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1 Introduction

The volume conjecture was proposed by Kashaev and reformulated and refined by H. Mu-

rakami and J. Murakami as follows.

Conjecture 1.1 (See [2, 5]) For any knot K,

2π lim
N→∞

log
∣∣JK,N (e

2π
√

−1
N )

∣∣
N

= v3‖S3 \ K‖, (1.1)

where JK,N is the (normalized) colored Jones polynomial of K, ‖S3\K‖ is the simplicial volume

of the complement of K and v3 is the volume of the ideal regular tetrahedron.

Recall that v3‖S3 \ K‖ is nothing but the sum of the hyperbolic volumes of hyperbolic

pieces in the JSJ-decomposition of the complement of K. In Kashaev’s original form, the knot

K is hyperbolic and the equation is in terms of the quantum dilogarithm invariant and the

hyperbolic volume of the complement of K.

The conjecture is marvellous in the sense that it reveals the topological meaning of the

quantum invariants of knots which is quite unobvious from definition. However, it also turns

out to be rather hard to be proved. Till now, besides positive numerical evidences (see [1, 6])

for some hyperbolic knots, only the cases of torus knots (see [3]) and the simplest hyperbolic

knot, the figure 8 knot (see [2]) have been verified.

In view of the compatible behavior of both sides of the conjectured equation (1.1) under

connected sum

JK1♯K2,N = JK1,N · JK2,N , (1.2)

‖S3 \ K1♯K2‖ = ‖S3 \ K1‖ + ‖S3 \ K2‖, (1.3)
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the volume conjecture, in fact, may be reduced to the consideration of prime knots. By

Thurston’s hyperbolization theorem (see [7]), the prime knots further fall into three families:

torus knots, hyperbolic knots and satellite knots.

In this article, we deal with the conjecture by examining a special case of the third family,

the Whitehead doubles of torus knots. The approach is emphasized on the relation between

the colored Jones polynomial of a satellite knot and those of the associated companion knot

and pattern link. In particular, we show a technique to compute the colored Jones polynomial

of satellite knots by cutting and gluing method.

Figure 1

A Whitehead double of a knot K is a knot obtained as follows. Remove the regular neighborhood

of one component of the Whitehead link from S3 and thus get a knot inside a torus. Then knot

the torus in the shape of a knot K.

Note that, when K is nontrivial, a Whitehead double K ′ of K is a satellite knot whose

complement contains an obvious essential torus T 2. Cutting along the torus, we get

(S3 \ K ′) \ T 2 ∼= (S3 \ Whitehead link) ∪ (S3 \ K). (1.4)

Thus

‖S3 \ K ′‖ = ‖S3 \ Whitehead link‖ + ‖S3 \ K‖. (1.5)

In particular, if K is a nontrivial torus knot, the complement of K is Seifert fibred and the

complement of the Whitehead link is hyperbolic, hence

v3‖S3 \ K ′‖ = vol(S3 \ Whitehead link). (1.6)

The article proceeds as follows. First, we compute the colored Jones polynomials of the

twisted Whitehead links and the Whitehead doubles of knots in Section 2. Next, as a warming-

up we prove in the next two consecutive sections the following two theorems, of which the

former one is, in fact, the volume conjecture for twisted Whitehead links and both extend the

estimation (1.1) to the second order.

Theorem 1.1 For every twisted Whitehead link L, we have

2π log
∣∣JL,N(e

2π
√

−1
N )

∣∣ = vol(S3 \ L) · N + 3π log N + O(1), as N → ∞. (1.7)

Theorem 1.2 For every nontrivial torus knot T (p, q) with q = 2, we have

2π log
∣∣JT (p,q),N (e

2π
√

−1
N )

∣∣ = 3π log N + O(1), as N → ∞. (1.8)
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Then we prove the main theorem in Section 5 and show some observations in the final

section.

Theorem 1.3 If K is a Whitehead double of a nontrivial torus knot T (p, q) with q = 2,

then

2π log
∣∣JK,N (e

2π
√

−1
N )

∣∣ = v3‖S3 \ K‖ · N + 4π log N + O(1), as N → ∞. (1.9)

In particular, the volume conjecture is true for K.

