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1 Introduction and Preliminaries

The stability problem of functional equations originated from a question in [37] concerning

the stability of group homomorphisms: Let (G1, ∗) be a group and let (G2, ⋄, d) be a metric

group with the metric d( · , · ). Given ǫ > 0, does there exist a δ(ǫ) > 0 such that if a mapping

h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) ⋄ h(y)) < δ for all x, y ∈ G1,

then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ǫ for all x ∈ G1?

If the answer is affirmative, we would say that the equation of homomorphism H(x ∗ y) =

H(x) ⋄H(y) is stable. The concept of stability for a functional equation arises when we replace

the functional equation by an inequality which acts as a perturbation of the equation. Thus the

stability question of functional equations is that how do the solutions of the inequality differ

from those of the given functional equation?

D. H. Hyers [10] gave a first affirmative answer to the question of Ulam for Banach spaces.

Let X and Y be Banach spaces. Assume that f : X → Y satisfies

‖f(x + y) − f(x) − f(y)‖ ≤ ε for all x, y ∈ X and some ε ≥ 0.

Then there exists a unique additive mapping T : X → Y such that

‖f(x) − T (x)‖ ≤ ε for all x ∈ X.
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Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respectively. Consider f : X → Y

to be a mapping such that f(tx) is continuous in t ∈ R for each fixed x ∈ X . T. M. Rassias

[27] introduced the following inequality: Assume that there exist constants θ ≥ 0 and p ∈ [0, 1)

such that

‖f(x + y) − f(x) − f(y)‖ ≤ θ(||x||p + ||y||p) for all x, y ∈ X.

T. M. Rassias [27] showed that there exists a unique R-linear mapping T : X → Y such that

‖f(x) − T (x)‖ ≤
2θ

2 − 2p
||x||p for all x ∈ X.

The above inequality has provided a lot of influence in the development of what is now known as

Hyers-Ulam-Rassias stability of functional equations. Beginning around the year 1980 the topic

of approximate homomorphisms, or the stability of the equation of homomorphism, was studied

by a number of mathematicians. Găvruta [9] generalized the Rassias’ result. The stability

problems of several functional equations have been extensively investigated by a number of

authors and there are many interesting results concerning this problem (see [2, 3, 5–9, 11–26,

28–32, 35]).

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.1 (See [4, 34]) Let X be a real linear space. A quasi-norm is a real-valued

function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.

(3) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on X. The smallest

possible K is called the modulus of concavity of ‖ · ‖.

A quasi-Banach space is a complete quasi-normed space.

A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ X.

In this case, a quasi-Banach space is called a p-Banach space.

Given a p-norm, the formula d(x, y) := ‖x − y‖p gives us a translation invariant metric on

X . By the Aoki-Rolewicz theorem in [34] (see also [4]), each quasi-norm is equivalent to some

p-norm. Since it is much easier to work with p-norms than quasi-norms, henceforth we restrict

our attention mainly to p-norms.

Definition 1.2 (See [1]) Let (A, ‖ · ‖) be a quasi-normed space. The quasi-normed space

(A, ‖ · ‖) is called a quasi-normed algebra if A is an algebra and there is a constant K > 0 such

that ‖xy‖ ≤ K‖x‖ · ‖y‖ for all x, y ∈ A.

A quasi-Banach algebra is a complete quasi-normed algebra.
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If the quasi-norm ‖ · ‖ is a p-norm then the quasi-Banach algebra is called a p-Banach

algebra.

In Section 2, we prove the Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach

algebras, associated to the Cauchy functional equation and the Jensen functional equation.

In Section 3, we investigate isomorphisms between quasi-Banach algebras.

2 Stability of Homomorphisms in Quasi-Banach Algebras

Throughout this section, assume that A is a quasi-normed algebra with quasi-norm ‖ · ‖A

and that B is a p-Banach algebra with p-norm ‖ · ‖B. Let K be the modulus of concavity of

‖ · ‖B.

We prove the Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras,

associated to the Cauchy functional equation.

