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Abstract The aim of this work is to construct weak solutions for the three dimensional

Vlasov-Poisson initial-boundary value problem with bounded electric field. The main in-

gredient consists of estimating the change in momentum along characteristics of regular

electric fields inside bounded spatial domains. As direct consequences, the propagation of

the momentum moments and the existence of weak solution satisfying the balance of total

energy are obtained.
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1 Introduction

The Vlasov equation gives a kinetic description of the motion of charged particles under

the action of the electro-magnetic field in the collisionless case. This equation is coupled to the

Maxwell equations for the electro-magnetic field; we obtain the Vlasov-Maxwell system. When

the magnetic field is neglected, the system obtained is called the Vlasov-Poisson system.

Consider Ω an open bounded subset of R
3
x with regular boundary ∂Ω. We introduce the

notations Σ = ∂Ω × R
3
p, ΣR = ∂Ω ×BR, where BR = {p ∈ R

3
p | |p| ≤ R} and

Σ± = {(x, p) ∈ ∂Ω × R
3
p | ± (v(p) · n(x)) > 0}, Σ±

R = Σ± ∩ ΣR, (1.1)

where n(x) is the unit outward normal to ∂Ω at x and v(p) is the velocity associated with some

energy function E(p) by v(p) = ∇pE(p), ∀ p ∈ R
3
p. The functions to be considered are

E(p) =
|p|2
2m

, v(p) =
p

m
(1.2)

for the classical case and

E(p) = mc20

((
1 +

|p|2
m2c20

)1/2

− 1
)
, v(p) =

p

m

(
1 +

|p|2
m2c20

)−1/2

(1.3)

for the relativistic case, where m is the mass of particles, c0 is the light speed in the vacuum.

We denote by f(t, x, p) the particles distribution depending on the time t ∈]0, T [, position x ∈ Ω

and momentum p ∈ R
3
p and by F (t, x, p) the electro-magnetic force

F (t, x, p) = q(E(t, x) + v(p) ∧B(t, x)), (t, x, p) ∈]0, T [×Ω× R
3
p, (1.4)
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where (E,B) is the electro-magnetic field and q is the charge of particles. The Vlasov-Maxwell

system is given by

∂tf + v(p) · ∇xf + F (t, x, p) · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× R
3
p, (1.5)

∂tE − c20 · rot B =− j

ε0
, ∂tB + rot E = 0, div E =

ρ

ε0
, div B = 0, (t, x) ∈]0, T [×Ω, (1.6)

where ρ(t, x) = q
∫

R3
p
f(t, x, p) dp, j(t, x) = q

∫
R3

p
v(p)f(t, x, p) dp are the charge and current

densities respectively, ε0 is the permittivity of the vacuum, µ0 is the permeability of the vacuum

(ε0 · µ0 · c20 = 1). The above equations are completed with the initial conditions:

f(0, x, p) = f0(x, p), (x, p) ∈ Ω × R
3
p, E(0, x) = E0(x), B(0, x) = B0(x), x ∈ Ω, (1.7)

and the boundary conditions:

f(t, x, p) = g(t, x, p), (t, x) ∈]0, T [×Σ−, (1.8)

n ∧ E(t, x) + c0 · n ∧ (n ∧B(t, x)) = h(t, x), (t, x) ∈]0, T [× ∂Ω. (1.9)

Some other boundary conditions can be analyzed. When we neglect the magnetic field, B = 0,

the electric field derives from a potential E = −∇xΦ, the electric force is given by F (t, x) =

−q∇xΦ and we obtain the Vlasov-Poisson system:

∂tf + v(p) · ∇xf + F (t, x) · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× R
3
p, (1.10)

− ∆xΦ =
ρ

ε0
, (t, x) ∈]0, T [×Ω, (1.11)

f(0, x, p) = f0(x, p), (x, p) ∈ Ω × R
3
p, f(t, x, p) = g(t, x, p), (t, x) ∈]0, T [×Σ−, (1.12)

Φ(t, x) = ϕ0(t, x), (t, x) ∈]0, T [× ∂Ω. (1.13)

This model can be derived from the relativistic Vlasov-Maxwell system by letting c0 → +∞
(see [1, 2]).

Various results were obtained for the free space Vlasov-Poisson system. Weak solutions

were constructed by Arseneev [3], Horst and Hunze [4]. The existence of classical solutions

has been studied by Ukai and Okabe [5], Horst [6], Batt [7], Pfaffelmoser [8]. The existence of

global classical solutions for the Vlasov-Poisson equations was proved by Bardos and Degond

[9], Schaeffer [10, 11]. The propagation of the moments for the three dimensional Vlasov-Poisson

system was studied by Lions and Perthame in [12]. The existence of global weak solution for the

Vlasov-Maxwell system in three dimension was obtained by Diperna and Lions [13]. Results for

the relativistic case were proved by Glassey and Schaeffer [14, 15], Glassey and Strauss [16, 17],

Klainerman and Staffilani [18], Bouchut, Golse and Pallard [19].

Results for the initial-boundary value problemwere obtained by Ben Abdallah [20] for the

Vlasov-Poisson system in three dimension and Guo [21] for the Vlasov-Maxwell system. The

stationary problem for the Vlasov-Poisson equations was studied by Greengard and Raviart

[22] in one dimension and by Poupaud [23] in three dimension for the Vlasov-Maxwell system.

An asymptotic analysis of the Vlasov-Poisson system was done by Degond and Raviart [24] in

the case of the plane diode. The regularity of the solutions for the Vlasov-Maxwell system has

been studied by Guo [25]. Results for the time periodic case can be found in [26, 27].
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The aim of this paper is to construct weak solutions for the three dimensional Vlasov-Poisson

initial-boundary value problemwith bounded electric field. As usual we start by analyzing a

regularized system for which the existence of solution follows by a fixed point method. Next we

find uniform a priori bounds for these solutions by using the physical conservation laws, under

the natural hypotheses that

∫

Ω

∫

R3
p

(1 + E(p))f0(x, p) dxdp+

∫

Ω

|∇xΦ(0, x)|2 dx

+

∫ T

0

∫

Σ−

|(v(p) · n(x))|(1 + E(p))g dtdσdp < +∞

and ϕ0 is smooth. Finally we construct a weak solution by taking a weak limit of the sequence

of smooth solutions (see Theorem 5.1 for exact statements). Of course, such a construction is

standard (see [20]). The new results of this work consists of establishing L∞ bounds for the

electric field (see Subsection 4.2) and the derivation of some important consequences. One of

the crucial points is to observe that the change in momentum along characteristics inside a

bounded spatial domain can be estimated in term of the L∞ norm of the electric field. This

idea has been already used in [26]. For example, in the classical case we prove that for all

characteristic
dX

ds
=
P (s)

m
,

dP

ds
= qE(s,X(s)),

we have

|P (s1) − P (s2)| ≤ 2 · (2 · |q| · ‖E‖L∞ ·m · diam(Ω))
1
2

for all sin ≤ s1 ≤ s2 ≤ sout (here sin, sout denote the incoming and outgoing times, respectively).

Combining the above result with Sobolev inequalities and standard bounds for the total mass

and energy yields a L∞ estimate for the electric field. As direct consequences of the L∞ bound

for the electric field we mention the propagation of the momentum moments and also the

existence of weak solutions (f,E) for the Vlasov-Poisson system with particle distribution f

compactly supported in momentum when the initial-boundary conditions have compact support

in momentum. Another consequence is that the weak solution obtained as limit of smooth

solutions exactly verifies the energy conservation law (generally by weak limit only inequalities

are preserved). For example, if the potential vanishes on the boundary we construct a weak

solution (f,E) satisfying

d

dt

{∫

Ω

∫

RN
p

E(p)f dxdp+
ε0
2

∫

Ω

|E|2dx
}

+

∫

Σ

(v(p) · n(x))E(p)γfdσdp=0, a.e. t ∈]0, T [,

where γf is the trace of f on Σ.

The content of this paper is organized as follows. We recall some standard definitions and

results about the Vlasov problem. We remind the notion of weak/mild solution for this problem

with initial-boundary conditionsor only boundary conditions (the time periodic case). We state

the momentum change lemma for the classical and relativistic cases (the details of proofs can

be found in Appendix) and we apply the above lemma in order to construct weak solutions

uniformly compactly supported in momentum for the Vlasov problem with initial-boundary

conditionsor time periodic boundary conditions. In Section 3 we prove the existence of weak
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solution for a regularized Vlasov-Poisson system by using a fixed point method. In the next

section we establish a priori estimates for the total energy and the L∞ norm of the electric

field, uniformly with respect to the regularization parameters. In the last section we construct

solutions for the Vlasov-Poisson system by weak stability arguments. We end this paper with

some properties of the solutions constructed above. We present also the time periodic case.

2 The Vlasov Equation

In this section we recall the basic definitions and results on the Vlasov equation. For the

completeness of the presentation we consider the case of electro-magnetic forces. Later on the

magnetic field will be neglected in order to study the Vlasov-Poisson system. We assume that

the electro-magnetic field is given and bounded. We introduce the notion of weak solution for

the initial-boundary value problem:

∂tf + v(p) · ∇xf + F (t, x, p) · ∇pf = 0, (t, x, p) ∈ ]0,+∞[×Ω × R
3
p, (2.1)

f(0, x, p) = f0(x, p), (x, p) ∈ Ω × R
3
p, (2.2)

f(t, x, p) = g(t, x, p), (t, x, p) ∈ ]0,+∞[×Σ−. (2.3)

Remark 2.1 Note that in both classical and relativistic case we have ∇x ·v(p) = 0, ∇p ·F =

0 and thus (2.1) can be written also:

∂tf + ∇x · (v(p)f) + ∇p · (F (t, x, p)f) = 0, (t, x, p) ∈ ]0,+∞[×Ω× R
3
p.

Definition 2.1 Assume that E,B ∈ L∞(]0, T1[×Ω)3, f0 ∈ L1(Ω × BR), (v(p) · n(x))g ∈
L1(]0, T1[×Σ−

R), ∀T1 > 0, ∀R > 0. We say that f ∈ L1(]0, T1[×Ω×BR), ∀T1 > 0, ∀R > 0 is

a weak solution for the problem (2.1)–(2.3) iff

−
∫ ∞

0

∫

Ω

∫

R3
p

f(t, x, p)(∂tϕ+ v(p) · ∇xϕ+F (t, x, p) · ∇pϕ)dtdxdp

=

∫

Ω

∫

R3
p

f0(x, p)ϕ(0, x, p)dxdp −
∫ +∞

0

∫

Σ−

(v(p) · n(x))g(t, x, p)ϕ(t, x, p)dtdσdp (2.4)

for all test function which belongs to Tw = {ϕ ∈ C1
c ([0,+∞[×Ω× R

3
p) | ϕ|[0,+∞[×Σ+ = 0}.

Suppose now that E,B ∈ L∞
loc(]0,+∞[;W 1,∞(Ω))3 and introduce the characteristic equa-

tions:

dX

ds
= v(P (s; t, x, p)),

dP

ds
= F (s,X(s; t, x, p), P (s; t, x, p)), sin(t, x, p) ≤ s ≤ sout(t, x, p),

with the conditions X(s = t; t, x, p) = x, P (s = t; t, x, p) = p. Here sin(t, x, p), sout(t, x, p)

denote the incoming, respectively outgoing time, given by

sin(t, x, p) = max{0, sup{s ≤ t |X(s; t, x, p) ∈ ∂Ω}},
sout(t, x, p) = inf{s ≥ t |X(s; t, x, p) ∈ ∂Ω}.