Remark 1.1 In their proof of the volume conjecture for torus knots, Kashaev and Tirkko-

nen [3] derived the following estimation

2π log
∣∣JT (p,q),N (e

2π
√

−1
N )

∣∣ = O(log N). (1.10)

But improving the estimation to (1.8) requires a nonvanishing proposition on number theory

(see Proposition 4.1) to which both Theorem 1.2 and Theorem 1.3 are reduced in this article.

With a technical condition q = 2, we proved the nonvanishing proposition in Section 4. A

complete proof has been beyond the scope of the article. We only mention here that our

technique can be sharpened to prove the nonvanishing proposition, hence both theorems, at

least for the cases that both p, q are odd or one of them is a power of 2.

Remark 1.2 It is noteworthy that the coefficient “4π” of the second term in the asymptotic

expansion (1.9) disagrees with the observation due to Hikami [1]

2π log
∣∣JK,N (e

2π
√

−1
N )

∣∣ = v3‖S3 \ K‖ · N + 3π log N + O(1) (1.11)

for many prime knots K.

2 Computation of Colored Jones Polynomial

In this section, we compute the colored Jones polynomials of the twisted Whitehead link

WL(r) and the Whitehead double WD(K, r) of a knot K.

WL(r) WD(K,r)

double(K)
r twistsr twists

Figure 2

In Figure 2, double(K) denotes the (2,2)-tangle obtained by doubling the knot K to a link with

zero linking number and then removing a pair of parallel segments.

Our trick is cutting the link diagrams into (2,2)-tangles and gluing the tangle invariants

together.



378 H. Zheng

twist belt double(K) clasp

Figure 3

Colored Jones polynomial is also defined for tangles, but, instead of a Laurent polynomial

of t, it is in general a module homomorphism of Uq(sl2) (choose t = q2). Especially, the colored

Jones polynomial of a (2,2)-tangle is a module homomorphism

VN ⊗ VN → VN ⊗ VN , (2.1)

where VN is the N dimensional irreducible representation of Uq(sl2).

Note that the tensor product admits the decomposition

VN ⊗ VN =

N−1⊕

n=0

V2n+1. (2.2)

A straightforward calculation shows that the (framing independent, unnormalized) colored

Jones polynomials of the tangles are

J̃twist,N =

N−1⊕

n=0

tn(n+1) · idV2n+1 , (2.3)

J̃belt,N =

N−1⊕

n=0

t
N(2n+1)

2 − t−
N(2n+1)

2

t
2n+1

2 − t−
2n+1

2

· idV2n+1 , (2.4)

J̃double(K),N =
N−1⊕

n=0

JK,2n+1 · idV2n+1 , (2.5)

J̃clasp,N =

N−1⊕

n=0

ξN,n · idV2n+1 , (2.6)

where

ξN,n = t
N2−1

2 + N(N−1)
2

N−1−n∑

i=0

t−N(i+n)
n∏

j=1

(1 − tN−i−j)(1 − ti+j)

1 − tj
. (2.7)

Combining the tangle invariants together, one has

JWL(r),N =

N−1∑

n=0

t
2n+1

2 − t−
2n+1

2

t
N
2 − t−

N
2

· trn(n+1) · ξN,n · t
N(2n+1)

2 − t−
N(2n+1)

2

t
2n+1

2 − t−
2n+1

2

, (2.8)

JWD(K,r),N =

N−1∑

n=0

t
2n+1

2 − t−
2n+1

2

t
N
2 − t−

N
2

· trn(n+1) · ξN,n · JK,2n+1. (2.9)

Note that, in the expression of JWD(K,r),N , the factor JK,2n+1 is contributed by the companion

knot K and the other part is precisely obtained from the expression of JWL(r),N by removing

the factor contributed by the belt tangle.
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3 Proof of Theorem 1.1

Let L denote the twisted Whitehead link WL(r). Setting t = e
2π

√
−1

N , we have

JL,N (e
2π

√
−1

N ) = −t−
1
2

N−1∑

n=0

(2n + 1)trn(n+1)
N−1−n∑

i=0

n∏

j=1

(1 − t−i−j)(1 − ti+j)

1 − tj

= −e−
π
√

−1
N

N−1∑

n=0

(2n + 1)a4r−1
n

N−1−n∑

i=0

Sn,i, (3.1)

where

an = e
n(n+1)

2N
π
√
−1−n

2 π
√
−1 = e

n(n+1−N)
2N

π
√
−1, (3.2)

Sn,i =

n∏

j=1

4 sin2 (i+j)π
N

2 sin jπ
N

. (3.3)

First, we prepare a lemma to estimate the norm factor Sn,i. Put

sn = −
n∑

j=1

log
∣∣∣2 sin

jπ

N

∣∣∣ (3.4)

and let

L(x) = −
∫ x

0

log |2 sin u|du (3.5)

be the Lobachevsky function.

