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Homogenization of Reynolds Equation

by Two-Scale Convergence

Peter WALL∗

Abstract To increase the hydrodynamic performance in different machine elements, as

e.g. journal bearings and thrust bearings, during lubrication it is important to understand

the influence of surface roughness. In this connection one encounters homogenization of

the incompressible Reynolds equation, where the roughness of the lubricated surface is

assumed to be periodic. This problem has recently been studied in more engineering-

oriented papers by using the formal method of multiple scale expansion. In this paper, we

rigorously prove both homogenization and corrector results by using two-scale convergence,

which may be regarded as a justification of the formal multiple scale expansion method

described above. Moreover, some numerical illustrations and results are presented.
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1 Introduction

An important problem in the theory of lubrication for thin films is to describe the flow

behavior between two surfaces in relative motion. In this connection one encounter the incom-

pressible Reynolds equation. If µ is the viscosity of the lubricant and the relative motion only

takes place in the x1 direction at the speed V , then the equation is

div(h3(x)∇p(x)) = Λ
∂h(x)

∂x1
on Ω ⊂ R

2,

where p is the pressure, h the film thickness and Λ = 6µV .

In this paper, we focus on the effects of a periodical surface roughness. The film thickness

is assumed to be described by

hε(x) = h0(x) + h1

(x

ε

)

, ε > 0,

where h0 is the global film thickness and h1 is a periodic function which represents the roughness

contribution. Thus ε is a parameter which describes the roughness wavelength. This together

with the Reynolds equation leads to the differential equation

div(h3
ε(x)∇pε(x)) = Λ

∂hε(x)

∂x1
on Ω ⊂ R

2. (1.1)

For small values of ε the coefficient h3
ε includes rapidly oscillating functions. Therefore it is

natural to apply some type of asymptotic analysis in the study of this equation. The mathe-

matical theory which has been developed for this purpose is known as homogenization. We will
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see that the solutions pε converges (in a sense which will be specified below) to the solution of a

homogenized problem. We remark that the homogenization of (1.1) is not that of the classical

problem (see e.g. [1, 6] or [9]) due to the fact that the right hand side does not converge in

W−1,2(Ω).

In the more engineering-oriented papers [3, 8] the formal method of multiple scale expansion

was applied to study the homogenization of (1.1). Indeed it was assumed that pε has the form

pε(x) = p0(x) + εp1

(

x,
x

ε

)

+ ε2p2

(

x,
x

ε

)

+ · · · .

The result of this analysis is that p0 is the solution of a homogenized problem of the type

div(B(x)∇p0(x)) = div(c(x)) on Ω ⊂ R
2, (1.2)

where B and c do not involve any rapid oscillations.

In 1989, Nguetseng introduced a new method for analyzing homogenization problems (see

[9]). This method was later developed by Allaire in [1] and called two-scale convergence. The

method of two scale convergence is now frequently used among mathematicians in the study of

different homogenization problems. In this paper, we use this two-scale convergence technique

to rigorously homogenize (1.1). This together with a so-called corrector result, which we also

prove, may be regarded as justification of the formal multiple scale expansion method described

above.

We want to mention that the compressible Reynolds equation has been studied by two scale

convergence in [7] and the incompressible Reynolds equation has been analyzed by the theory

of G-convergence in [2, 5]. The solution of the homogenized equation (1.2) is fairly complex

since it for each x ∈ Ω involves the solutions of three periodic problems. The numerical aspects

in this connection are considered in [4]. The stochastic Reynolds equation for hydrodynamic

lubrication with random homogeneous roughness of the lubricated surface has been studied

in [12] by using series expansions. We remark that the homogenization of (1.1) may also be

done by moving the right hand side to the left hand side and then applying Tartar’s method of

oscillating test functions. However, the focus of this work is two-scale convergence.

2 Preliminaries and Notation

Let Ω be an open bounded subset of R
2 and Y the unit cube. The set of infinitely differ-

entiable Y -periodic functions is denoted by C∞

per(Y ). Let us recall some basic facts concerning

two-scale convergence. For details the reader is referred to [1, 9, 10] or [11].

