the Bergman space, J. Funct. Anal., 115, 1993, 441–448.
- [13] Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman Spaces, Springer-Verlag, New York, 2000.
- [14] Rudin, W., Function Theory in the Unit Ball of C^n , Springer Verlag, New York, 1980.
- [15] Sundberg, C., Analytic continuability of Bergman inner functions, Michigan Math. J., 44, 1997, 399-407.
- [16] Taylor, J., The analytic functional calculus for several commuting operators, Acta Math., 125, 1970, 1–38.
- [17] Yang, R., The Berger-Shaw theorem in the Hardy module over the bidisk, J. Oper. Theory., 42, 1999, 379–404.