The mild formulation follows now formally by solving

−∂tϕ− v(p) · ∇xϕ− F (t, x, p) · ∇pϕ = ψ, (t, x, p) ∈ ]0,+∞[×Ω × R
3
p,
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with the boundary condition ϕ|[0,+∞[×Σ+ = 0, which gives, after integration along the charac-

teristic curves,

ϕψ(t, x, p) =

∫ sout(t,x,p)

t

ψ(s,X(s; t, x, p), P (s; t, x, p))ds.

Definition 2.2 Assume that E,B ∈ L∞
loc(]0,+∞[;W 1,∞(Ω))3, f0 ∈ L1(Ω × BR), (v(p) ·

n(x))g ∈ L1(]0, T1[×Σ−
R), ∀T1 > 0, ∀R > 0. We say that f ∈ L1(]0, T1[×Ω × BR), ∀T1 >

0, ∀R > 0 is a mild solution for (2.1)–(2.3) iff

∫ +∞

0

∫

Ω

∫

R3
p

f(t, x, p)ψ(t, x, p)dtdxdp

=

∫

Ω

∫

R3
p

f0(x, p)ϕψ(0, x, p)dxdp −
∫ +∞

0

∫

Σ−

(v(p) · n(x))g(t, x, p)ϕψ(t, x, p)dtdσdp (2.5)

for all test function which belongs to Tm = {ψ ∈ C0
c ([0,+∞[×Ω× R

3
p)}.

Note that for all ψ ∈ Tm the function ϕψ has compact support in [0,+∞[×Ω × R
3
p and

is bounded. Thus the above definition makes sense. Indeed suppose that ψ = ψ · 1{0≤t≤T1} ·
1{|p|≤R}. Therefore when t > T1 we have ϕψ = 0 and for t ≤ T1,

ϕψ(t, x, p) =

∫ min{T1,sout(t,x,p)}

t

ψ(s,X(s; t, x, p), P (s; t, x, p))ds.

By writing for t ≤ s ≤ min{T1, sout(t, x, p)}

1

2
|P (s; t, x, p)|2 =

1

2
|p|2 +

∫ s

t

qE(τ,X(τ)) · P (τ)dτ ≥ 1

2
|p|2 −

∫ s

t

|q| · ‖E‖L∞ · |P (τ)|dτ,

we deduce by using Bellman’s lemma that |P (s; t, x, p)| ≥ |p| − (s− t) · |q| · ‖E‖L∞ ≥ |p| − T1 ·
|q| · ‖E‖L∞ and thus we have ϕψ(t, x, p) = 0 if |p| > R + T1 · |q| · ‖E‖L∞ . Moreover, we have

also that ‖ϕψ‖L∞ ≤ T1 · ‖ψ‖L∞.

Remark 2.2 It is well known that the mild solution is unique and is given by

f(t, x, p) = f0(X(0; t, x, p), P (0; t, x, p)), if sin(t, x, p) = 0,

f(t, x, p) = g(sin, X(sin; t, x, p), P (sin; t, x, p)), if sin(t, x, p) > 0.

Remark 2.3 We check easily that the mild solution is also a weak solution. Moreover, the

mild solution verifies the following Green formula:

−
∫ T1

0

∫

Ω

∫

R3
p

f(t, x, p)(∂tϕ+ v(p) · ∇xϕ+ F (t, x, p) · ∇pϕ)dtdxdp

+

∫

Ω

∫

R3
p

γf(T1, x, p)ϕ(T1, x, p)dxdp+

∫ T1

0

∫

Σ+

(v(p) · n(x))γ+f(t, x, p)ϕ(t, x, p)dtdσdp

=

∫

Ω

∫

R3
p

f0(x, p)ϕ(0, x, p)dxdp −
∫ T1

0

∫

Σ−

(v(p) · n(x))g(t, x, p)ϕ(t, x, p)dtdσdp, (2.6)

∀ϕ ∈ C1
c ([0,+∞[×Ω × R

3
p), ∀T1 > 0, where the traces γf(T1, · , · ), γ+f are defined as in

Remark 2.2 and belong to L1(Ω ×BR), respectively L1(]0, T1[×Σ+
R), ∀R > 0, ∀T1 > 0.
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Remark 2.4 By using the Remark 2.2 we check easily that the mild solution f verifies

min
{

inf
Ω×R3

p

f0, inf
]0,+∞[×Σ−

g
}
≤ f ≤ max

{
sup

Ω×R3
p

f0, sup
]0,+∞[×Σ−

g
}
,

with the same inequalities for the traces γf(T1, · , · ), γ+f . In particular, if f0 ≥ 0, g ≥ 0 then

f ≥ 0, γ+f ≥ 0, γf(T1, · , · ) ≥ 0, ∀T1 > 0.

2.1 The momentum change in the classical case

In this section we set E(p) = |p|2
2m , v(p) = p

m , ∀ p ∈ R
3
p. In this case, the characteristic

system is given by

dX

ds
=
P (s)

m
,

dP

ds
= q(E(s,X(s)) +

P (s)

m
∧B(s,X(s))), sin ≤ s ≤ sout, (2.7)

where the electro-magnetic field is regular E,B ∈ L∞(Rt;W
1,∞(Ω))3. We state the momentum

change lemma for the classical case. The details of the proof can be found in Appendix.

Lemma 2.1 Assume that E,B ∈ L∞(Rt;W
1,∞(Ω))3 and consider (X(s), P (s)), sin ≤ s ≤

sout an arbitrary solution for (2.7). Denote by Dcla the quantity

Dcla = (2|q| · ‖E‖∞ ·m · diam(Ω))1/2 + 2 · |q| · ‖B‖∞ · diam(Ω).

Then

(1) if there is t ∈ [sin, sout] such that |P (t)| > Dcla, then we have

sout − sin ≤ 4 · diam(Ω)

|v(P (t))| ≤ 4m · diam(Ω)

Dcla
, and |P (s) − P (t)| ≤ Dcla, ∀ sin ≤ s ≤ sout;

(2) for all sin ≤ s1 ≤ s2 ≤ sout we have |P (s1) − P (s2)| ≤ 2Dcla.

The Lemma 2.1 holds true in two dimensional spatial domain Ω ⊂ R
2
x for orthogonal electric

and magnetic fields E = (E1, E2, 0), B = (0, 0, B3). In this case, the system of characteristics

is given by

dX1

ds
=
P1(s)

m
,

dP1

ds
= q

(
E1(s,X1(s), X2(s)) +

P2(s)

m
· B3(s,X1(s), X2(s))

)
,

dX2

ds
=
P2(s)

m

dP2

ds
= q

(
E2(s,X1(s), X2(s)) −

P1(s)

m
·B3(s,X1(s), X2(s))

)
.

Remark also that in the purely electric case (B = 0) Lemma 2.1 is valid in any dimension.

2.2 The momentum change lemma in the relativistic case

We analyze also the relativistic case. In this section we set E(p) = mc20

((
1 + |p|2

(mc0)2

) 1
2 − 1

)

with the corresponding velocity v(p) = p
m ·

(
1 + |p|2

(mc0)2

)−1/2

. We start with the purely electric

system of characteristics which is given by

dX

ds
=
P (s)

m

(
1 +

|P (s)|2
m2c20

)−1/2

,
dP

ds
= qE(s,X(s)), sin ≤ s ≤ sout. (2.8)

We will analyze (2.8) for any dimension N ≥ 1. We state the momentum change lemma for the

relativistic case (see Appendix for the details of the proof).
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Lemma 2.2 Assume that E ∈ L∞(Rt;W
1,∞(Ω))N and consider (X(s), P (s)), sin ≤ s ≤

sout an arbitrary solution for (2.8). Denote by Dele
rel the quantity

Dele
rel = mc0

√
β(1 + β), with β =

4
√
N · diam(Ω) · |q| · ‖E‖∞

mc20
.

Then

(1) if there is t ∈ [sin, sout] such that |P (t)| > Dele
rel , then

sout − sin ≤ 4 · diam(Ω)

|v(P (t))| and |P (s) − P (t)| ≤ Dele
rel , ∀ sin ≤ s ≤ sout;

(2) for all sin ≤ s1 ≤ s2 ≤ sout we have |P (s1) − P (s2)| ≤ 2Dele
rel .

Consider now the relativistic characteristic system with N = 3:

dX

ds
= v(P (s)),

dP

ds
= q(E(s,X(s)) + v(P (s)) ∧B(s,X(s))), sin ≤ s ≤ sout. (2.9)

By observing that |q(E + v(p) ∧B)| ≤ |q| · (‖E‖∞ + c0 · ‖B‖∞) we deduce also

Lemma 2.3 Assume that E,B ∈ L∞(Rt;W
1,∞(Ω))3 and consider (X(s), P (s)), sin ≤ s ≤

sout an arbitrary solution for (2.9). Then the conclusions of Lemma 2.2 hold true with

Drel = mc0
√
β1(1 + β1), with β1 =

4
√

3 · |q| · diam(Ω) · (‖E‖∞ + c0‖B‖∞)

mc20
.

2.3 Estimate of the momentum support for the initial-boundary value problem

Generally we will assume that the electro-magnetic field is bounded (E,B) ∈ L∞(]0,+∞[

×Ω)6 and that the initial-boundary conditionsare compactly supported in momentum, uni-

formly in t, x: ∃R > 0 such that f0(x, p) = 0, ∀ (x, p) ∈ Ω × R
3
p, |p| > R and g(t, x, p) =

0, ∀ (t, x, p) ∈ ]0,+∞[×Σ−, |p| > R. In this case, at least for regular electro-magnetic field it

is easy to see that f has compact support in momentum, uniformly with respect to (t, x) ∈
]0, T1[×Ω, ∀T1 > 0. Indeed, by using the characteristic equations

dX

ds
= v(P (s)),

dP

ds
= F (s,X(s), P (s)),

we deduce that
1

2

d

ds
|P (s)|2 = q ·E(s,X(s)) · P (s),

and by Bellman’s lemma we obtain that the change of the momentum norm along any charac-

teristic included in ]0, T1[×Ω × R
3
p is bounded by T1 · |q| · ‖E‖L∞ and thus we have

f = f · 1{|p|≤R1}, (t, x, p) ∈]0, T1[×Ω × R
3
p, ∀T1 > 0, (2.10)

where R1 = R+T1 · |q| ·‖E‖L∞ . The situation is very different for boundary value problems (for

example stationary or time periodic problems). In this case we do not know if the solution of

the Vlasov equation remains compactly supported in momentum (think that the life time of the

characteristics inside the bounded domain Ω can be arbitrarily large). The natural question

arising from the above observations is: can we deduce that f = f · 1{|p|≤R1} with R1 not
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depending on (t, x) ∈]0,+∞[×Ω respectively (t, x) ∈ Rt×Ω? The motivation for finding globally

in time estimate for the momentum support comes for numerical considerations. Clearly, if a

bound R1 of the momentum support is available, the computation domain can be restricted to

Ω ×BR1 .

Theorem 2.1 Assume that E,B ∈ L∞(]0,+∞[;W 1,∞(Ω))3, f0 ∈ L1(Ω × R
3
p), (v(p) ·

n(x))g∈L1(]0, T1[×Σ−), ∀T1>0 with f0 =f0 · 1{|p|≤R}, g=g · 1{|p|≤R}, for some R>0. Then

the mild solution for (2.1)–(2.3) is compactly supported in momentum uniformly in (t, x) ∈
]0,+∞[×Ω and we have

f=f · 1{|p|≤R1}, γ+f=γ+f · 1{|p|≤R1}, γf(T1, · , · )=γf(T1, · , · ) · 1{|p|≤R1}, ∀T1 > 0,

where R1 = R+ 2Dcla/rel.