Lemma 3.1 For 0 < α < 1, we have uniform estimations

sm − sn =
N

π
L

(mπ

N

)
− N

π
L

(nπ

N

)
+ O(N−1)(m − n) (3.6)

on α
2 N < n < m < (1 − α

2 )N ,

sn =
N

π
L

(nπ

N

)
− 1

2
log n + O(1) (3.7)

on 0 < n < αN and

sn =
N

π
L

(nπ

N

)
− 1

2
log(N − n) + O(1) (3.8)

on (1 − α)N < n < N .

Proof We have

− log
∣∣∣2 sin

jπ

N

∣∣∣ +
N

π

∫ jπ
N

(j−1)π
N

log |2 sinu|du = − log
∣∣∣2 sin

jπ

N

∣∣∣ +
N

π

∫ π
N

0

log
∣∣∣2 sin

( jπ

N
− u

)∣∣∣du

=
N

π

∫ π
N

0

log
∣∣∣
sin( jπ

N − u)

sin jπ
N

∣∣∣du. (3.9)

Since

log
∣∣∣
sin(x − u)

sin x

∣∣∣ = O(u) (3.10)
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uniformly on x ∈ [α
2 π, (1 − α

2 )π] as u → 0, the first estimation follows as

sm − sn − N

π
L

(mπ

N

)
+

N

π
L

(nπ

N

)
=

m∑

j=n+1

N

π

∫ π
N

0

log
∣∣∣
sin

(
jπ
N − u

)

sin jπ
N

∣∣∣du

= O(N−1)(m − n). (3.11)

Note that
sin(x − u)

x − u
· x

sin x
= 1 + O(u). (3.12)

Thus

log
∣∣∣
sin(x − u)

sin x

∣∣∣ = log
∣∣∣
x − u

x

∣∣∣ + O(u) (3.13)

uniformly on x ∈ [−απ, απ] \ {0, u} as u → 0. It follows that

sn − N

π
L

(nπ

N

)
=

n∑

j=1

N

π

∫ π
N

0

log
∣∣∣
sin( jπ

N − u)

sin jπ
N

∣∣∣du

=

n∑

j=1

N

π

∫ π
N

0

log
∣∣∣

jπ
N − u

jπ
N

∣∣∣du + nO(N−1)

=
n∑

j=1

(
− (j − 1) log

j − 1

j
− 1

)
+ O(1)

= − log
n!

nn
− n + O(1) (3.14)

uniformly on 0 < n < αN . Thanks to the Sterling series

log n! = n logn − n +
1

2
log n +

1

2
log 2π + · · · , (3.15)

the second estimation holds.

To see the third estimation, one notices that

L(x) + L(π − x) = 0, (3.16)

sn−1 + sN−n = sN−1. (3.17)

In particular, we have

L
(π

2

)
= 0 (3.18)

and, by the second estimation,

sN−1 = s[ N−1
2 ] + s[ N

2 ] = − logN + O(1). (3.19)

Therefore,

sn = sN−1 − sN−n − log
∣∣∣2 sin

nπ

N

∣∣∣

= − log N +
N

π
L

(nπ

N

)
+

1

2
log(N − n) − log

2(N − n)π

N
+ O(1)

=
N

π
L

(nπ

N

)
− 1

2
log(N − n) + O(1) (3.20)

uniformly on (1 − α)N < n < N .
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From the second and the third estimations of above lemma, we have

log Sn,i = −2sn+i + 2si + sn =
N

π
f
(nπ

N
,
iπ

N

)
+ O(log N) (3.21)

uniformly on 0 ≤ n, i, n + i < N , where

f(x, y) = −2L(x + y) + 2L(y) + L(x). (3.22)

The function f(x, y) has a unique critical point (π
2 , π

4 ) in the region 0 ≤ x, y, x + y ≤ π, at

which f reaches maximum

f
(π

2
,
π

4

)
= 4L

(π

4

)
(3.23)

and expands as

f
(
x +

π

2
, y +

π

4

)
= f

(π

2
,
π

4

)
− (x2 + 2xy + 2y2) + · · · . (3.24)

Notice that the phase factor an is also steady near N
2 . In what follows, the sum (3.1) is

expected to be dominated by the sum whose index (n, i) is near (N
2 , N

4 ). Indeed, this is the

case as demonstrated by the next pair of lemmas.