Definition 2.1 Let (pε) be a bounded sequence in L2(Ω) and p0 ∈ L2(Ω×Y ). Then we say

that (pε) two-scale converges weakly to p0 (we write pε
2
⇀ p0) if

∫

Ω

pε(x)φ
(

x,
x

ε

)

dx→

∫

Ω

∫

Y

p0(x, y)φ(x, y) dydx, as ε→ 0 (2.1)

for every test function φ of the form φ(x, y) = ψ(x)σ(y), where ψ ∈ C∞

0 (Ω) and σ ∈ C∞

per(Y )

(infinitely differentiable Y -periodic functions ).

Weak two-scale convergence implies weak convergence in L2(Ω). This is seen by choosing

test functions φ in (2.1), which are independent of y. One of the crucial results concerning

two-scale convergence is the following compactness theorem.

Theorem 2.1 If (pε) is a bounded sequence in L2(Ω), then there exists a subsequence which

two-scale converges weakly.
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In addition to weak two-scale convergence we also define strong two-scale convergence.

Definition 2.2 Let (pε) be a bounded sequence in L2(Ω) and p0 ∈ L2(Ω × Y ). Then we

say that (pε) two-scale converges strongly to p0 (we write pε
2
→ p0) if for any bounded sequence

(vε) in L2(Ω) which two-scale converges weakly to v ∈ L2(Ω × Y ), we have that

∫

Ω

pε(x)vε(x) dx→

∫

Ω

∫

Y

p0(x, y)v(x, y) dydx.

Theorem 2.2 Weak two-scale convergence of the sequence (pε) in L2(Ω) to p0 ∈ L2(Ω×Y )

together with

lim
ε→0

∫

Ω

|pε|
2
dx =

∫

Ω

∫

Y

|p0|
2
dydx

is equivalent to strong two-scale convergence of (pε) to p0.

In applications of weak two-scale convergence it is often important to enlarge the class of

test functions φ for which the convergence (2.1) holds true. Let A be the class of Y -periodic

extensions of functions φ in L2(Ω × Y ) for which it holds that φ(x, x
ε )

2
→ φ. The functions in

A will be referred to as admissible test functions. A corollary of Theorem 2.2 is

Corollary 2.1 If a sequence (pε) in L2(Ω) two-scale converges weakly to p0 ∈ L2(Ω × Y ),

then
∫

Ω

pε(x)φ
(

x,
x

ε

)

dx→

∫

Ω

∫

Y

p0(x, y)φ(x, y) dydx, ∀φ ∈ A.

One important subset of A is L2
per(Y ;C(Ω)), more precisely the class of functions φ : Ω ×

R
2 → R which satisfies:

(1) The function x→ φ(x, y) is continuous for µ-almost every y.

(2) The function y → φ(x, y) is µ-measurable and Y -periodic for every x ∈ Ω.

(3) The function y → sup
x∈Ω

|φ(x, y)| is in L2
per(Y ).

An other subset of A is the set of functions φ on the form φ(x, y) = φ1(x)φ2(y), φ1 ∈ L2s(Ω),

φ2 ∈ L2t
per(Y ) with 1 ≤ s, t ≤ ∞ and such that 1

s + 1
t = 1.

Denote by W 1,2
per(Y ) the completion of the set of functions in C∞

per(Y ) which have mean value

zero with respect to the usual norm on W 1,2(Y ). The next fundamental result concerns weak

two-scale convergence in Sobolev spaces.

Theorem 2.3 If (pε) is a sequence in W
1,2
0 (Ω) such that pε(x)

2
⇀ p0(x, y) and ∇pε(x)

2
⇀

z(x, y). Then the weak two-scale limit p0 is independent of y and belongs to W
1,2
0 (Ω), i.e.,

p0(x, y) = p0(x) ∈ W
1,2
0 (Ω). Moreover, z(x, y) = ∇p0(x) + ∇yp1(x, y), where p1 ∈ L2(Ω;

W 1,2
per(Y )).

3 Homogenization of Reynolds Equation

Let Ω be an open bounded subset of R
2 and Y the unit cube. Let h : Ω×R

2 → R be of the

form h(x, y) = h0(x) + h1(y), where h0 ∈ C(Ω), h1 ∈ L∞(RN ) and h1 is a Y -periodic function.