Proof Take p ∈ R
3
p with |p| > R1. By Lemmas 2.1 and 2.3 we deduce that |P (s; t, x, p)

−p| ≤ 2Dcla/rel, ∀ sin ≤ s ≤ t and therefore |P (s; t, x, p)| ≥ |p| − |P (s; t, x, p) − p| > R1 −
2Dcla/rel = R, ∀ sin ≤ s ≤ t. By Remark 2.2 we deduce that f(t, x, p) = 0. The same

arguments apply for the traces γ+f, γf(T1, · , · ), ∀T1 > 0.

We can construct also weak solutions for (2.1)–(2.3) with compact support in momentum.

Theorem 2.2 Assume that E,B ∈ L∞(]0, T1[; Ω)3, |f0|r ∈ L1(Ω × R
3
p), (v(p) · n(x))|g|r ∈

L1(]0, T1[×Σ−), for some T1 > 0, 1 < r < +∞ with f0 = f0 · 1{|p|≤R}, g = g · 1{|p|≤R}. Then

there is a weak solution for (2.1)–(2.3) on ]0, T1[×Ω × R
3
p such that

f = f · 1{|p|≤R1}, γ+f = γ+f · 1{|p|≤R1}, γf(T1, · , · ) = γf(T1, · , · ) · 1{|p|≤R1},

where R1 = R+ 2Dcla/rel.

Proof Regularize the electro-magnetic field by convolution in respect to x (extend E,B

by 0 outside Ω). Denote by fε the mild solution for (2.1)–(2.3) corresponding to the regularized

field Eε, Bε. As in [28] we obtain

∂t|fε|r + v(p) · ∇x|fε|r + Fε · ∇p|fε|r = 0,

where Fε = q(Eε(t, x) + v(p) ∧Bε(t, x)). After integration on ]0, T1[×Ω × R
3
p we find

∫

Ω

∫

R3
p

|γfε|r(T1, x, p)dxdp+

∫ T1

0

∫

Σ+

(v(p) · n(x))|γ+fε|r(t, x, p)dtdσdp

=

∫

Ω

∫

R3
p

|f0|r(x, p)dxdp −
∫ T1

0

∫

Σ−

(v(p) · n(x))|g|r(t, x, p)dtdσdp,

which gives uniform estimates in Lr for ε > 0:

sup
0≤t≤T1

∫

Ω

∫

R3
p

|γfε|r(t, x, p)dxdp+

∫ T1

0

∫

Σ+

(v(p) · n(x))|γ+fε|r(t, x, p)dtdσdp

≤ 2
(∫

Ω

∫

R3
p

|f0|r(x, p)dxdp −
∫ T1

0

∫

Σ−

(v(p) · n(x))|g|r(t, x, p)dtdσdp
)
.
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We can extract subsequences fεk
⇀f weakly in Lr(]0, T1[×Ω×R

3
p), γfεk

(T1, · , · ) ⇀ γf(T1, · , · )
weakly in Lr(Ω×R

3
p), γ

+fεk
⇀ γ+f weakly in Lr(]0, T1[×Σ+, (v(p)·n(x))dtdσdp). By standard

arguments we deduce that f is a weak solution for (2.1)–(2.3) associated to the electro-magnetic

field (E,B) with traces γ+f, γf(T1, · , · ). On the other hand, for |p| > R1 = R + 2Dcla/rel ≥
R + 2Dεk

cla/rel = Rεk
1 we have fεk

= 0, γfεk
(T1) = 0, γ+fεk

= 0 and by weak limit we deduce

that
∫ T1

0

∫
Ω

∫
R3

p
fψdtdxdp = lim

k→+∞

∫ T1

0

∫
Ω

∫
R3

p
fεk

ψdtdxdp = 0, ∀ψ ∈ C0
c ([0, T1]×Ω×(R3

p−BR1))

which implies that f = 0 a.e. in ]0, T1[×Ω× (R3
p−BR1) or supp f ⊂]0, T1[×Ω×BR1 . Similarly

we deduce that supp γ+f ⊂]0, T1[×Σ+
R1

and supp γf(T1, · , · ) ⊂ Ω × BR1 . Note that if E,B ∈
L∞(]0,+∞[×Ω)3, then R1 = R+ 2Dcla/rel does not depend on T1 and therefore the solution is

compactly supported in momentum uniformly with respect to T1 > 0.

Remark 2.5 By using the Remark 2.4 we can prove that the conclusion of the above

theorem holds also in the case r = +∞.

2.4 Estimate of the momentum support for the time periodic problem

An application of the momentum change lemma could be the estimate of the momentum

support for time periodic solutions of the Vlasov problem. First we introduce the perturbed

time periodic Vlasov problem

αf + ∂tf + v(p) · ∇xf + F (t, x, p) · ∇pf = 0, (t, x, p) ∈ Rt × Ω × R
3
p, (2.11)

with the boundary condition

f(t, x, p) = g(t, x, p), (t, x, p) ∈ Rt × Σ−, (2.12)

where this time g, E,B are supposed T periodic in time, T > 0, α > 0 fixed. The definition of

T periodic weak solution is given by

Definition 2.3 Assume that E,B ∈ L∞(Rt × Ω)3
and g are T periodic with (v(p)·n(x))g ∈

L1(]0, T[×Σ−
R), ∀R > 0. We say that f ∈ L1(]0, T[×Ω × BR), ∀R > 0 is a T periodic weak

solution for the problem (2.11), (2.12) iff

∫ T

0

∫

Ω

∫

R3
p

f(t, x, p)(αϕ − ∂tϕ− v(p) · ∇xϕ− F (t, x, p) · ∇pϕ)dtdxdp

= −
∫ T

0

∫

Σ−

(v(p) · n(x))gϕdtdσdp

for all test function which belongs to

T per
w = {ϕ ∈ C1(Rt × Ω × R

3
p) | ∃R > 0 : ϕ = ϕ · 1{|p|≤R}, ϕ|Rt×Σ+ = 0, ϕ( · + T ) = ϕ}.

Note also that in the periodic case the definition for sin is

sin(t, x, p) = sup{s ≤ t |X(s; t, x, p) ∈ ∂Ω}.

It may happen that sin = −∞. Let us give now the definition for time periodic mild solution.
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Definition 2.4 Assume that E,B ∈ L∞(Rt;W
1,∞(Ω))3 and g are T periodic with (v(p) ·

n(x))g ∈ L1(]0, T[×Σ−
R), ∀R > 0. We say that f ∈ L1(]0, T[×Ω ×BR), ∀R > 0 is a T periodic

mild solution for (2.11), (2.12) iff

∫ T

0

∫

Ω

∫

R3
p

f(t, x, p)ψ(t, x, p)dtdxdp = −
∫ T

0

∫

Σ−

(v(p) · n(x))g(t, x, p)ϕαψ(t, x, p)dtdσdp

for all test function which belongs to

T per
m = {ψ ∈ C0(Rt × Ω × R

3
p) | ∃R > 0 : ψ = ψ · 1{|p|≤R}, ψ( · + T ) = ψ},

where

ϕαψ(t, x, p) =

∫ sout(t,x,p)

t

e−α(s−t)ψ(s,X(s; t, x, p), P (s; t, x, p))ds.

Remark 2.6 Observe that by Lemmas 2.1 and 2.3, the function ϕαψ has also compact

support in momentum (if ψ = ψ ·1{|p|≤R} then ϕαψ = ϕαψ ·1{|p|≤R+2Dcla/rel}) and that for α > 0

the function ϕαψ is bounded: ‖ϕαψ‖∞ ≤ ‖ψ‖∞

α . Therefore the above definition makes sense.

Remark 2.7 In this case, the mild solution is given by f(t, x, p) = 0 if sin = −∞ and

f(t, x, p) = e−α(t−sin)g(sin, X(sin; t, x, p), P (sin; t, x, p)) if sin > −∞.

Remark 2.8 The mild T periodic solution is also a T periodic weak solution and verifies

the following Green formula

∫ T

0

∫

Ω

∫

R3
p

f(t, x, p)(αϕ−∂tϕ− v(p) · ∇xϕ− F (t, x, p) · ∇pϕ)dtdxdp

= −
∫ T

0

∫

Σ+

(v(p) · n(x))γ+fϕdtdσdp −
∫ T

0

∫

Σ−

(v(p) · n(x))gϕdtdσdp

for all ϕ ∈ C1(Rt × Ω × R
3
p), compactly supported in momentum and T periodic, where the

trace function γ+f is defined as in Remark 2.7.

Remark 2.9 Suppose that g is bounded. Then the T periodic mild solution of problem

(2.11), (2.12) verifies

max{‖f‖∞, ‖γ+f‖∞} ≤ ‖g‖∞.
In particular, if g ≥ 0 then f, γ+f ≥ 0.

Theorem 2.3 Assume that α > 0, E,B ∈ L∞(Rt;W
1,∞(Ω))3, g ∈ L∞(Rt × Σ−) are

T periodic with g = g · 1{|p|≤R} for some R > 0. Then the T periodic mild solution f for

(2.11), (2.12) verifies

max{‖f‖∞, ‖γ+f‖∞} ≤ ‖g‖∞, f = f · 1{|p|≤R1}, γ
+f = γ+f · 1{|p|≤R1},

with R1 = R+ 2Dcla/rel.

Proof Take ψ ∈ C0(Rt × Ω × R
3
p), T periodic, with compact support in momentum in

R
3
p −BR1 . By the mild formulation, we have

∫ T

0

∫

Ω

∫

R3
p

f(t, x, p)ψ(t, x, p)dtdxdp = −
∫ T

0

∫

Σ−

(v(p) · n(x))g(t, x, p)ϕαψ(t, x, p)dtdσdp.
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If |p| > R, then g = 0 and g · ϕαψ = 0. If |p| ≤ R, then by Lemmas 2.1 and 2.3 we deduce that

|P (s)| ≤ |p|+2Dcla/rel ≤ R1 and thus ϕαψ = 0 or g·ϕαψ = 0. We deduce that
∫ T
0

∫
Ω

∫
R3

p
fψdtdxdp =

0, or supp f ⊂ Rt × Ω ×BR1 . Now, by using the Green formula we have

∫ T

0

∫

Ω

∫

R3
p

f(t, x, p)(αϕ−∂tϕ− v(p) · ∇xϕ− F (t, x, p) · ∇pϕ)dtdxdp

= −
∫ T

0

∫

Σ+

(v(p) · n(x))γ+fϕdtdσdp −
∫ T

0

∫

Σ−

(v(p) · n(x))gϕdtdσdp

for any function ϕ ∈ C1(Rt × Ω × R
3
p), T periodic, with compact support in momentum in

R
3
p−BR1 . Therefore we have

∫ T
0

∫
Σ+(v(p)·n(x))γ+fϕdtdσdp = 0 which implies that supp γ+f ⊂

Rt × Σ+
R1

.

By regularization we can prove the existence of T periodic weak solution with compact

support in momentum.

Theorem 2.4 Assume that α = 0, E,B ∈ L∞(Rt × Ω)
3
, g ∈ L∞(Rt×Σ−) are T periodic

with g = g · 1{|p|≤R} for some R > 0. Then there is a T periodic weak solution f for (2.11),

(2.12) which verifies

max{‖f‖∞, ‖γ+f‖∞} ≤ ‖g‖∞, f = f · 1{|p|≤R1}, γ
+f = γ+f · 1{|p|≤R1},

with R1 = R+ 2Dcla/rel.

Proof Regularize the electro-magnetic field and take fε the T periodic mild solutions

constructed in the previous theorem with α = ε and the electro-magnetic field (Eε, Bε). We

have

max{‖fε‖∞, ‖γ+fε‖∞} ≤ ‖g‖∞, fε = fε · 1{|p|≤R1}, γ+fε = γ+fε · 1{|p|≤R1}

since

Rε1 = R+ 2Dε
cla/rel ≤ R+ 2Dcla/rel = R1.