Theorem 2.1 Let r > 2 and θ be positive real numbers, and let f : A → B be a mapping

such that

‖f(x + y) − f(x) − f(y)‖B ≤ θ(‖x‖r
A + ‖y‖r

A), (2.1)

‖f(xy) − f(x)f(y)‖B ≤ θ(‖x‖r
A + ‖y‖r

A) (2.2)

for all x, y ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique

homomorphism H : A → B such that

‖f(x) − H(x)‖B ≤
2θ

(2pr − 2p)
1

p

‖x‖r
A for all x ∈ A. (2.3)

Proof Letting y = x in (2.1), we get

‖f(2x) − 2f(x)‖B ≤ 2θ‖x‖r
A for all x ∈ A. (2.4)

So
∥

∥

∥
f(x) − 2f

(x

2

)∥

∥

∥

B
≤

2θ

2r
‖x‖r

A for all x ∈ A.

Since B is a p-Banach algebra,

∥

∥

∥
2lf

( x

2l

)

− 2mf
( x

2m

)
∥

∥

∥

p

B
≤

m−1
∑

j=l

∥

∥

∥
2jf

( x

2j

)

− 2j+1f
( x

2j+1

)
∥

∥

∥

p

B
≤

2pθp

2pr

m−1
∑

j=l

2pj

2prj
‖x‖pr

A (2.5)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.5) that the

sequence {2nf( x
2n )} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence

{2nf( x
2n )} converges. So one can define the mapping H : A → B by

H(x) := lim
n→∞

2nf
( x

2n

)

for all x ∈ A.
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It follows from (2.1) that

‖H(x + y) − H(x) − H(y)‖B = lim
n→∞

2n
∥

∥

∥
f
(x + y

2n

)

− f
( x

2n

)

− f
( y

2n

)∥

∥

∥

B

≤ lim
n→∞

2nθ

2nr
(‖x‖r

A + ‖y‖r
A) = 0 for all x, y ∈ A.

So

H(x + y) = H(x) + H(y) for all x, y ∈ A.

Moreover, letting l = 0 and passing the limit m → ∞ in (2.5), we get (2.3).

By the same reasoning as in the proof of Theorem of [27], the mapping H : A → B is

R-linear.

It follows from (2.2) that

‖H(xy) − H(x)H(y)‖B = lim
n→∞

4n
∥

∥

∥
f
( xy

2n · 2n

)

− f
( x

2n

)

f
( y

2n

)
∥

∥

∥

B

≤ lim
n→∞

4nθ

2nr
(‖x‖r

A + ‖y‖r
A) = 0 for all x, y ∈ A.

So

H(xy) = H(x)H(y) for all x, y ∈ A.

Now, let T : A → B be another Cauchy additive mapping satisfying (2.3). Then we have

‖H(x) − T (x)‖B = 2n
∥

∥

∥
H

( x

2n

)

− T
( x

2n

)
∥

∥

∥

B

≤ 2nK
(∥

∥

∥
H

( x

2n

)

− f
( x

2n

)∥

∥

∥

B
+

∥

∥

∥
T

( x

2n

)

− f
( x

2n

)∥

∥

∥

B

)

≤
2n+2Kθ

(2pr − 2p)
1

p 2nr
‖x‖r

A,

which tends to zero as n → ∞ for all x ∈ A. So we can conclude that H(x) = T (x) for all x ∈ A.

This proves the uniqueness of H . Thus the mapping H : A → B is a unique homomorphism

satisfying (2.3).

Theorem 2.2 Let r < 1 and θ be positive real numbers, and let f : A → B be a mapping

satisfying (2.1) and (2.2). If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then there

exists a unique homomorphism H : A → B such that

‖f(x) − H(x)‖B ≤
2θ

(2p − 2pr)
1

p

‖x‖r
A for all x ∈ A. (2.6)

Proof It follows from (2.4) that

∥

∥

∥
f(x) −

1

2
f(2x)

∥

∥

∥

B
≤ θ‖x‖r

A for all x ∈ A.

Since B is a p-Banach algebra,

∥

∥

∥

1

2l
f(2lx) −

1

2m
f(2mx)

∥

∥

∥

p

B
≤

m−1
∑

j=l

∥

∥

∥

1

2j
f(2jx) −

1

2j+1
f(2j+1x)

∥

∥

∥

p

B
≤ θp

m−1
∑

j=l

2prj

2pj
‖x‖pr

A (2.7)
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for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.7) that the

sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence

{ 1

2n f(2nx)} converges. So one can define the mapping H : A → B by

H(x) := lim
n→∞

1

2n
f(2nx) for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 2.1.

We prove the Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras,

associated to the Jensen functional equation.