Lemma 3.2 For any 1
2 < δ < 1, there exist ǫ > 0 and C > 0 such that

Sn,i < Ce−ǫN2δ−1

S[ N
2 ],[ N

4 ] (3.25)

for |n − N
2 | + |i − N

4 | ≥ N δ.

Proof Since f has a unique critical point (π
2 , π

4 ) in the region 0 ≤ x, y, x + y ≤ π, we have

f(x, y) ≤ max
|x′−π

2 |+|y′−π
4 |=πNδ−1

f(x′, y′) (3.26)

for |x − π
2 | + |y − π

4 | ≥ πN δ−1. By (3.24), there exist ǫ > 0 and C′ > 0 such that

max
|x′−π

2 |+|y′−π
4 |=πNδ−1

f(x′, y′) < f
(π

2
,
π

4

)
− 2πǫ(N δ−1)2 + C′. (3.27)

Therefore, by (3.21) there exists C′′ > 0 such that

log Sn,i < log S[ N
2 ],[ N

4 ] − ǫN2δ−1 + C′′ (3.28)

for |n − N
2 | + |i − N

4 | ≥ N δ.

Lemma 3.3 For any α ≥ 0, β ∈ R and 1
2 < δ < 2

3 , there exists a nonzero constant C ∈ C

such that
∑

|n−N
2 |+|i−N

4 |<Nδ

(2n + 1)αaβ
nSn,i = CNα+1e−

βN
8 π

√
−1S[ N

2 ],[ N
4 ](1 + O(N3δ−2)). (3.29)

Proof For simplicity, we use the notation n′ = n − N
2 , i′ = i − N

4 in the proof. Note that

∑

|n−N
2 |+|i−N

4 |<Nδ

(2n + 1)αe−
π
N

(n′2+2n′i′+2i′2)+ βn′2

2N
π
√
−1

=

∫

|x|+|y|<Nδ− 1
2

Nα+1e−π(x2+2xy+2y2)+ βx2

2 π
√
−1dxdy(1 + O(N δ−1))

=

∫

R2

Nα+1e−π(x2+2xy+2y2)+ βx2

2 π
√
−1dxdy(1 + O(N δ−1)). (3.30)
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By (3.6) and (3.24), we have

log Sn,i − log S[ N
2 ],[ N

4 ] =
N

π
f
(nπ

N
,
iπ

N

)
− N

π
f
(π

2
,
π

4

)
+ O(N δ−1)

= − π

N
(n′2 + 2n′i′ + 2i′2) + O(N3δ−2) (3.31)

uniformly on |n − N
2 | + |i − N

4 | < N δ. Moreover, on the same region we have the uniform

estimation

an = e
n(n+1−N)

2N
π
√
−1 = e( n′2

2N
−N

8 + n
2N

)π
√
−1 = e( n′2

2N
−N

8 + 1
4 )π

√
−1(1 + O(N δ−1)). (3.32)

Therefore, by (3.30),

∑

|n−N
2 |+|i−N

4 |<Nδ

(2n + 1)αaβ
nSn,i =

∫

R2

e−π(x2+2xy+2y2)+ βx2

2 π
√
−1dxdy

·Nα+1eβ(−N
8 + 1

4 )π
√
−1S[ N

2 ],[ N
4 ](1 + O(N3δ−2)). (3.33)

To conclude the lemma it suffices to choose

C = e
β
4 π

√
−1

∫

R2

e−π(x2+2xy+2y2)+ βx2

2 π
√
−1dxdy. (3.34)

It follows from Lemma 3.2 and Lemma 3.3 that, in the same notations,

∑

|n−N
2 |+|i−N

4 |≥Nδ

(2n + 1)a4r−1
n Sn,i = N3e−ǫN2δ−1

S[ N
2 ],[ N

4 ]O(1),

∑

|n−N
2 |+|i−N

4 |<Nδ

(2n + 1)a4r−1
n Sn,i = N2S[ N

2 ],[ N
4 ]e

O(1),
(3.35)

so

log
∣∣JL,N(e

2π
√

−1
N )