We can extract sequences such that fεk
⇀ f weakly ∗ in L∞(Rt × Ω × R

3
p), γ

+fεk
⇀ γ+f

weakly ∗ in L∞(Rt × Σ+). By passing to the limit for k → ∞ in the weak formulation, we

deduce that f is the periodic weak solution corresponding to the electro-magnetic field (E,B)

and ε = 0. Also by passing to the limit in the Green formula for k → +∞ we deduce that γ+f

is the trace of f . By weak ∗ limit we have

max{‖f‖∞, ‖γ+f‖∞} ≤ lim inf
k→+∞

max{‖fεk
‖∞, ‖γ+fεk

‖∞} ≤ ‖g‖∞

and also f = f · 1{|p|≤R1} and γ+f = γ+f · 1{|p|≤R1}.

3 The Regularized Vlasov-Poisson System

We consider Ω ⊂ R
N
x an open, regular bounded set. We denote by E0 = −∇xΦ0 the exterior

electric field

−∆xΦ0(t, x) = 0, (t, x) ∈]0, T [×Ω, Φ0(t, x) = ϕ0(t, x), (t, x) ∈]0, T [×∂Ω.
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In this section, we construct solutions for the following regularized Vlasov-Poisson system (clas-

sical or relativistic case)





∂tf + v(p) · ∇xf + qEε · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× R
N
p ,

f(0, x, p) = f0(x, p), (x, p) ∈ Ω × R
N
p , f(t, x, p) = g(t, x, p), (t, x, p) ∈]0, T [×Σ−,

−(1 − α∆x)
2m∆xΦ =

ρε
ε0
, (t, x) ∈]0, T [×Ω,

Φ = ∆xΦ = · · · = ∆2m
x Φ = 0, (t, x) ∈]0, T [×∂Ω,

(3.1)

where Eε = E ∗ ζε, E is the extension by 0 outside ]0, T [×Ω of E = −∇xΦ − ∇xΦ0 and

ζε(t, x) = 1
εN+1 ζ(

t
ε ,

x
ε ) is a mollifier, i.e., ζ ∈ C∞

c (R × R
N
x ), ζ ≥ 0,

∫
RN+1 ζ(s, y) dsdy = 1 and

α, ε > 0 are small parameters. Regularized systems of this type have been used in previous

works (see [20]). We recall here the following result

Lemma 3.1 Let ρ ∈ Lp(Ω) for some 1 < p < +∞ and suppose that ∂Ω is smooth. Then

the solution Φ of the regularized Poisson problem

− (1 − α∆x)
2m∆xΦ =

ρ

ε0
, x ∈ Ω,

Φ = ∆xΦ = · · · = ∆2m
x Φ = 0, x ∈ ∂Ω

verifies

‖Φ‖W 4m+2,p(Ω) ≤ C(p, α,Ω) · ‖ρ‖Lp(Ω), ‖Φ‖W 2,p(Ω) ≤ C(p,Ω) · ‖ρ‖Lp(Ω).

We prove the existence of solution for the regularized Vlasov-Poisson system. For the sake

of the presentation we give a sketch of the proof. For more details the reader can refer to [20].

We consider the set χ = L2(]0, T [;H1(Ω)) and define the application F : χ→ χ by

Φ → E = −∇xΦ −∇xΦ0 → Eε = E ∗ ζε → f → ρ = q

∫

RN
p

f dp→ ρε → Φ1 = FΦ,

where

• f is the mild solution of the Vlasov problem associated with the regularized field

Eε(t, x) = −
∫ T

0

∫

Ω

(∇xΦ(s, y) + ∇xΦ0(s, y))ζε(t− s, x− y) dsdy;

• ρε is the regularized charge density

ρε =

∫ T

0

∫

Ω

ρ(s, y)ζε(t− s, x− y)dsdy;

• Φ1 is the solution of the regularized Poisson problem associated with the charge density

ρε.

Proposition 3.1 Under the hypotheses f0 ≥ 0, g ≥ 0, M0 +M− :=
∫
Ω

∫
RN

p
f0(x, p) dxdp+

∫ T
0

∫
Σ− |(v(p) · n(x))|g(t, x, p) dtdσdp < +∞, ϕ0 ∈ L2(]0, T [;H

1
2 (∂Ω)) we have

F(χ) ⊂ {Φ ∈ L2(]0, T [;H1(Ω)) | ‖Φ‖L2(]0,T [;H1(Ω)) ≤Mε},

where Mε = C(Ω) · Tε0 · (M0 +M−) · ‖ζ‖L2(RN+1) · ε−
N+1

2 .



Weak Solutions for the Vlasov-Poisson Initial-Boundary Value Problem 401

Proof As usual we have
∫

Ω

∫

RN
p

f(t, x, p) dxdp+

∫ t

0

∫

Σ+

(v(p) · n(x))γ+f(s, x, p) dsdσdp

=

∫

Ω

∫

RN
p

f0(x, p) dxdp+

∫ t

0

∫

Σ−

|(v(p) · n(x))|g dsdσdp,

and therefore ‖f‖L1(]0,T [×Ω×RN
p ) ≤ T · (M0 +M−). We have the inequalities

‖Φ1‖L2(]0,T [;H1(Ω))≤ C(Ω)
∥∥∥ρε
ε0

∥∥∥
L2(]0,T [×Ω)

≤ C(Ω)

ε0
· ‖ρ‖L1(]0,T [×Ω) · ‖ζε‖L2

≤ C(Ω) · T
ε0

· (M0 +M−) · ‖ζ‖L2(RN+1) · ε−
N+1

2 .

It is easily seen that F is continuous with respect to the weak topology of L2(]0, T [;H1(Ω)).

Proposition 3.2 Assume that

0 ≤ f0 ∈ L∞(Ω × R
N
p ), 0 ≤ g ∈ L∞(Rt × Σ−),

∫

Ω

∫

RN
p

(1 + E(p))f0(x, p) dxdp+

∫ T

0

∫

Σ−

|(v(p) · n(x))|(1 + E(p))g(t, x, p) dtdσdp <∞,

ϕ0 ∈ L2(]0, T [;H
1
2 (∂Ω)).

Then the application F is continuous with respect to the weak topology of L2(]0, T [;H1(Ω)).

Eventually the Schauder fixed point theorem implies the existence of a weak solution (f,Φs)

for




∂tf + v(p) · ∇xf + q(E ∗ ζ) · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× R
N
p ,

f(0, x, p) = f0(x, p), (x, p) ∈ Ω × R
N
p , f(t, x, p) = g(t, x, p), (t, x, p) ∈]0, T [×Σ−,

−(1 − α∆x)
2m∆xΦs =

ρ ∗ ζ
ε0

, (t, x) ∈]0, T [×Ω, E = −∇xΦs −∇xΦ0, (t, x) ∈]0, T [×Ω,

Φs = ∆xΦs = · · · = ∆2mΦs = 0, (t, x) ∈]0, T [×∂Ω.

Following the idea of [20] we can pass to the limit for εց 0 when α > 0 is fixed. We obtain

Proposition 3.3 Assume that Ω ⊂ R
N
x is open and bounded, with ∂Ω smooth. Consider

p0 = 2N
2N−1 , p′0 = 2N , ( 1

p0
+ 1

p′0
= 1) and m such that W 4m,p0(Ω) → L∞(Ω) is continuous

( 1
p0

− 4m
N < 0). We suppose also that the initial-boundary conditionsverify 0 ≤ f0 ∈ L∞(Ω ×

R
N
p ), 0 ≤ g ∈ L∞(]0, T [×Σ−), ∃R > 0 such that f0 = f0 · 1{|p|≤R}, g = g · 1{|p|≤R}, ϕ0 ∈

L∞(]0, T [;W
4m+2− 1

p0
,p0(∂Ω)), ∂tϕ0 ∈ L∞(]0, T [;W

4m+1− 1
p0
,p0(∂Ω)). Then there is at least

one solution for the Vlasov problem (classical or relativistic case) coupled to the regularized

Poisson problem





∂tf + v(p) · ∇xf + q(−∇xΦs −∇xΦ0) · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× R
N
p ,

f(0, x, p) = f0(x, p), (x, p) ∈ Ω × R
N
p , f(t, x, p) = g(t, x, p), (t, x, p) ∈]0, T [×Σ−,

−(1 − α∆x)
2m∆xΦs =

ρ

ε0
, (t, x) ∈]0, T [×Ω,

Φs = ∆xΦs = · · · = ∆2mΦs = 0, (t, x) ∈]0, T [×∂Ω.

(3.2)
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The particle densities f , γ+f have compact support in momentum and the self consistent po-

tential Φs verifies ∂tΦs ∈ L∞(]0, T [;W 1,∞(Ω)), ∇xΦs ∈ L∞(]0, T [;W 1,∞(Ω))N . In particular,

the electric field E = −∇xΦs −∇xΦ0 belongs to W 1,∞(]0, T [×Ω)N .

Proof The proof follows by standard arguments (see [20]). The main idea is to estimate

the L∞ norm of the electric field uniformly with respect to ε > 0, when α > 0 is fixed.

Denote by (fε,Φs,ε) the solutions of (3.1) constructed above. First, since the initial-boundary

conditions have momentum support contained in B(0, R), we deduce that fε has momentum

support contained in B(0, R1), with R1 = R+ |q| · T · (‖∇xΦ0‖L∞ + ‖∇xΦs,ε‖L∞). We deduce

that ‖ρε‖L∞ ≤ C · (1+‖∇xΦs,ε‖NL∞). By elliptic regularity result (see Lemma 3.1) we can write

‖∇xΦs,ε‖L∞ ≤ C · ‖Φs,ε‖L∞(]0,T [;W 4m+2,p0(Ω)) ≤ C · ‖ρε‖L∞(]0,T [;Lp0(Ω))

≤ C · ‖ρε‖
1

p0

L∞(]0,T [;L1(Ω)) · ‖ρε‖
1

p′
0

L∞(]0,T [;L∞(Ω))

≤ C · (1 + ‖∇xΦs,ε‖NL∞)
1

p′
0 , (3.3)

which gives the desired estimate for the L∞ norm of the electric field Eε = −∇xΦs,ε −∇xΦ0.

The existence of solution follows by passing to the limit for εց 0 in (3.1). For the other state-

ments use the inclusion W 4m,p0(Ω) → L∞(Ω), the elliptic regularity result and the continuity

equation ∂tρ+ div xj = 0.

4 A Priori Estimates

In this section we establish uniform estimates with respect to α > 0 for the solutions of

(3.2). Firstly we recall the classical estimates for the total mass and energy. Secondly we

deduce also an estimate for the L∞ norm of the electric field. We assume that the hypotheses

of Proposition 3.3 are verified and we denote by (f,Φs) the solution of (3.2). We recall that

∂tΦ0, ∂tΦs ∈ L∞(]0, T [;W 1,∞(Ω)), ∇xΦ0, ∇xΦs ∈ L∞(]0, T [;W 1,∞(Ω))N and f, γ+f have

compact support in momentum.