We also assume that there exists a constant α > 0 such that h(x, y) ≥ α. Define

hε(x) = h
(

x,
x

ε

)

= h0(x) + h1

(x

ε

)

.
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Consider Reynolds equation: Find pε ∈ W
1,2
0 (Ω) such that

div(h3
ε∇pε) = Λ

∂hε

∂x1
on Ω. (3.1)

By definition pε is a solution of (3.1) if the following integral identity holds:

∫

Ω

h3
ε∇pε · ∇φdx = Λ

∫

Ω

hε
∂φ

∂x1
dx, ∀φ ∈ W

1,2
0 (Ω). (3.2)

Consider the three periodic problems: Find v1, v2, v3 ∈ L2(Ω;W 1,2
per(Y )) such that

∫

Y

h3[e1 + ∇yv1] · ∇w dy = 0, ∀w ∈ C∞

per(Y ), (3.3)

∫

Y

h3[e2 + ∇yv2] · ∇w dy = 0, ∀w ∈ C∞

per(Y ), (3.4)

∫

Y

h3∇yv3 · ∇w dy = Λ

∫

Y

h
∂w

∂y1
dy, ∀w ∈ C∞

per(Y ), (3.5)

where {e1, e2} is the canonical basis in R
2. We remark that the periodic problems (3.3)–(3.5)

have a unique solution. Define the matrix function B(x) = (bij(x)) in terms of v1 and v2

(

b11
b21

)

=

∫

Y

h3 [e1 + ∇yv1] dy,

(

b12
b22

)

=

∫

Y

h3 [e2 + ∇yv2] dy. (3.6)

Moreover, let the vector function c(x) = (c1(x), c2(x)) be defined via v3

c1 =

∫

Y

(

Λh− h3 ∂v3

∂y1

)

dy and c2 =

∫

Y

−h3 ∂v3

∂y2
dy. (3.7)

The homogenization problem corresponding to (3.1) considers the asymptotic behavior of pε as

ε→ 0. We have the following homogenization result.

Theorem 3.1 The sequence of solutions pε of (3.1) converges weakly in W
1,2
0 (Ω) to the

solution p0 ∈W
1,2
0 (Ω) of the homogenized equation

∫

Ω

B(x)∇p0 · ∇φdx =

∫

Ω

c(x) · ∇φdx, φ ∈ C∞

0 (Ω), (3.8)

where B and c are defined as in (3.6) and (3.7). Moreover, ∇pε
2
⇀ ∇p0(x) +∇yp1(x, y), where

p1 ∈ L2(Ω;W 1,2
per(Y )) and may be expressed in the solutions of the periodic problems (3.3)–(3.5):

p1(x, y) = v1(x, y)
∂p0

∂x1
+ v2(x, y)

∂p0

∂x2
+ v3(x, y). (3.9)

Proof Choose φ = pε as a test function in (3.2)

∫

Ω

h3
ε |∇pε|

2
dx = Λ

∫

Ω

hε
∂pε

∂x1
dx ≤ Λ

∫

Ω

hε |∇pε| dx.

By the assumptions on h0 and h1 it follows that there exists a constant c such that

∫

Ω

|∇pε|
2
dx ≤ c.
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This together with the Poincare inequality implies that the sequences (pε) and (∇pε) are

bounded in L2(Ω) and L2(Ω)2, respectively. By Theorem 2.1 there exists a subsequence (still

denoted by ε) such that pε(x)
2
⇀ p0(x, y) and ∇pε(x)

2
⇀ z(x, y). By Theorem 2.3 it follows that

p0(x, y) = p0(x) ∈ W
1,2
0 (Ω) and z(x, y) = ∇p0(x) + ∇yp1(x, y), where p1 ∈ L2(Ω;W 1,2

per(Y )).

Moreover, Corollary 2.1 implies that

h3
(

x,
x

ε

)

∇pε(x)
2
⇀ h3(x, y)[∇p0(x) + ∇yp1(x, y)]. (3.10)

Since weak two-scale convergence implies weak convergence in L2(Ω) we have that

h3
(

x,
x

ε

)

∇pε →

∫

Y

h3(x, y)[∇p0(x) + ∇yp1(x, y)] dy weakly in L2(Ω).

We can now pass to the limit in (3.2) and obtain

∫

Ω

∫

Y

h3(x, y)[∇p0(x) + ∇yp1(x, y)] dy · ∇φdx = Λ

∫

Ω

∫

Y

h(x, y)
∂φ

∂x1
dydx (3.11)

for every φ ∈ C∞

0 (Ω).