Theorem 2.3 Let r < 1 and θ be positive real numbers, and let f : A → B be a mapping

with f(0) = 0 satisfying (2.2) such that

∥

∥

∥
2f

(x + y

2

)

− f(x) − f(y)
∥

∥

∥

B
≤ θ(‖x‖r

A + ‖y‖r
A) for all x, y ∈ A. (2.8)

If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique homomorphism

H : A → B such that

‖f(x) − H(x)‖B ≤
K(3 + 3r)θ

(3p − 3pr)
1

p

‖x‖r
A for all x ∈ A. (2.9)

Proof Letting y = −x in (2.8), we get

‖ − f(x) − f(−x)‖B ≤ 2θ‖x‖r
A for all x ∈ A.

Letting y = 3x and replacing x by −x in (2.8), we get

‖2f(x) − f(−x) − f(3x)‖B ≤ (3r + 1)θ‖x‖r
A for all x ∈ A.

Thus

‖3f(x) − f(3x)‖B ≤ K(3r + 3)θ‖x‖r
A for all x ∈ A. (2.10)

So
∥

∥

∥
f(x) −

1

3
f(3x)

∥

∥

∥

B
≤

K(3r + 3)θ

3
‖x‖r

A for all x ∈ A.

Since B is a p-Banach algebra,

∥

∥

∥

1

3l
f(3lx) −

1

3m
f(3mx)

∥

∥

∥

p

B
≤

m−1
∑

j=l

∥

∥

∥

1

3j
f(3jx) −

1

3j+1
f(3j+1x)

∥

∥

∥

p

B

≤
Kp(3r + 3)pθp

3p

m−1
∑

j=l

3prj

3pj
‖x‖pr

A (2.11)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.11) that the

sequence { 1

3n f(3nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence

{ 1

3n f(3nx)} converges. So one can define the mapping H : A → B by

H(x) := lim
n→∞

1

3n
f(3nx) for all x ∈ A.
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By (2.8),

∥

∥

∥
2H

(x + y

2

)

− H(x) − H(y)
∥

∥

∥

B
= lim

n→∞

1

3n

∥

∥

∥
2f

(

3n ·
x + y

2

)

− f(3nx) − f(3ny)
∥

∥

∥

B

≤ lim
n→∞

3rn

3n
θ(‖x‖r

A + ‖y‖r
A) = 0 for all x, y ∈ A.

So

2H
(x + y

2

)

= H(x) + H(y) for all x, y ∈ A.

Moreover, letting l = 0 and passing the limit m → ∞ in (2.11), we get (2.9).

It follows from (2.2) that

‖H(xy) − H(x)H(y)‖B = lim
n→∞

1

9n
‖f(9nxy) − f(3nx)f(3ny)‖B

≤ lim
n→∞

3nrθ

9n
(‖x‖r

A + ‖y‖r
A) = 0 for all x, y ∈ A.

So

H(xy) = H(x)H(y) for all x, y ∈ A.

Now, let T : A → B be another Jensen additive mapping satisfying (2.9). Then we have

‖H(x) − T (x)‖p
B =

1

3pn
‖H(3nx) − T (3nx)‖p

B

≤
1

3pn
(‖H(3nx) − f(3nx)‖p

B + ‖T (3nx) − f(3nx)‖p
B)

≤ 2 ·
3prn

3pn
·
Kp(3 + 3r)pθp

3p − 3pr
‖x‖pr

A ,

which tends to zero as n → ∞ for all x ∈ A. So we can conclude that H(x) = T (x) for all

x ∈ A. This proves the uniqueness of H .

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.4 Let r > 2 and θ be positive real numbers, and let f : A → B be a mapping

with f(0) = 0 satisfying (2.2) and (2.8). If f(tx) is continuous in t ∈ R for each fixed x ∈ A,

then there exists a unique homomorphism H : A → B such that

‖f(x) − H(x)‖B ≤
K(3r + 3)θ

(3pr − 3p)
1

p

‖x‖r
A for all x ∈ A. (2.12)

Proof It follows from (2.10) that

∥

∥

∥
f(x) − 3f

(x

3

)∥

∥

∥

B
≤

K(3r + 3)θ

3r
‖x‖r

A for all x ∈ A.