∣∣ = log(N2S[ N
2 ],[ N

4 ]) + O(1). (3.36)

From (3.7) we also have

log S[ N
2

],[ N
4

] =
4N

π
L

(π

4

)
− 1

2
log N + O(1). (3.37)

Therefore,

2π log
∣∣JL,N(e

2π
√

−1
N )

∣∣ = 8L
(π

4

)
·N +3π log N +O(1) = vol(S3\L) ·N +3π log N +O(1) (3.38)

as N → ∞. In the last row, we used the fact

vol(S3 \ L) = vol(S3 \ Whitehead link) = 8L
(π

4

)
. (3.39)

4 Proof of Theorem 1.2

The colored Jones polynomial of the torus knot T (p, q) was calculated in [4] as

JT (p,q),n =
t−

pq(n2−1)
4

t
n
2 − t−

n
2

n−1
2∑

k=−n−1
2

tpk(qk+1)(tqk+ 1
2 − t−qk− 1

2 ). (4.1)
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We put

A±
p,q(N, k) =

pq−1∑

j=1

(±1)je−
Nj2

2pq
π
√
−1j2k sin

jπ

p
sin

jπ

q
. (4.2)

Note that

A±
p,q(N, k) = A∓

p,q(N + 2pq, k) = A±
p,q(N + 4pq, k), (4.3)

so

A(−1)n

p,q (N, k) = A+
p,q(N + 2npq, k), A+

p,q(N, k) = A(−1)n

p,q (N + 2npq, k). (4.4)

In [3], an estimation of JT (p,q),N (e
2π

√
−1

N ) was derived as

JT (p,q),N (e
2π

√
−1

N ) = 2e−pq N2−1
2N

π
√
−1 N

3
2

(2pq)
3
2

e−( p
q
+ q

p
) π

√
−1

2N
+ π

√
−1
4 A(−1)N−1

p,q (N, 1) + O(1). (4.5)

In view of the periodicity of A±
p,q, to establish the theorem it suffices to show that A

(−1)N−1

p,q (N, 1)

never vanishes if q = 2, or equivalently by (4.4),

Proposition 4.1 Let p, q ≥ 2 be coprime integers with q = 2. Then for every integer N ,

A+
p,q(N, 1) =

pq−1∑

j=1

e−
Nj2

2pq
π
√
−1j2 sin

jπ

p
sin

jπ

q
6= 0. (4.6)

The proof of the proposition is purely arguments on elementary algebraic number theory.

In the following, we write ζn = e
2π

√
−1

n for each n ∈ N. An algebraic number field means a finite

extension of Q contained in C.

For any finite extension E/K of field, one has a K-linear map trE/K : E → K, called the

trace function, which values on x ∈ E the trace of the K-linear transformation ρx : E → E

given by ρx(z) = xz.

Lemma 4.1 Let α be a prime, k, l ∈ N and K be an algebraic number field such that

K ∩ Q(ζαk+l) = Q. Then we have

trK(ζ
αk+l )/K(ζ

αl )(ζ
n
αk+l) =

{
0, αk ∤ n,

αk · ζn
αk+l , αk | n.

(4.7)

Proof The field extension K(ζαk+l)/K(ζαl) has a basis {ζi
αk+l | 0 ≤ i < αk} on which the

diagonal of the matrix of ζn
αk+l consists of only 0 if αk ∤ n, or ζn

αk+l otherwise.

Lemma 4.2 Let α be a prime and K be an algebraic number field such that K∩Q(ζα) = Q.

Then
α−1∑

j=0

cj · ζj
α = 0 (4.8)

for cj ∈ K if and only if the cj’s are identical.

Proof On one hand, the field extension K(ζα)/K has a basis {1, ζα, ζ2
α, · · · , ζα−2

α }. On the

other hand, we have
α−1∑
j=0

ζj
α = 0. Therefore, the sum vanishes if and only if the cj ’s are identical

to cα−1.