Let wε(x)
def
= εϕ(x)w(x

ε ), where ϕ ∈ C∞

0 (Ω) and w ∈ C∞

per(Y ). Then wε ∈ C∞

0 (Ω) and can

thus be used as a test function in (3.2) which gives

∫

Ω

h3
(

x,
x

ε

)

∇pε · ϕ∇w
(x

ε

)

dx+ ε

∫

Ω

h3
(

x,
x

ε

)

∇pε · w
(x

ε

)

∇ϕdx

= Λ

∫

Ω

h
(

x,
x

ε

)

ϕ
∂w

∂x1

(x

ε

)

dx + εΛ

∫

Ω

h
(

x,
x

ε

)

w
(x

ε

) ∂ϕ

∂x1
dx. (3.12)

Let us now consider what will happen if ε → 0 in (3.12). First we note that both the second

term in the left hand side and the second term in the right hand side of (3.12) tends to 0 as

ε→ 0. From these two observations we conclude that

lim
ε→0

∫

Ω

h3
(

x,
x

ε

)

∇pε · ϕ∇w
(x

ε

)

dx = lim
ε→0

Λ

∫

Ω

h
(

x,
x

ε

)

ϕ
∂w

∂x1

(x

ε

)

dx

= Λ

∫

Ω

∫

Y

h(x, y)ϕ(x)
∂w

∂y1
(y) dydx. (3.13)

This together with (3.10) gives

∫

Ω

∫

Y

h3(x, y)[∇p0(x) + ∇yp1(x, y)]ϕ(x) · ∇w(y) dydx

= Λ

∫

Ω

∫

Y

h(x, y)ϕ(x)
∂w

∂y1
(y) dydx. (3.14)

Since ϕ ∈ C∞

0 (Ω) is arbitrary we have that (for a.e. x) p1(x, y) is the solution of the periodic

problem: Find p1 ∈ L2(Ω;W 1,2
per(Y )) such that

∫

Y

h3(x, y) [∇p0(x) + ∇yp1(x, y)] · ∇w(y) dy = Λ

∫

Y

h(x, y)
∂w

∂y1
(y) dy (3.15)

for any w ∈ C∞

per(Y ); or

∫

Y

h3∇yp1 · ∇w dy = Λ

∫

Y

h
∂w

∂y1
dy −

∂p0

∂x1

∫

Y

h3 ∂w

∂y1
dy −

∂p0

∂x2

∫

Y

h3 ∂w

∂y2
dy
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for any w ∈ C∞

per(Y ). By linearity it is clear that p1 is of the form

p1(x, y) = v1(x, y)
∂p0

∂x1
+ v2(x, y)

∂p0

∂x2
+ v3(x, y), (3.16)

where vn ∈ L2(Ω;W 1,2
per(Y )), n = 1, 2, 3, and solves a corresponding periodic problem (see

(3.3)–(3.5))
∫

Y

h3∇yv1 · ∇w dy = −

∫

Y

h3 ∂w

∂y1
dy, ∀w ∈ C∞

per(Y ),

∫

Y

h3∇yv2 · ∇w dy = −

∫

Y

h3 ∂w

∂y2
dy, ∀w ∈ C∞

per(Y ),

∫

Y

h3∇yv3 · ∇w dy = Λ

∫

Y

h
∂w

∂y1
dy, ∀w ∈ C∞

per(Y ).

Substitution of (3.16) into the equation (3.11) gives the desired result
∫

Ω

B(x)∇p0 · ∇φdx =

∫

Ω

c(x) · ∇φdx.

Thus the theorem is proved for a subsequence. As we will see in Section 4, B(x) is symmetric

and there exists a constant k > 0 such that

k−1 |ξ|2 ≤ B(x)ξ · ξ ≤ k |ξ|2 .

From this it follows by the Lax-Milgram lemma that the homogenized equation (3.8) has a

unique solution and thus that the theorem holds for the whole sequence.

We remark that from the point of homogenization it is nothing special with the boundary

condition pε = 0, which is implicitly embedded in (3.1). Moreover, the continuity assumption

on the global film thickness h0 may be relaxed.

4 Properties of the Homogenized Matrix B

By linearity the homogenized matrix B(x) satisfies

B(x)ξ =

∫

Y

h3(x, y)(ξ + ∇vξ(y))dy, ∀ ξ ∈ R
2,

where vξ ∈W 1,2
per(Y ) is the solution of the periodic problem:

∫

Y

h3(x, y)(ξ + ∇vξ(y)) · ∇w(y) dy = 0, ∀w ∈ W 1,2
per(Y ). (4.1)

We observe that the periodic problem (4.1) actually is the Euler equation to the minimization

problem:

min
v∈W 1,2

per (Y )

∫

Y

h3(x, y)|ξ + ∇v(y)|2dy.