4.1 The mass and energy estimates

We introduce the notations

M0 :=

∫

Ω

∫

RN
p

f0(x, p) dxdp, M(t) :=

∫

Ω

∫

RN
p

f(t, x, p) dxdp,

M±(t) :=

∫

Σ±

|(v(p) · n(x))|γ±f(t, x, p) dσdp, M± :=

∫ T

0

M±(t) dt,

K0 :=

∫

Ω

∫

RN
p

E(p)f0(x, p) dxdp, K(t) :=

∫

Ω

∫

RN
p

E(p)f(t, x, p) dxdp,

K±(t) :=

∫

Σ±

|(v(p) · n(x))|E(p)γ±f(t, x, p) dσdp, K± :=

∫ T

0

K±(t) dt,

Vs(t) :=
1

2

∫

Ω

ρ(t, x)Φs(t, x) dx, V0(t) :=
1

2

∫

Ω

ρ(t, x)Φ0(t, x) dx.
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The estimate for the total mass follows by using the weak formulation of the Vlasov problem

with the test function θ = 1

d

dt
M(t) +M+(t) = M−(t), t ∈]0, T [. (4.1)

We deduce that

M(t) +

∫ t

0

M+(s) ds = M0 +

∫ t

0

M−(s) ds, t ∈]0, T [, (4.2)

which implies

sup
0≤t≤T

{M(t)} +M+ ≤ 2(M0 +M−). (4.3)

The estimate for the total energy follows by using the test functions E(p) and qΦs. We have

d

dt
K(t) +K+(t) = K−(t) +

∫

Ω

E(t, x) · j(t, x) dx, t ∈]0, T [. (4.4)

We deduce that

K(t) +

∫ t

0

K+(s) ds = K0 +

∫ t

0

K−(s) ds+

∫ t

0

∫

Ω

E(s, x) · j(s, x) dsdx, t ∈]0, T [. (4.5)

By using as test function the potential Φs one gets

d

dt

∫

Ω

ρ(t, x)Φs(t, x) dx =

∫

Ω

{ρ(t, x)∂tΦs + j(t, x) · ∇xΦs} dx, t ∈]0, T [. (4.6)

By using the regularized Poisson equation, after multiplication by Φs and integration by parts

we obtain

Vs(t) =
1

2

∫

Ω

ρ(t, x)Φs(t, x) dx =
ε0
2

∫

Ω

|(1 − α∆x)
m∇xΦs|2 dx, (4.7)

and we deduce that

d

dt

∫

Ω

1

2
ρ(t, x)Φs(t, x) dx= ε0

∫

Ω

(1 − α∆x)
m∇xΦs · (1 − α∆x)

m∇x∂tΦs dx

=

∫

Ω

ρ(t, x)∂tΦs dx. (4.8)

Now, by combining (4.6) and (4.8) we have

d

dt
Vs(t) =

∫

Ω

j(t, x) · ∇xΦs dx, t ∈ [0, T ]. (4.9)

Finally, by using (4.4), (4.9) one gets

d

dt
{K(t) + Vs(t)} +K+(t) = K−(t) −

∫

Ω

∇xΦ0 · j(t, x) dx, t ∈]0, T [, (4.10)

which implies

K(t) + Vs(t) +

∫ t

0

K+(s) ds = K0 + Vs(0) +

∫ t

0

K−(s) ds

−
∫ t

0

∫

Ω

∇xΦ0(s, x) · j(s, x) dsdx, t ∈]0, T [. (4.11)
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By interpolation inequalities we have

∣∣∣
∫

Ω

∇xΦ0 · j(s, x) dx
∣∣∣≤ ‖∇xΦ0(s)‖L∞ · ‖j(s)‖L1(Ω) ≤ C · ‖∇xΦ0(s)‖L∞ · ‖j(s)‖Lβ(Ω)

≤ C · ‖∇xΦ0(s)‖L∞ · (M(s) +K(s))
1
β ,

where β = N+2
N+1 in the classical case and β = N+1

N in the relativistic case. From (4.2), (4.11)

we obtain

M(t) +K(t) + Vs(t) +

∫ t

0

{M+(s) +K+(s)} ds

≤M0 +K0 + Vs(0) +

∫ t

0

{M−(s) +K−(s)} ds

+ C · ‖∇xΦ0‖L∞ ·
∫ t

0

(M(s) +K(s))
1
β ds, (4.12)

which implies easily that there is a constant depending on the initial-boundary conditionsand

T but not on the size of the momentum support R and α such that

sup
0≤t≤T

{M(t) +K(t) + Vs(t)} +M+ +K+≤C(M0,K0, Vs(0),M−,K−, ‖∇xΦ0‖L∞ , T ). (4.13)

4.2 The L
∞ estimate for the electric field

We want to estimate uniformly with respect to α > 0 the L∞ norm of the electric field

E = −∇xΦs − ∇xΦ0, where (f,Φs) is solution of (3.2). In the one dimensional case such

a bound follows immediately from the estimate (4.13). Consider now the cases N ≥ 2. We

assume that there are non-increasing functions F0, G : [0,+∞[→ R
+ such that

f0(x, p) ≤ F0(|p|), ∀ (x, p) ∈ Ω × R
N
p , g(t, x, p) ≤ G(|p|), ∀ (t, x, p) ∈]0, T [×Σ−, (4.14)

M̃0 :=

∫

RN
p

F0(|p|) dp+

∫

RN
p

G(|p|) dp < +∞. (4.15)

Roughly speaking, the above hypotheses say that the initial-boundary conditionshave charge

densities in L∞:

ρ0(x) =

∫

RN
p

f0(x, p) dp ≤
∫

RN
p

F0(|p|) dp, x ∈ Ω,

ρ−(t, x) =

∫

(v(p)·n(x))<0

g(t, x, p) dp ≤
∫

RN
p

G(|p|) dp, (t, x) ∈]0, T [×Ω.

Note that E is smooth and therefore f can be calculated by using characteristics. The idea is

to separate the charge density into two parts corresponding to small and large momentum and

to use the momentum change lemma which says that |P (s1) − P (s2)| ≤ 2Dcal/rel, ∀ sin ≤ s1 ≤
s2 ≤ sout, where Dcla ∼ ‖E‖

1
2

L∞ and Drel ∼ ‖E‖L∞. Let us decompose

ρ(t, x) = ρ1 + ρ2 = q

∫

RN
p

f(t, x, p)1{|p|≤4D} dp+ q

∫

RN
p

f(t, x, p)1{|p|>4D} dp,
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with D = Dcla/rel and estimate separately ρ1, ρ2. For η > 0 we can write

q−1ρ1(t, x)=

∫

|p|≤4D

f
1

N+η · |p| r
N+η · f

1
(N+η)′ · |p|− r

N+η dp

≤
( ∫

|p|≤4D

f(t, x, p) · |p|r dp
) 1

N+η ·
(∫

|p|≤4D

f(t, x, p) · |p|−
r·(N+η)′

N+η dp
) 1

(N+η)′

,

where 1
N+η + 1

(N+η)′ = 1, r = 2 in the classical case and r = 1 in the relativistic case. We

deduce that
∫

Ω

(|q|−1ρ1(t, x))
N+η dx ≤ C · ‖f‖

N+η

(N+η)′

L∞ ·D[N− r·(N+η)′

N+η ]· N+η

(N+η)′ ·
∫

Ω

∫

RN
p

(1 + E(p))f(t, x, p) dxdp,

which implies, by the estimate (4.13),

‖ρ1(t)‖LN+η ≤ C · ‖f‖
1

(N+η)′

L∞ ·D[N− r·(N+η)′

N+η ]· 1
(N+η)′ · (M(t) +K(t))

1
N+η ≤ C ·D[ N

(N+η)′
− r

N+η ]
.

Notice that the above estimate is valid for η > 0 such that N
(N+η)′ − r

N+η > 0. For ρ2 it is

possible to find a L∞ bound. We have

q−1ρ2(t, x)=

∫

|p|>4D

f(t, x, p) dp

=

∫

|p|>4D

f0(X(0; t, x, p), P (0; t, x, p)) · 1{sin(t,x,p)=0}dp

+

∫

|p|>4D

g(sin(t, x, p), X(sin; t, x, p), P (sin; t, x, p)) · 1{sin(t,x,p)>0}dp.

By using the momentum change lemma we have |P (s; t, x, p)| ≥ |p| − 2D, ∀sin(t, x, p) ≤ s ≤ t

and therefore we have the inequalities

q−1ρ2 ≤
∫

|p|>4D

F0(|p| − 2D)dp+

∫

|p|>4D

G(|p| − 2D)dp

≤ C ·
∫ +∞

4D

{F0(u − 2D) · uN−1 +G(u − 2D) · uN−1}du

= C ·
∫ +∞

2D

{F0(w) +G(w)} · (2D + w)N−1dw

≤ C ·
∫ +∞

2D

{F0(w) +G(w)} · (2 · w)N−1dw

≤ C ·
∫

RN
p

{F0(|p|) +G(|p|)} dp = C · M̃0 < +∞.

The L∞ bound for E follows by Sobolev inequalities and Lemma 3.1

‖∇xΦs(t)‖L∞(Ω) ≤ ‖∇xΦs(t)‖W 1,N+η(Ω) ≤ ‖Φs(t)‖W 2,N+η(Ω) ≤ C · ‖ρ(t)‖LN+η(Ω)

≤ C · ‖ρ1(t)‖LN+η(Ω) + C · ‖ρ2(t)‖LN+η(Ω)

≤ C ·D[ N
(N+η)′

− r
N+η

]
+ C.
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In the classical case we have D ∼ ‖E‖
1
2

L∞, r = 2 and thus we deduce that

‖E‖L∞(]0,T [×Ω) ≤ ‖∇xΦ0‖L∞(]0,T [×Ω) + C(T ) ·
(
1 + ‖E‖

1
2 [ N

(N+η)′
− 2

N+η ]

L∞(]0,T [×Ω)

)
,

which gives an L∞ bound for E as soon as there is η > 0 such that 0 < 1
2 [ N

(N+η)′ − 2
N+η ] < 1,

or N(N + η) > N + 2 and N − 2 < N+2
N+η . This is possible for N ∈ {2, 3}. In the relativistic

case we have D ∼ ‖E‖L∞, r = 1 and

‖E‖L∞(]0,T [×Ω) ≤ ‖∇xΦ0‖L∞(]0,T [×Ω) + C(T ) ·
(
1 + ‖E‖[ N

(N+η)′
− 1

N+η ]

L∞(]0,T [×Ω)

)
,

which gives an L∞ bound for E if there is η > 0 such that 0 < N
(N+η)′ − 1

N+η < 1, or

N(N + η) > N + 1 and N − 1 < N+1
N+η . This is possible for N = 2. Note that once we

have a bound for the L∞ norm of E we can estimate the L∞ norm of the charge density

‖ρ‖L∞ ≤ ‖ρ1‖L∞ + ‖ρ2‖L∞. It is sufficient to estimate ρ1. We have

|ρ1(t, x)| = |q| ·
∫

|p|≤4D

f(t, x, p) dp ≤ C ·DN · ‖f‖L∞ ≤ C,

since D ∼ ‖E‖
1
2

L∞ in the classical case, D ∼ ‖E‖L∞ in the relativistic case and E is bounded.