Thanks to the next lemma, we are able to eliminate the Gaussian exponential appearing in

the expression of A±
p,q.
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Lemma 4.3 Let α be an odd prime, l ∈ N and K be an algebraic number field such that

K ∩ Q(ζαl) = Q. Assume that ∑

j∈X

cj · ζ−Nj2+2aj
αl = 0, (4.9)

where X is a finite subset of Z, cj ∈ K and α ∤ a. Then we have

∑

j∈X: j≡0 mod αl−1

cj · ζ2aj
αl = 0, (4.10)

if α | N , or otherwise, ∑

j∈X: Nj≡a mod α[ l+1
2

]

cj = 0. (4.11)

Proof If α | N , taking the trace function of K(ζαl)/K(ζα) on both sides of the equality

assumed, we find from Lemma 4.1 that

∑

j∈X: j≡0 mod αl−1

cj · ζ2aj
αl = 0. (4.12)

Otherwise, choose b ∈ Z such that bN ≡ 1 mod αl. From the assumption, we have

∑

j∈X

cj · ζ−b(Nj−a)2

αl = ζ−ba2

αl

∑

j∈X

cj · ζ−Nj2+2aj
αl = 0. (4.13)

Taking the trace function of K(ζαl)/K(ζα) on both sides of the equality, we get

α−1∑

k=0

( ∑

j∈X: −b(Nj−a)2≡kαl−1 mod αl

cj

)
· ζk

α = 0. (4.14)

Since α is an odd prime, the congruence equation x2 ≡ −kNαl−1 mod αl has no solution

for some 0 < k < α. It follows from Lemma 4.2 that the coefficient of ζk
α in the above sum

identically vanishes. In particular,

∑

j∈X: −b(Nj−a)2≡0 mod αl

cj = 0. (4.15)

Hence the lemma follows.

Proof of Proposition 4.1 Assume that A+
p,q(N, 1) = 0 for

p = αl1
1 αl2

2 · · ·αlr
r · βk1

1 βk2
2 · · ·βks

s , (4.16)

where the αi’s and βi’s are distinct odd primes not dividing and dividing N , respectively.

Rewrite A+
p,q(N, 1) = 0 as

−1

4

∑

−pq<j<pq

j2 · ζ−Nj2+2qj
4pq · (ζj

2q − ζ−j
2q ) = 0 (4.17)

and choose σ ∈ Gal(Q(ζ8p)/Q) so that

σ(ζ4pq) = ζ4q · ζα
l1
1
· · · ζαlr

r
· ζ

β
k1
1

· · · ζβks
s

. (4.18)
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Under the Galois action of σ, the equality becomes

−1

4

∑

−pq<j<pq

j2 · (ζ4q · ζα
l1
1
· · · ζαlr

r
· ζ

β
k1
1

· · · ζβks
s

)−Nj2+2qj · (ζpj
2q − ζ−pj

2q ) = 0. (4.19)

Put

α = α
[

l1+1
2 ]

1 · · ·α[ lr+1
2 ]

r , β = βk1−1
1 · · ·βks−1

s , p′ = β1 · · ·βs. (4.20)

It follows from Lemma 4.3 that

−1

4

∑

j∈X

j2 · (ζ
β

k1
1

· · · ζβks
s

)2qj · ζ−Nj2+2qj
4q · (ζpj

2q − ζ−pj
2q ) = 0, (4.21)

where

X = {−pq < j < pq | Nj ≡ q mod α, j ≡ 0 mod β}. (4.22)

Now we apply the condition q = 2. Notice that

ζ−Nj2+4j
8 · (ζpj

4 − ζ−pj
4 ) =

{
0, 2 | j,

−ζ−N
8 · (−1)

j−1
2 (ζp

4 − ζ−p
4 ), 2 ∤ j.

(4.23)

Dropping a nonzero factor, (4.21) becomes

∑

j∈X:2∤j

j2 · ζ
4j
β

p′ · (−1)
j−1
2 = 0. (4.24)

Choose 0 ≤ j0 < 2α so that Nβj0 ≡ 2 mod α and j0 ≡ 1 mod 2. Then the left hand side of

above equality, up to a sign, is

∑

− p
αβ

≤j< p
αβ

β2(2αj + j0)
2 · ζ8αj+4j0

p′ · (−1)j =
8pβζ4j0

p′

1 + ζ8α
p′

(
j0 −

2α

1 + ζ−8α
p′

)
. (4.25)

Therefore, we must have p′ = 1 and j0 = α. But from the choice of j0, it follows that α = 1.

Hence p = 1, a contradiction.

This completes the proof of the proposition and hence Theorem 1.2.