Thus it follows by periodicity that

B(x)ξ · ξ =

∫

Y

h3(x, y)|ξ + ∇vξ(y)|
2dy

= min
v∈W 1,2

per (Y )

∫

Y

h3(x, y) |ξ + ∇v(y)|2 dy. (4.2)
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The assumptions on h implies that there exist two constants c2 ≥ c1 > 0 such that

min
v∈W 1,2

per (Y )

∫

Y

c1 |ξ + ∇v|
2
dy ≤ B(x)ξ · ξ ≤ min

v∈W 1,2
per (Y )

∫

Y

c2 |ξ + ∇v|
2
dy. (4.3)

By choosing v = 0 as a test function in the right hand side we obtain that

B(x)ξ · ξ ≤ c2|ξ|
2.

By (4.3) and homogeneity we get that

B(x)ξ · ξ ≥ min
v∈W 1,2

per (Y )

∫

Y

c1|ξ + ∇v|2dy = c1|ξ|
2 min

v∈W 1,2
per (Y )

∫

Y

|η + ∇v|2dy,

where η = |ξ|−1ξ. The set {η : η = |ξ|−1ξ} is compact in R
2. Hence the strictly positive

continuous function m defined as

m(η)
def
= min

v∈W 1,2
per (Y )

∫

Y

|η + ∇v|2 dµ

attains its minimum, denoted by m0. Hence

B(x)ξ · ξ ≥ c1m0|ξ|
2.

The homogenized matrix is symmetric. Indeed, if vξ and vη are the solutions of the periodic

problems

∫

Y

h3[ξ + ∇yvξ] · ∇w dy = 0, ∀w ∈ W 1,2
per(Y ),

∫

Y

h3[η + ∇yvη] · ∇w dy = 0, ∀w ∈ W 1,2
per(Y ),

then

B(x)ξ · η =

∫

Y

h3(x, y)(ξ + ∇vξ(y)) · (η + ∇vη(y))dy

=

∫

Y

(ξ + ∇vξ(y)) · h
3(x, y)(η + ∇vη(y))dy = ξ ·B(x)η.

5 Corrector Results

By Theorem 3.1 the sequence of solutions (pε) of the Reynolds equations (3.1) converges

weakly to p0 inW 1,2
0 (Ω) and the sequence ∇pε two-scale converges weakly to ∇p0(x)+∇yp1(x, y),

where p0 is the solution of the homogenized equation (3.8) and p1 is given by the relation (3.9).

Since the imbedding of W 1,2
0 (Ω) in L2(Ω) is compact we have that pε converges to p0 strongly in

L2(Ω). For the gradients we only have weak convergence of ∇pε to ∇p0 in L2(Ω)2. To improve

this convergence we have to add an extra term, a so called corrector, which take care of the

oscillations. We will now see that such corrector results can be obtained by using two-scale

convergence.

Theorem 5.1 If ∇yp1(x, y) is an admissible test function, then

∇pε −∇p0 −∇p1

(

·,
·

ε

)

→ 0 in [L2(Ω)]2.
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Proof By the condition h(x, y) ≥ α > 0 and the Hölder inequality it follows

α

∫

Ω

∣

∣

∣
∇pε −∇p0 −∇yp1

(

x,
x

ε

)
∣

∣

∣

2

dx

≤

∫

Ω

h3
(

x,
x

ε

)(

∇pε −∇p0 −∇yp1

(

x,
x

ε

))

·
(

∇pε −∇p0 −∇yp1

(

x,
x

ε

))

dx

=

∫

Ω

h3
(

x,
x

ε

)

∇pε · ∇pε dx− 2

∫

Ω

∇pε · h
3
(

x,
x

ε

)(

∇p0 + ∇yp1

(

x,
x

ε

))

dx

+

∫

Ω

h3
(

x,
x

ε

)(

∇p0 + ∇yp1

(

x,
x

ε

))

·
(

∇p0 + ∇yp1

(

x,
x

ε

))

dx. (5.1)

Let us now study the convergence as ε → 0 for the three terms in the right hand side of (5.1)

separately.