Since B is a p-Banach algebra,

∥

∥

∥
3lf

( x

3l

)

− 3mf
( x

3m

)∥

∥

∥

p

B
≤

m−1
∑

j=l

∥

∥

∥
3jf

( x

3j

)

− 3j+1f
( x

3j+1

)∥

∥

∥

p

B

≤
Kp(3r + 3)pθp

3pr

m−1
∑

j=l

3pj

3prj
‖x‖pr

A (2.13)
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for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.13) that

the sequence {3nf( x
3n )} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence

{3nf( x
3n )} converges. So one can define the mapping H : A → B by

H(x) := lim
n→∞

3nf
( x

3n

)

for all x ∈ A.

The rest of the proof is similar to the proofs of Theorems 2.1 and 2.3.

3 Isomorphisms Between Quasi-Banach Algebras

Throughout this section, assume that A is a quasi-Banach algebra with quasi-norm ‖ · ‖A

and unit e and that B is a p-Banach algebra with p-norm ‖ · ‖B and unit e′. Let K be the

modulus of concavity of ‖ · ‖B.

We investigate isomorphisms between quasi-Banach algebras, associated to the Cauchy func-

tional equation.

Theorem 3.1 Let r > 2 and θ be positive real numbers, and let f : A → B be a bijective

mapping satisfying (2.1) such that

f(xy) = f(x)f(y) for all x, y ∈ A. (3.1)

If f(tx) is continuous in t ∈ R for each fixed x ∈ A and

lim
n→∞

2nf
( e

2n

)

= e′,

then the mapping f : A → B is an isomorphism.

Proof Since

f(xy) − f(x)f(y) = 0 for all x, y ∈ A,

the mapping f : A → B satisfies (2.2). By Theorem 2.1, there exists a homomorphism H :

A → B satisfying (2.3). The mapping H : A → B is defined by

H(x) = lim
n→∞

2nf
( x

2n

)

for all x ∈ A.

It follows from (3.1) that

H(x) = H(ex) = lim
n→∞

2nf
(ex

2n

)

= lim
n→∞

2nf
( e

2n
· x

)

= lim
n→∞

2nf
( e

2n

)

f(x)

= e′f(x) = f(x) for all x ∈ A.

So the bijective mapping f : A → B is an isomorphism.

Theorem 3.2 Let r < 1 and θ be positive real numbers, and let f : A → B be a bijective

mapping satisfying (2.1) and (3.1). If f(tx) is continuous in t ∈ R for each fixed x ∈ A and

lim
n→∞

1

2n
f(2ne) = e′,

then the mapping f : A → B is an isomorphism.
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Proof Since

f(xy) − f(x)f(y) = 0 for all x, y ∈ A,

the mapping f : A → B satisfies (2.2). By Theorem 2.2, there exists a homomorphism H :

A → B satisfying (2.6). The mapping H : A → B is defined by

H(x) = lim
n→∞

1

2n
f(2nx) for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 3.1.

We investigate isomorphisms between quasi-Banach algebras, associated to the Jensen func-

tional equation.

Theorem 3.3 Let r < 1 and θ be positive real numbers, and let f : A → B be a bijective

mapping with f(0) = 0 satisfying (2.8) and (3.1). If f(tx) is continuous in t ∈ R for each fixed

x ∈ A and

lim
n→∞

1

3n
f(3ne) = e′,

then the mapping f : A → B is an isomorphism.

Proof Since

f(xy) − f(x)f(y) = 0 for all x, y ∈ A,

the mapping f : A → B satisfies (2.2). By Theorem 2.3, there exists a homomorphism H :

A → B satisfying (2.9). The mapping H : A → B is defined by

H(x) = lim
n→∞

1

3n
f(3nx) for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 3.1.

Theorem 3.4 Let r > 2 and θ be positive real numbers, and let f : A → B be a bijective

mapping with f(0) = 0 satisfying (2.8) and (3.1). If f(tx) is continuous in t ∈ R for each fixed

x ∈ A and

lim
n→∞

3nf
( e

3n

)

= e′,

then the mapping f : A → B is an isomorphism.

Proof Since

f(xy) − f(x)f(y) = 0 for all x, y ∈ A,

the mapping f : A → B satisfies (2.2). By Theorem 2.4, there exists a homomorphism H :

A → B satisfying (2.12). The mapping H : A → B is defined by

H(x) = lim
n→∞

3nf
( x

3n

)

for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 3.1.
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