Similar computations show that ∂tΦs belongs to L∞(]0, T [×Ω). For this we need to assume

that the current densities of the initial-boundary conditions belong to L∞

M̃1 :=

∫

RN
p

F0(|p|)|v(p)| dp+

∫

RN
p

G(|p|)|v(p)| dp < +∞. (4.16)

Note also that in the relativistic case (4.15) implies (4.16). Indeed, by using elliptic regularity

results and the continuity equation ∂tρ+ divxj = 0 we have

‖∂tΦs(t)‖L∞(Ω) ≤ C · ‖∂tΦs(t)‖W 1,N+η(Ω) ≤ C · ‖∂tρ(t)‖W−1,N+η(Ω)

= C · ‖divxj(t)‖W−1,N+η(Ω) ≤ C · ‖j(t)‖LN+η(Ω). (4.17)

As before we decompose

j(t, x) = j1 + j2 = q

∫

RN
p

v(p)f(t, x, p)1{|p|≤4D} dp+ q

∫

RN
p

v(p)f(t, x, p)1{|p|>4D} dp. (4.18)

For the first current density we can write

|j1(t, x)| ≤ |q| · ‖f‖L∞ ·
∫

RN
p

|v(p)|1{|p|≤4D} dp ≤ C. (4.19)

For the second current density we have

q−1j2(t, x) =

∫

|p|>4D

v(p)f(t, x, p) dp

=

∫

|p|>4D

v(p)f0(X(0; t, x, p), P (0; t, x, p)) · 1{sin(t,x,p)=0} dp

+

∫

|p|>4D

v(p)g(sin(t, x, p), X(sin; t, x, p), P (sin; t, x, p)) · 1{sin(t,x,p)>0} dp. (4.20)
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We deduce that

|q−1 · j2(t, x)|≤
∫

|p|>4D

|v(p)| · F0(|p| − 2D) dp+

∫

|p|>4D

|v(p)| ·G(|p| − 2D) dp. (4.21)

In the classical case v(p) = p
m and therefore we have

|q−1 · j2(t, x)| ≤ C

∫ +∞

4D

{F0(u− 2D) +G(u− 2D)} · uN du

= C

∫ +∞

2D

{F0(u) +G(u)} · (u + 2D)N du

≤ C ·
∫

RN
p

{F0(|p|) +G(|p|)} · |p| dp = C · M̃1. (4.22)

In the relativistic case we write

|q−1 · j2(t, x)|≤ c0 ·
∫

|p|>4D

{F0(|p| − 2D) +G(|p| − 2D)} · dp ≤ C · M̃0. (4.23)

We deduce from (4.18), (4.19), (4.22), (4.23) that j ∈ L∞(]0, T [×Ω). By using now (4.17) we

obtain that ∂tΦs ∈ L∞(]0, T [×Ω).

5 The Vlasov-Poisson System

We can prove now the existence of weak solution for the Vlasov-Poisson system.

Theorem 5.1 Assume that Ω ⊂ R
N
x is open and bounded, with ∂Ω smooth. We suppose

that the initial-boundary conditions verify

( i ) 0 ≤ f0 ∈ L∞(Ω × R
N
p ), 0 ≤ g ∈ L∞(]0, T [×Σ−);

( ii ) M0 +K0 +M− +K− + Vs,0 =

∫

Ω

∫

RN
p

(1 + E(p))f0 dxdp

+

∫ T

0

∫

Σ−

|(v(p) · n(x))| · (1 + E(p))g dtdσdp

+
q

2

∫

Ω

∫

RN
p

f0Φs,0(x) dxdp < +∞

(here Φs,0( · ) is the solution for −∆xΦs,0 = ρ0(x)
ε0

, x ∈ Ω, Φs,0(x) = 0, x ∈ ∂Ω);

(iii) ∇xΦ0 belongs to L∞(]0, T [×Ω)N (here Φ0 is the solution of −∆xΦ0(t, x) = 0, (t, x) ∈
]0, T [×Ω, Φ0(t, x) = ϕ0(t, x), (t, x) ∈]0, T [×∂Ω).

Then there is at least one weak solution (f,Φ = Φs + Φ0) for the Vlasov-Poisson system

verifying

0 ≤ f ≤ max{‖f0‖L∞, ‖g‖L∞}, 0 ≤ γ+f ≤ max{‖f0‖L∞ , ‖g‖L∞}, (5.1)

ess sup
0<t<T

{∫

Ω

∫

RN
p

(1 + E(p))f(t, x, p) dxdp+
ε0
2

∫

Ω

|∇xΦs(t, x)|2 dx
}

+

∫ T

0

∫

Σ+

(v(p) · n(x))(1 + E(p))γ+f dtdσdp

≤ C(M0,K0, Vs(0),M−,K−, ‖∇xΦ0‖L∞ , T ). (5.2)
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Moreover, in the classical case with N ∈ {2, 3} or in the relativistic case with N = 2 if there

are non-increasing functions F0, G : [0,+∞[→ [0,+∞[ such that

( iv ) f0(x, p) ≤ F0(|p|), ∀ (x, p) ∈ Ω × R
N
p , g(t, x, p) ≤ G(|p|), ∀ (t, x, p) ∈]0, T [×Σ−,

( v ) M̃0 =
∫

RN
p
F0(|p|) dp+

∫
RN

p
G(|p|) dp < +∞,

then E ∈ L∞(]0, T [×Ω)N , ρ ∈ L∞(]0, T [×Ω). If

( vi ) ∂tΦ0 ∈ L∞(]0, T [×Ω),

(vii) M̃1 =
∫

RN
p
|v(p)| · F0(|p|) dp+

∫
RN

p
|v(p)| ·G(|p|) dp < +∞,

then ∂tΦ ∈ L∞(]0, T [×Ω), j ∈ L∞(]0, T [×Ω)N .

Proof We truncate the initial-boundary conditions by taking f0,R = f0 · 1{|p|≤R}, gR =

g · 1{|p|≤R} and regularize the potential on the boundary so that

ϕ0,α∈L∞(]0, T [;W
4m+2− 1

p0
,p0(∂Ω)), ∂tϕ0,α∈L∞(]0, T [;W

4m+1− 1
p0
,p0(∂Ω))

(here p0 = 2N
2N−1 , p′0 = 2N , 1

p0
− 4m

N < 0), ‖∇xΦ0,α‖L∞ ≤‖∇xΦ0‖L∞ , ∇xΦ0,α⇀∇xΦ0 weakly

∗ in L∞(]0, T [×Ω)
N

as α ց 0, ∇xΦ0,α → ∇xΦ0 strongly in Lp(]0, T [×Ω)N , 1 ≤ p < +∞ as

α ց 0. We denote by (fα,Φα = Φs,α + Φ0,α) the solution of (3.2) constructed at Proposition

3.3. We have for all α > 0

Mα(t) +Kα(t) + Vs,α(t)+

∫ t

0

{M+
α (s) +K+

α (s)}ds

≤M0,α +K0,α + Vs,α(0) +

∫ t

0

{M−
α (s) +K−

α (s)}ds

+ C · ‖∇xΦ0‖L∞ ·
∫ t

0

(Mα(s) +Kα(s))
1
β ds, 0 ≤ t ≤ T, (5.3)

with β = N+2
N+1 in the classical case and β = N+1

N in the relativistic case. Consider (αk)k a

sequence such that lim
k→+∞

αk = 0 and keep R > 0 fixed. Obviously we have M0,αk
≤ M0,

K0,αk
≤ K0, M

−
αk

(s) ≤M−(s), K−
αk

(s) ≤ K−(s), ∀ 0 ≤ s ≤ T . Observe that

Vs,αk
(0) =

1

2

∫

Ω

ρ0,R(x)ΦRs,0(x)dx =: V Rs,0,

where −∆xΦ
R
s,0 =

ρ0,R(x)
ε0

, x ∈ Ω, ΦRs,0(x) = 0, x ∈ ∂Ω. Note also that 0 ≤ q−1ρ0,R ≤ q−1ρ0

and by the maximum principle we have 0 ≤ q−1ΦRs,0 ≤ q−1Φs,0, x ∈ Ω, where −∆xΦs,0 = ρ0
ε0

,

x ∈ Ω, Φs,0(x) = 0, x ∈ ∂Ω. Finally one gets

Vs,αk
(0)=

1

2

∫

Ω

ρ0,R(x)ΦRs,0(x)dx ≤ 1

2

∫

Ω

ρ0(x)Φs,0(x)dx

=
1

2

∫

Ω

∫

RN
p

f0(x, p)Φs,0(x) dxdp = Vs,0 < +∞, ∀R > 0. (5.4)

From the inequality (5.3) written for α = αk we deduce that

lim sup
k→+∞

{
sup

0≤t≤T
{Mαk

(t) +Kαk
(t) + Vs,αk

(t)} +M+
αk

+K+
αk

}

≤ C(M0,K0, Vs,0,M
−,K−, ‖∇xΦ0‖L∞ , T ). (5.5)
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Observe also that we have the following estimates: (ραk
)k is bounded in L∞(]0, T [;Lγ(Ω)),

(jαk
)k is bounded in L∞(]0, T [;Lβ(Ω)), (Φs,αk

)k is bounded in L∞(]0, T [;W 2,γ(Ω)), (∂tΦs,αk
)k

is bounded in L∞(]0, T [;W 1,β(Ω)), with γ = N+2
N > N+2

N+1 = β in the classical case and γ =
N+1
N = β in the relativistic case. After extraction of subsequences if necessary we deduce that

fαk
⇀ f, weakly ∗ in L∞(]0, T [×Ω× R

N
p ),

γ+fαk
⇀ γ+f, weakly ∗ in L∞(]0, T [×Σ+).

By using also a result due to Aubin [29] we can assume that

∇xΦs,αk
→ ∇xΦs, strongly in L2(]0, T [;Lγ(Ω)). (5.6)

By using the above convergence we can pass easily to the limit for k → +∞ in the Vlasov

equation and we deduce that f is a weak solution for

∂tf + v(p) · ∇xf + q(−∇xΦs −∇xΦ0) · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× R
N
p ,

f(0, x, p) = f0,R(x, p), (x, p) ∈ Ω × R
N
p , f(t, x, p) = gR(t, x, p), (t, x, p) ∈]0, T [×Σ−.

Moreover, the trace of f on ]0, T [×Σ+ is γ+f . The passing to the limit for k → +∞ in the reg-

ularized Poisson equation follows immediately by observing that ραk
⇀ ρ = q

∫
RN

p
f(t, x, p) dp

weakly in L1(]0, T [×Ω). Indeed, for R1 > 0, k ≥ 1 we have

∫ T

0

∫

Ω

∫

|p|>R1

fαk
dtdxdp ≤ 1

R1

∫ T

0

∫

Ω

∫

RN
p

|p| · fαk
dtdxdp

≤ C

R1

∫ T

0

∫

Ω

∫

RN
p

(1 + E(p))fαk
dtdxdp ≤ C

R1
,

and the weak L1 convergence of (ραk
)k follows from the weak ∗ L∞ convergence of (fk)k. The

estimates (5.1), (5.2) follow by standard arguments. Note that these estimates are uniform

with respect to R > 0 and thus it is possible to pass to the limit for R → +∞ in order to solve

the Vlasov-Poisson equations with the initial-boundary conditions f0 and g. The L∞ bounds

for ∇xΦ, ∂tΦ, ρ and j follow by using the L∞ estimates proved in Subsection 4.2 for smooth

solutions (fα,Φα) and by passing to the limit for αց 0, R → +∞ weakly ∗ in L∞.

In the following let us give some immediate properties of the solution constructed above.