Term 1 Choose pε as a test function in (3.2). Since h is an admissible test function and

∇pε
2
⇀ ∇p0 + ∇yp1 it follows

∫

Ω

h3
(

x,
x

ε

)

∇pε · ∇pε dx = Λ

∫

Ω

h
(

x,
x

ε

) ∂pε

∂x1
dx→ Λ

∫

Ω

∫

Y

h
( ∂p0

∂x1
+
∂p1

∂y1

)

dydx. (5.2)

Term 2 By assumption ∇yp1 is an admissible test function. Hence

∫

Ω

∇pε · h
3
(

x,
x

ε

)(

∇p0 + ∇yp1

(

x,
x

ε

))

dx

→

∫

Ω

∫

Y

(∇p0 + ∇yp1) · h
3(∇p0 + ∇yp1)dydx. (5.3)

Term 3 Again we use that ∇yp1 is an admissible test function and obtain

∫

Ω

h3
ε

(

∇p0 + ∇yp1

(

x,
x

ε

))

·
(

∇p0 + ∇yp1

(

x,
x

ε

))

dx

→

∫

Ω

∫

Y

h3(∇p0 + ∇yp1) · (∇p0 + ∇yp1)dydx. (5.4)

From (5.1)–(5.4) it follows

lim sup
ε→0

α

∫

Ω

∣

∣

∣
∇pε −∇p0 −∇yp1

(

x,
x

ε

)∣

∣

∣

2

dx

≤ Λ

∫

Ω

∫

Y

h
(∂p0

∂x1
+
∂p1

∂y1

)

dydx−

∫

Ω

∫

Y

h3(∇p0 + ∇yp1) · (∇p0 + ∇yp1)dydx. (5.5)

We have that L2(Ω;W 1,2
per(Y )) is the closure in L2(Ω×Y ) of the linear span of vectors ϕ(x)w(y),

where ϕ ∈ C∞

0 (Ω) and w ∈ C∞

per(Y )̇. Thus p1 may be chosen as a test function in (3.14). This

fact together with (3.11) implies that the right hand side of (5.5) is equal to zero. Hence

lim
ε→0

∫

Ω

∣

∣

∣
∇pε −∇p0 −∇yp1

(

x,
x

ε

)∣

∣

∣

2

dx = 0

and the proof is completed.

We remark that if p1, ∇xp1 and ∇yp1 are admissible, then

pε(x) − p0(x) − εp1

(

x,
x

ε

)

→ 0 in W 1,2(Ω).
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We also recall the relation (3.16), i.e., that p1 is of the form

p1(x, y) = v1(x, y)
∂p0

∂x1
+ v2(x, y)

∂p0

∂x2
+ v3(x, y),

where v1, v2 and v3 are the solutions of the respective periodic problem (3.3)–(3.5). Hence

∇yp1 is an admissible test function if e.g. ∇p0 ∈ L2s(Ω)2, ∇yv1,∇yv2 ∈ L2t
per(Y ;C(Ω))2 and

v3(x, y) is admissible, with 1 ≤ s, t ≤ ∞ and such that 1
s + 1

t = 1.

6 Transversal and Longitudinal Roughness

Generally, one has to solve the periodic problems (3.3)–(3.5) by some numerical method to

find the homogenized matrix B in (3.6) and the homogenized vector c in (3.7). However, for h

of the form h(x, y) = h0(x) + h1(y1) (i.e. the roughness h1 is independent of y2) it is possible

to find explicit formulas for the homogenized matrix B(x) and the homogenized vector c(x)

without solving the periodic problems.

Consider the first local problem (3.3):
∫

Y

h3(x, y1)∇yv1 · ∇w dy = −

∫

Y

h3(x, y1)
∂w

∂y1
dy, ∀w ∈ C∞

per(Y ).

Clearly v1 = v1(x, y1). This means that
∫

Y

h3(x, y1)
(

1 +
∂v1

∂y1

) ∂w

∂y1
dy = 0, ∀w ∈ C∞

per(Y ),

which implies that

h3(x, y1)
(

1 +
∂v1

∂y1

)

= k1(x) (6.1)

This together with periodicity gives

0 =

∫

Y

∂v1

∂y1
dy = k1(x)

∫

Y

h−3(x, y1)dy − 1. (6.2)

From (6.1) and (6.2) together with the fact that v1 = v1(x, y1) gives

b11(x)
def
=

∫

Y

h3
(

1 +
∂v1

∂y1

)

dy =
(

∫

Y

h−3 dy
)−1

dy,

b21(x)
def
=

∫

Y

h3 ∂v1

∂y2
dy = 0.