5 Proof of Theorem 1.3

Let K denote the r-twisted Whitehead double of the torus knot T (p, q). Then

JK,N =
1

t
N
2 − t−

N
2

N−1∑

n=0

trn(n+1)ξN,nĴT (p,q),2n+1, (5.1)

where

ĴT (p,q),n = (t
n
2 − t−

n
2 )JT (p,q),n. (5.2)

Setting t = e
2π

√
−1

N , one notices that the denominator t
N
2 − t−

N
2 vanishes. Therefore, one has

to apply the L’Hospital’s rule, i.e., take derivative of both the denominator and the numerator.

It follows that

JK,N =
−t−

1
2

−N

N−1∑

n=0

a4r−1
n

N−1−n∑

i=0

Sn,i

(
bn,iĴT (p,q),2n+1 + t

d

dt
ĴT (p,q),2n+1

)
, (5.3)
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where

bn,i = rn(n + 1) − N(i + n) +
n∑

j=1

(
− N − i − j

1 − t−N+i+j
− i + j

1 − t−i−j
+

j

1 − t−j

)
(5.4)

and an, Sn,i are the same as in Section 3.

Below, we follow the approach used in [3] to derive an estimation of ĴT (p,q),n and t d
dt ĴT (p,q),n

in the form of (4.5). For any complex number h with Im(h) > 0, one has the integral formula

ĴT (p,q),n(eh) = e−pq(n2−1) h
4

( pq

πh

) 1
2

e−( p
q
+ q

p
) h
4

∫

C

dzepq(nz− z2

h
)τ(z), (5.5)

where the contour C is given by the line e
π
√

−1
4 R and

τ(z) =
(epz − e−pz)(eqz − e−qz)

epqz − e−pqz
. (5.6)

Lemma 5.1 For h = 2π
√
−1

N , we have

dk

dhk

∫

C

dzepq(nz− z2

h
)τ(z) = −4π

√
−1

1

pq

( N2

4pq

)k

A(−1)n−1

p,q (N, k) + O(N2k− 1
2 ) (5.7)

uniformly on |n − N | < N
2pq .

Proof Put z0 = n
2 h = n

N π
√
−1. We have

∫

C+z0

dzepq(nz− z2

h
)z2kτ(z) = epq

z2
0

h

∫

C

dze−pq z2

h (z + z0)
2kτ(z + z0) = O(N− 1

2 ) (5.8)

uniformly on |n − N | < N
2pq , since the function z2kτ(z) is bounded on the region

z ∈
{
e

π
√

−1
4 x + yπ

√
−1

∣∣∣ x, y ∈ R, |y − 1| <
1

2pq

}
. (5.9)

Counting the residues of the integrand at jπ
√
−1

pq , 0 < j < pq, we also have

(∫

C

−
∫

C+z0

)
dzepq(nz− z2

h
)z2kτ(z) = −4

(π
√
−1

pq

)2k+1

A(−1)n−1

p,q (N, k). (5.10)

Therefore,

dk

dhk

∫

C

dzepq(nz− z2

h
)τ(z) =

(pq

h2

)k
∫

C

dzepq(nz− z2

h
)z2kτ(z)

= −4π
√
−1

1

pq

( N2

4pq

)k

A(−1)n−1

p,q (N, k) + O(N2k− 1
2 ) (5.11)

uniformly on |n − N | < N
2pq .

Lemma 5.2 For t = e
2π

√
−1

N , we have

ĴT (p,q),n = O(1), (5.12)

t
d

dt
ĴT (p,q),n = −2e−pq n2−1

2N
π
√
−1 N

5
2

(2pq)
3
2

e−( p
q
+ q

p
) π

√
−1

2N
+ π

√
−1
4 A(−1)n−1

p,q (N, 1) + O(N2) (5.13)

uniformly on |n − N | < N
2pq .
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Proof From (5.5) and Lemma 5.1, we have

ĴT (p,q),n = −4e−pq n2−1
2N

π
√
−1 N

1
2

(2pq)
1
2

e−( p
q
+ q

p
) π

√
−1

2N
+π

√
−1
4 A(−1)n−1

p,q (N, 0) + O(1). (5.14)

It follows from the periodicity of A±
p,q and the identity

ĴT (p,q),N (e
2π

√
−1

N ) = 0 · JT (p,q),N (e
2π

√
−1

N ) = 0 (5.15)

that A
(−1)N−1

p,q (N, 0), hence by (4.4) A±
p,q(N, 0), identically vanishes. So, the leading term of

the right hand side of (5.14) is zero. Then, applying Lemma 5.1 to the derivative of (5.5), one

obtains the second estimation.