Proposition 5.1 Under the hypotheses (i)–(v) of Theorem 5.1, the weak solution con-

structed before satisfies

(1) the application t→
∫
Ω

∫
RN

p
f dxdp is absolutely continuous for t ∈ [0, T ] and

d

dt

∫

Ω

∫

RN
p

f dxdp+

∫

Σ+

(v(p) · n(x))γ+f dσdp

=

∫

Σ−

|(v(p) · n(x))|g dσdp, a.e. t ∈]0, T [ ; (5.7)
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(2) the application t →
∫
Ω

∫
RN

p
E(p)f dxdp + ε0

2

∫
Ω |∇xΦs|2 dx is absolutely continuous for

t ∈ [0, T ] and

d

dt

{∫

Ω

∫

RN
p

E(p)f dxdp+
ε0
2

∫

Ω

|∇xΦs|2 dx
}

+

∫

Σ+

(v(p) · n(x))E(p)γ+f dσdp

= −
∫

Ω

∇xΦ0 · j dx+

∫

Σ−

|(v(p) · n(x))|E(p)g dσdp, a.e. t ∈]0, T [. (5.8)

Proof Indeed, recall that the weak solution (f,E) was obtained as (f,E) = lim
R→+∞

(fR, ER)

with (fR, ER) = (fR,−∇xΦ
R
s − ∇xΦ0) = lim

αց0
(fα,R, Eα,R), where (fα,R, Eα,R) is a solution of

(3.2) with the initial-boundary conditions f0,R, gR, ϕ0,α (observe that (fR, ER) is the solution

of the Vlasov-Poisson system with the initial-boundary conditions f0,R, gR, ϕ0). For the mo-

ment we keep R > 0 fixed and write the analogous of (5.7), (5.8) for the smooth solutions

(fα,R, Eα,R) = (fα, Eα) which are uniformly compactly supported in momentum with respect

to α > 0

d

dt

∫

Ω

∫

RN
p

fα dxdp+

∫

Σ+

(v(p) · n(x))γ+fα dσdp

=

∫

Σ−

|(v(p) · n(x))|gR dσdp, a.e. t ∈]0, T [. (5.9)

Similarly the application t →
∫
Ω

∫
RN

p
E(p)fα dxdp + q

2

∫
Ω

∫
RN

p
fα(t, x, p)Φs,α(t, x) dxdp is abso-

lutely continuous for t ∈ [0, T ] and

d

dt

{∫

Ω

∫

RN
p

(
E(p) +

q

2
Φs,α(t, x)

)
fα dxdp

}
+

∫

Σ+

(v(p) · n(x))E(p)γ+fα dσdp

= −
∫

Ω

∇xΦ0,α · jα dx+

∫

Σ−

|(v(p) · n(x))|E(p)gR dσdp, a.e. t ∈]0, T [. (5.10)

By passing to the limit for αց 0 in (5.9) we deduce that

d

dt

∫

Ω

∫

RN
p

fR dxdp +

∫

Σ+

(v(p) · n(x))γ+fR dσdp

=

∫

Σ−

|(v(p) · n(x))|gR dσdp, a.e. t ∈]0, T [. (5.11)

The passing to the limit for α ց 0 in (5.10) is a little more complicated. For θ ∈ D([0, T [) we

have

− θ(0)

∫

Ω

∫

RN
p

(
E(p) +

q

2
ΦRs,0(x)

)
f0,R dxdp−

∫ T

0

∫

Ω

∫

RN
p

θ′(t)
(
E(p) +

q

2
Φs,α(t, x)

)
fαdtdxdp

+

∫ T

0

∫

Σ+

θ(t)(v(p) · n(x))E(p)γ+fα dtdσdp

=

∫ T

0

∫

Σ−

θ(t)|(v(p) · n(x))|E(p)gR dtdσdp −
∫ T

0

∫

Ω

θ(t)∇xΦ0,α · jα(t, x) dtdx. (5.12)
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Since (fα)α>0 are uniformly compactly supported in momentum we deduce also that

lim
αց0

∫ T

0

∫

Ω

∫

RN
p

θ′(t)E(p)fαdtdxdp =

∫ T

0

∫

Ω

∫

RN
p

θ′(t)E(p)fRdtdxdp,

lim
αց0

∫ T

0

∫

Σ+

θ(t)(v(p) · n(x))E(p)γ+fα dtdσdp =

∫ T

0

∫

Σ+

θ(t)(v(p) · n(x))E(p)γ+fR dtdσdp.

In order to pass to the limit in the term
∫ T
0

∫
Ω

∫
RN

p
θ(t)∇xΦ0,α·jαdtdxdp we can combine the weak

convergence jα ⇀ jR weakly in L1(]0, T [×Ω)N , the uniform bound of jα in L∞(]0, T [;Lβ(Ω))N

and the strong convergence ∇xΦ0,α →∇xΦ0 strongly in Lr(]0, T [×Ω)N , ∀ 1 < r < +∞ (for

example r=β′). In order to pass to the limit in the term
∫ T

0

∫

Ω

∫

RN
p

θ′(t)Φs,αqfαdtdxdp =

∫ T

0

∫

Ω

θ′(t)Φs,αραdtdx,

combine the weak convergence ρα ⇀ ρR in L1(]0, T [×Ω), the uniform bounds of ρα,Φα in

L∞(]0, T [×Ω) and the strong convergence Φs,α → ΦRs in L2(]0, T [;W 1,γ(Ω)). After passing to

the limit in (5.12) we deduce that

− θ(0)

∫

Ω

∫

RN
p

(
E(p) +

q

2
ΦRs,0(x)

)
f0,R dxdp−

∫ T

0

∫

Ω

∫

RN
p

θ′(t)
(
E(p) +

q

2
ΦRs (t, x)

)
fRdtdxdp

+

∫ T

0

∫

Σ+

θ(t)(v(p) · n(x))E(p)γ+fR dtdσdp

=

∫ T

0

∫

Σ−

θ(t)|(v(p) · n(x))|E(p)gR dtdσdp −
∫ T

0

∫

Ω

θ(t)∇xΦ0 · jR(t, x) dtdx. (5.13)

In order to prove (5.7), (5.8) we need to pass to the limit for R → +∞ in (5.11), (5.13). The

proof is similar and is left to the reader. Note that (fR)R>0 is not anymore uniformly compactly

supported in momentum but we can prove that

sup
0≤t≤T

∫

Ω

∫

RN
p

(1 + E(p))fR · 1{|p|>R1} dxdp → 0, as R1 → +∞, (5.14)

∫ T

0

∫

Σ+

(v(p) · n(x))(1 + E(p))γ+fR · 1{|p|>R1} dtdσdp→ 0, as R1 → +∞ (5.15)

uniformly with respect to the solution fR. For this take χ ∈ C∞
c ([0,+∞[), 0 ≤ χ ≤ 1, χ(u) =

1, 0 ≤ u ≤ 1
2 , χ(u) = 0, u ≥ 1 and multiply the Vlasov equation by (1 − χR1(|p|)) · (1 + E(p)),

where χR1(·) = χ(·/R1). After easy computations (involving the L∞ bound for the electric

field ER) we find (5.14), (5.15) which implies that

lim
R→+∞

(1 + E(p))fR = (1 + E(p))f, weakly in L1(]0, T [×Ω× R
N
p ),

lim
R→+∞

(v(p) · n(x))(1 + E(p))fR = (v(p) · n(x))(1 + E(p))f, weakly in L1(]0, T [×Σ+).

The passing to the limit for R → +∞ in (5.11), (5.13) follows now easily by using the above

weak convergence. Observe also that by passing to the L∞ weak ∗ limit f = lim
R→+∞

fR we have

lim
R1→+∞

ess sup
0<t<T

∫

Ω

∫

RN
p

(1 + E(p))f · 1{|p|>R1} dxdp = 0. (5.16)
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Another direct consequence of Theorem 5.1 is the propagation of the moments.

Proposition 5.2 Under the hypotheses (i)–(v) of Theorem 5.1 with 1 ≤ N ≤ 3 in the

classical case and 1 ≤ N ≤ 2 in the relativistic case denote by (f,E = −∇xΦs − ∇xΦ0) the

solution constructed previously. Suppose also that for some m such that m > 2 in the classical

case and m > 1 in the relativistic case the initial-boundary conditions verify

∫

Ω

∫

RN
p

|p|m · f0(x, p) dxdp+

∫ T

0

∫

Σ−

|(v(p) · n(x))| · |p|m · g(t, x, p) dtdσdp < +∞. (5.17)

Then we have

∥∥∥
∫

Ω

∫

RN
p

|p|m · f(·, x, p) dxdp
∥∥∥
L∞(]0,T [)

+

∫ T

0

∫

Σ+

(v(p) · n(x)) · |p|m · γ+f(t, x, p) dtdσdp < +∞. (5.18)

Proof It is sufficient to prove (5.18) for smooth solutions. The conclusion follows easily

by observing that for r = m,m− 1, · · · we have

d

dt

∫

Ω

∫

RN
p

|p|r · fα(t, x, p) dxdp+

∫

Σ

(v(p) · n(x)) · |p|r · γfα dσdp

=

∫

Ω

∫

RN
p

q · fα(t, x, p) · r · |p|r−2(Eα(t, x) · p) dxdp

≤ |q| · r · ‖Eα‖L∞

∫

Ω

∫

RN
p

|p|r−1 · fα(t, x, p) dxdp.

Proposition 5.3 Under the hypotheses (i)–(v) of Theorem 5.1 with 1 ≤ N ≤ 3 in the

classical case and 1 ≤ N ≤ 2 in the relativistic case we suppose also that for some m > 0 we

have

M̃m :=

∫

RN
p

|p|m · F0(|p|) dp+

∫

RN
p

|p|m ·G(|p|) dp < +∞. (5.19)

Then we have

∥∥∥
∫

RN
p

|p|m · f( · , · , p) dp
∥∥∥
L∞(]0,T [×Ω)

+
∥∥∥

∫

RN
p

|p|m · γf( · , · , p) dp
∥∥∥
L∞(]0,T [×∂Ω)

< +∞. (5.20)

Proof Write
∫

RN
p

|p|m · f(t, x, p) dp =

∫

|p|≤4D

{· · · dp} +

∫

|p|>4D

{· · · dp}

and continue as it was done for the cases m = 0, m = 1.

5.1 The time periodic case

We end this paper by considering permanent regimes. We assume that the boundary data

g, ϕ0 are T periodic and under natural hypotheses we construct weak solutions for the Vlasov-

Poisson system with bounded electric field. We consider the classical case. First of all let us
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deduce bounds for the total mass and energy by performing formal computations (for more

details see [27]). We assume that the boundary conditions verify

0 ≤ g ∈ L∞(Rt × Σ−),

∫ T

0

∫

Σ−

|(v(p) · n(x))|(1 + E(p))g(t, x, p) dtdσdp < +∞,

ϕ0 ∈ L2(]0, T [;H1(∂Ω)), ∇xΦ0 ∈ L∞(Rt × Ω),

where Φ0 is the exterior potential (−∆xΦ0 = 0, (t, x) ∈ Rt × Ω, Φ0 = ϕ0, (t, x) ∈ Rt × ∂Ω).

Consider (f,Φ = Φs + Φ0) a T periodic smooth solution with compact support in momentum.