Let us now consider the second periodic problem (3.4):
∫

Y

h3(x, y1)∇yv2 · ∇w dy = −

∫

Y

h3(x, y1)
∂w

∂y2
dy, ∀w ∈ C∞

per(Y ).

The right hand side is equal to 0, which implies that v2 = 0. Hence, by (3.6)

b12(x)
def
=

∫

Y

h3 ∂v2

∂y1
dy = 0, b22(x)

def
=

∫

Y

h3
(

1 +
∂v2

∂y2

)

dy =

∫

Y

h3 dy.

Finally, consider the third periodic problem (3.5):
∫

Y

h3(x, y1)∇yv3 · ∇w dy = Λ

∫

Y

h(x, y1)
∂w

∂y1
dy, ∀w ∈ C∞

per(Y ).
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Clearly v3 only depends on y1. Thus for any w ∈ C∞

per(Y ) such that w only depends on y1

∫

Y

h3(x, y1)
∂v3

∂y1
·
∂w

∂y1
dy = Λ

∫

Y

h(x, y1)
∂w

∂y1
dy.

Hence

Λh(x, y1) − h3(x, y1)
∂v3

∂y1
= k2(x). (6.3)

By periodicity

0 =

∫

Y

∂v3

∂y1
dy = −k2(x)

∫

Y

h−3(x, y1) dy + Λ

∫

Y

h−2(x, y1) dy. (6.4)

From (6.3) and (6.4) it follows that the homogenized vector c (3.7) is

c1(x)
def
=

∫

Y

(

Λh− h3 ∂v3

∂y1

)

dy = Λ

∫

Y

h−2 dy
(

∫

Y

h−3 dy
)−1

,

c2(x)
def
=

∫

Y

−h3 ∂v3

∂y2
dy = 0.

The one dimensional analogue is obvious. In the same way we may consider longitudinal

roughness, i.e., h of the form h(x, y) = h0(x) + h1(y2). Then we obtain that the elements in

the homogenized matrix B are

b11(x) =

∫

Y

h3 dy, b22(x) =
(

∫

Y

h−3 dy
)−1

dy, b12 = b21 = 0,

and the elements in the homogenized vector c are

c1(x) = Λ

∫

Y

h dy and c2(x) = 0.

7 Numerical Results and Illustrations

Below we give two numerical examples one in one dimension and one in two dimensions,

which illustrates the convergence in the homogenization process.

p

x

ε = 0.1

ε = 0.02

R = 1, hmin = 2

Figure 1 Illustration of the homogenization process



Homogenization of Reynolds Equation 373

Example 7.1 Consider the homogenization of the 1-dimensional Reynolds equation (3.1).

Assume that Ω = (−1, 1), the pressure on the boundary is 1 and h(x, y) = h0(x)+h1(y), where

h0 = hmin + 1
2Rx

2 and h1(y) = sin(2πy). In Figure 1 the convergence in the homogenization

process is illustrated. In Figure 2, B1/3 and h0 are plotted for 4 different values of hmin. We

observe that for small values of hmin the influence of the surface roughness is more significant.

x x

x x

p p

p p

hmin = 10

hmin = 2

hmin = 5

hmin = 1.1

h0

B1/3
h0

B1/3

h0

B1/3
h0

B1/3

Figure 2 The pressure with and without roughness for 4 different hmin

Figure 3 Pressure distribution of a step bearing, ε = 0.05

Figure 4 Pressure distribution of a homogenized step bearing
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Example 7.2 (Step Bearing) Let Ω = (0, 2) × (0, 1), Λ = 1 and

h0(x) =

{

4, x1 ≤ 1,

2, x1 > 1
and h1(y) = sin(π(y1 + y2)).

Then a numerical computation gives that homogenized matrix B(x) is equal to B1 for x1 ≤ 1

and B2 for x1 > 1, where

B1 =

(

61.14 −1.30
−1.30 61.14

)

and B2 =

(

6.77 −0.53
−0.53 6.77

)

and the homogenized vector c(x) is equal to c1 for x1 ≤ 1 and c2 for x1 > 1, where

c1 =

(

3.82
−0.18

)

and c2 =

(

1.67
−0.33

)

.
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