Now we conclude the proof of the theorem. It is clear that

bn,iĴT (p,q),2n+1 + t
d

dt
ĴT (p,q),2n+1 = O(N3)O(N) + O(N3) = O(N4) (5.16)

uniformly on 0 ≤ n, i, n + i < N . Moreover, for 0 < α < 1, since the function

x

1 − e−2
√
−1x

=
e
√
−1xx

2
√
−1 sin x

(5.17)

is bounded on x ∈ [0, απ], we have

bn,i = O(N2) (5.18)

uniformly on 0 < n, i, n + i < αN . It follows from Lemma 5.2 that

bn,iĴT (p,q),2n+1 = O(N2), (5.19)

t
d

dt
ĴT (p,q),2n+1 = −2(an)−4pq N

5
2

(2pq)
3
2

e−( p
q
+ q

p
) π

√
−1

2N
+π

√
−1
4 A+

p,q(N, 1) + O(N2) (5.20)

uniformly on |n − N
2 | + |i − N

4 | < N
4pq .

Therefore, in the case that q = 2, by Lemma 3.2, Lemma 3.3 and Proposition 4.1, in the

same notations we have

∑

|n−N
2 |+|i−N

4 |≥Nδ

a4r−1
n Sn,i

(
bn,iĴT (p,q),2n+1 + t

d

dt
ĴT (p,q),2n+1

)
= N6e−ǫN2δ−1

S[ N
2 ],[ N

4 ]O(1),

∑

|n−N
2 |+|i−N

4 |<Nδ

a4r−1
n Sn,i

(
bn,iĴT (p,q),2n+1 + t

d

dt
ĴT (p,q),2n+1

)
= N

7
2 S[ N

2 ],[ N
4 ]e

O(1),

(5.21)

and hence

2π log
∣∣JK,N (e

2π
√

−1
N )

∣∣ = 2π log(N
5
2 S[ N

2 ],[ N
4 ]) + O(1) = 8L

(π

4

)
· N + 4π log N + O(1)

= v3‖S3 \ K‖ · N + 4π log N + O(1), as N → ∞. (5.22)

6 Concluding Remarks

Although the proof of Theorem 1.3 depends on the simple nature of the Whitehead doubles

of torus knots, the approach still works for the satellite knots to which the colored Jones
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polynomials of the associated companion knot and pattern link satisfy certain mild conditions.

Meanwhile, one has to deal with several problems.

For example, as shown in expression (2.9), although the volume conjecture itself is only

concerned with the value of the colored Jones polynomial JK,N at the N -th root of unity, the

values at other roots of unity become crucial once the satellite knots of K are involved.

A more challenging problem is due to the estimations (5.19) and (5.20), which have en-

abled us to neglect the term bn,iĴT (p,q),2n+1 in the sum (5.3). Note that the derivative of the

polynomial

ĴK,N = (t
N
2 − t−

N
2 )JK,N (6.1)

is related to JK,N by the identity

t
d

dt
ĴK,N (e

2π
√

−1
N ) = −NJK,N(e

2π
√

−1
N ). (6.2)

Therefore, the term t d
dt ĴT (p,q),2n+1 in the sum (5.3) indeed plays the role of JT (p,q),N (e

2π
√

−1
N ).

Hence, it is quite natural to see the term bn,iĴT (p,q),2n+1 is suppressed. Following this obser-

vation, when the Whitehead doubles of general knots are considered, it is reasonable to expect

that a similar suppression happens.

Conjecture 6.1 For every nontrivial knot K, we have

ĴK,2n+1(e
2π

√
−1

N )

t d
dt ĴK,2n+1(e

2π
√

−1
N )

= o(N−2) (6.3)

uniformly on |n − N
2 | < N δ for some 1

2 < δ < 2
3 .

Note that the conjecture excludes the unknot, for which the statement of the conjecture is

obviously false. Indeed, the Whitehead doubles of the unknot are no longer satellite knots but

the so called twist knots (including unknot, trefoil, figure 8, etc.), whose complements always

admit a volume strictly smaller than that of Whitehead link. In the sequel, the conjecture has

an immediate consequence: colored Jones polynomial detects the unknot.
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