The conservations of the mass and kinetic energy give

d

dt

∫

Ω

∫

RN
p

f(t, x, p) dxdp+

∫

Σ

(v(p) · n(x))γf(t, x, p) dσdp = 0, t ∈ Rt, (5.21)

d

dt

∫

Ω

∫

RN
p

E(p)f(t, x, p) dxdp+

∫

Σ

(v(p) · n(x))E(p)γf(t, x, p) dσdp

=

∫

Ω

∫

RN
p

q(E(t, x) · v(p))f dxdp = −
∫

Ω

j(t, x) · (∇xΦs + ∇xΦ0) dx, t ∈ Rt. (5.22)

After multiplying the Vlasov equation by qΦs and by using the Poisson equation we find as

before

d

dt

{∫

Ω

∫

RN
p

E(p)f(t, x, p) dxdp+
1

2

∫

Ω

ρ(t, x)Φs(t, x) dx
}

+

∫

Σ

(v(p) · n(x))E(p)γf(t, x, p) dσdp

= −
∫

Ω

j(t, x) · ∇xΦ0 dx. (5.23)

After integration on ]0, T [ we deduce that

∫ T

0

∫

Σ+

(v(p) · n(x))γ+f(t, x, p) dtdσdp =

∫ T

0

∫

Σ−

|(v(p) · n(x))|g(t, x, p) dtdσdp, (5.24)

∫ T

0

∫

Σ+

(v(p) · n(x))E(p)γ+f dtdσdp =

∫ T

0

∫

Σ−

|(v(p) · n(x))|E(p)g dtdσdp

−
∫ T

0

∫

Ω

j(t, x) · ∇xΦ0 dtdx. (5.25)

We multiply the Vlasov equation by (p ·x) and we suppose that ∂Ω is strictly star-shaped with

respect to 0 ∈ Ω, i.e., ∃ r > 0 such that r ≤ (n(x) · x), ∀x ∈ ∂Ω. We obtain

d

dt

∫

Ω

∫

RN
p

(p · x)f dxdp+
∫

Σ

(v(p) · n(x)) (p · x)γf dσdp

=

∫

Ω

∫

RN
p

(v(p) · p)f dxdp+

∫

Ω

∫

RN
p

q(E · x)f dxdp

=

∫

Ω

∫

RN
p

(v(p) · p)f dxdp+

∫

Ω

ρ(E · x) dx. (5.26)
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We use the identity

Eidiv E =

N∑

j=1

∂

∂xj
(EiEj) −

1

2

∂

∂xi
|E|2, ∀ 1 ≤ i ≤ N, (5.27)

if ∂Ei

∂xj
=

∂Ej

∂xi
, ∀1 ≤ i, j ≤ N . After integration by parts and by using the decomposition

E = (E · n)n+ Eτ , (t, x) ∈ Rt × ∂Ω we find

∫

Ω

(E · x)divE dx=

∫

Ω

N∑

i=1

xi

{ N∑

j=1

∂

∂xj
(EiEj) −

1

2

∂

∂xi
|E|2

}
dx

=
(N

2
− 1

)∫

Ω

|E(t, x)|2 dx+
1

2

∫

∂Ω

(n(x) · x)(E · n)2 dσ

+

∫

∂Ω

(Eτ · x) · (E · n(x)) dσ − 1

2

∫

∂Ω

(n(x) · x) · |Eτ |2 dσ. (5.28)

By using (5.26), (5.28) we deduce that

∫ T

0

∫

Ω

∫

RN
p

E(p)fdtdxdp + ε0

(N
2

− 1
)∫ T

0

∫

Ω

|E|2 dtdx +
ε0r

2

∫ T

0

∫

∂Ω

(E · n(x))2 dtdσ

≤
∫ T

0

∫

Σ

(v(p) · n(x))(p · x)γf dtdσdp +
ε0
2

∫ T

0

∫

∂Ω

(n(x) · x) · |Eτ |2 dtdσ

− ε0

∫ T

0

∫

∂Ω

(Eτ · x) · (E · n(x)) dtdσ. (5.29)

Observe that ‖Eτ‖L2(]0,T [×∂Ω) ≤ C · ‖ϕ0‖L2(]0,T [;H1(∂Ω)) and from (5.24), (5.25) note that

∣∣∣
∫ T

0

∫

Σ

(v(p) · n(x))(p · x)γf dtdσdp
∣∣∣ ≤ C ·

∫ T

0

∫

Σ

|(v(p) · n(x))|(1 + E(p))γf dtdσdp

≤ C ·
∫ T

0

∫

Σ−

|(v(p) · n(x))|(1 + E(p))g dtdσdp

+ C · ‖∇xΦ0‖L∞ ·
∫ T

0

∫

Ω

|j(t, x)| dtdx. (5.30)

By using interpolation inequalities and (5.29), (5.30) we obtain bounds for

∫ T

0

∫

Ω

∫

RN
p

E(p)fdtdxdp +
ε0
2

∫ T

0

∫

Ω

|E|2 dtdx

+

∫ T

0

∫

Σ+

(v(p) · n(x))(1 + E(p))γ+f dtdσdp+
ε0
2

∫ T

0

∫

∂Ω

(E · n)2 dtdσ ≤ C

for the case N > 2. In the case N = 2 we obtain bounds only for

W =

∫ T

0

∫

Ω

∫

RN
p

E(p)fdtdxdp +
ε0
2

∫ T

0

∫

∂Ω

(E · n)2 dtdσ

+

∫ T

0

∫

Σ+

(v(p) · n(x))(1 + E(p))γ+f dtdσdp.
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By interpolation inequalities we have ‖ρ‖L2(]0,T [×Ω) ≤ C and therefore

∫ T

0

∫

Ω

|∇xΦs|2 dtdx ≤ C ·
∫ T

0

∫

Ω

ρ2 dtdx ≤ C.

In fact the total energy is uniformly bounded in time. Indeed, since
∫ T
0 {K(t) + Vs(t)} dt ≤ C,

there is t0 such that K(t0)+Vs(t0) ≤ C
T and we can propagate the total energy for t ∈ [t0, t0+T ].

Suppose also that there is non-increasing G : [0,+∞[→ [0,+∞[ such that

g(t, x, p) ≤ G(|p|), ∀ (t, x, p) ∈ Rt × Σ−,

M̃− :=

∫

RN
p

G(|p|) dp < +∞.

By using the method presented at Subsection 4.2 we deduce a bound for the L∞ norm of the

electric field and the charge density in the cases N ∈ {2, 3}. The one dimensional case was

studied in [26]. In this case, we write

‖Es(t)‖L∞ ≤ C · ‖ρ(t)‖L1 ≤ C · ‖ρ1(t)‖L1 + C · ‖ρ2(t)‖L1 , (5.31)

where ρ1(t, x) = q ·
∫
|p|≤4D f(t, x, p) dp and ρ2(t, x) = q ·

∫
|p|>4D f(t, x, p) dp. For the first charge

density we have

‖ρ1(t)‖L1 ≤ C · ‖ρ1(t)‖L∞ ≤ C · ‖f‖L∞ ·D ≤ C · ‖E‖
1
2

L∞, (5.32)

and for the second charge density we have as usual

‖ρ2(t)‖L1 ≤ C · ‖ρ2(t)‖L∞ ≤ C ·
∫

Rp

G(|p|) dp. (5.33)

From (5.31)–(5.33) we obtain a bound for the L∞ norm of E and ρ.

A direct consequence of the L∞ bound for the electric field is the existence of weak solution

for the time periodic Vlasov-Poisson system with particle distribution compactly supported in

momentum, when the boundary condition has compact support in momentum, i.e., ∃R > 0

such that g = g · 1{|p|≤R} (cf. Theorem 2.4).

6 Appendix

We give here the proof of momentum change lemmas for the classical and relativistic cases.

6.1 The classical case

We will need the following easy lemma.

Lemma 6.1 Consider the quadratic function F : R → R given by F (s) = 1
2a(s − s1)

2 −
b(s− s1) + c, with a, b, c > 0, ∆ = b2 − 2ac > 0 and s1 ≤ s2 such that F (s) ≥ 0, ∀ s1 ≤ s ≤ s2.

Then we have s2 − s1 ≤ b−
√

∆
a ≤ 2c

b .

Proof Without loss of generality, we can suppose that s1 = 0. The equation F (s) = 0 has

two positive real roots r1,2 = b∓
√

∆
a , 0 < r1 < r2. Since a > 0 we have F (s) < 0, ∀ r1 < s < r2.
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Suppose that s2 > r1 and consider s0 ∈ [0, s2]∩]r1, r2[6= ∅. Thus, since 0 ≤ s0 ≤ s2 by the

hypothesis we have F (s0) ≥ 0. On the other hand, since r1 < s0 < r2 we have F (s0) < 0.

Therefore s2 > r1 is not possible and we get that s2 ≤ r1 = b−
√

∆
a ≤ 2c

b .

Remark 6.1 If a = 0, we still have the inequalities s2 − s1 ≤ c
b <

2c
b .

Corollary 6.1 Consider the function F1 : R → R given by F1(s) = 1
2a(s− t)2 − b|s− t|+ c

with a ≥ 0, b, c > 0, ∆ = b2 − 2ac > 0 and s1 ≤ t ≤ s2 such that F1(s) ≥ 0, ∀ s1 ≤ s ≤ s2.

Then we have max{t− s1, s2 − t} ≤ 2c
b and s2 − s1 ≤ 4c

b .

Proof Consider F (r) = 1
2ar

2−br+c. Observe that F (r) ≥ 0, ∀ 0 ≤ r ≤ max{t−s1, s2−t}.
The conclusion follows by applying Lemma 6.1.

Proof of Lemma 2.1 (1) Let us consider for sin ≤ s ≤ sout

M(s) =
q

m




0 B3(s,X(s)) −B2(s,X(s))

−B3(s,X(s)) 0 B1(s,X(s))

B2(s,X(s)) −B1(s,X(s)) 0


 .

We have

‖M(s)‖ = sup
p∈R3

p

|M(s) · p|
|p| =

|q|
m

sup
p∈R3

p

|p ∧B(s)|
|p| ≤ |q|

m
‖B‖∞, ∀ sin ≤ s ≤ sout.

Denote by R(s; t) the resolvent for ∂R
∂s (s; t) = M(s)R(s; t) with R(s = t; t) = I. Since M(s)

is antisymmetric we have ‖R(s; t)‖ = 1, ∀sin ≤ s ≤ sout (in fact R(s; t) is orthogonal) and

therefore we have

‖R(s; t) − I‖ ≤ |s− t| · ‖M(·)‖∞ ≤ |s− t| · |q|
m

· ‖B‖∞.

By (2.7) we have P (s) = R(s; t)P (t)+ q
∫ s
t R(s; τ)E(τ,X(τ))dτ, ∀ sin ≤ s ≤ sout, and therefore

we obtain

|P (s) − P (t)| ≤ |s− t| · |q|
m

· ‖B‖∞ · |P (t)| + |q| · |s− t| · ‖E‖∞. (6.1)

We use now the equation dX
ds = P (s)

m and (6.1) to obtain

diam(Ω) ≥
∣∣∣
(
X(s) −X(t),

P (t)

|P (t)|
)∣∣∣ =

∣∣∣
∫ s

t

(P (τ)

m
,
P (t)

|P (t)|
)
dτ

∣∣∣

≥
∣∣∣
∫ s

t

|P (t)|
m

dτ
∣∣∣ −

∣∣∣
∫ s

t

(P (τ) − P (t)

m
,
P (t)

|P (t)|
)
dτ

∣∣∣

≥ 1

m
|s− t| · |P (t)| − 1

2m
· |s− t|2

( |q|
m

· ‖B‖∞ · |P (t)| + |q| · ‖E‖∞
)
. (6.2)

Denote by F1 : R → R the function given by

F1(s) =
1

2
|s− t|2

( |q|
m

· ‖B‖∞ · |P (t)| + |q| · ‖E‖∞
)
− |s− t| · |P (t)| +m · diam(Ω).

The discriminant is

∆ = |P (t)|2 − 2 ·
( |q|
m

· ‖B‖∞ · |P (t)| + |q| · ‖E‖∞
)
·m · diam(Ω)

= (|P (t)| − |q| · ‖B‖∞ · diam(Ω))2

− (|q|2 · ‖B‖2
∞ · diam(Ω)2 + 2|q| · ‖E‖∞ ·m · diam(Ω)) > 0,
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since |P (t)| > Dcla. By (6.2) we have that F1(s) ≥ 0, ∀ sin ≤ s ≤ sout and thus by applying

Corollary 6.1 we deduce that max{t−sin, sout−t} ≤ 2·m· diam(Ω)
|P (t)| and sout−sin ≤ 4·m· diam(Ω)

|P (t)| ≤
4 ·m · diam(Ω)

Dcla
. Using one more time (6.1), we deduce that for all sin ≤ s ≤ sout

|P (s) − P (t)| ≤ |s− t|
( |q|
m

· ‖B‖∞ · |P (t)| + |q| · ‖E‖∞
)

≤ 2 ·m · diam(Ω)

|P (t)|
( |q|
m

· ‖B‖∞ · |P (t)| + |q| · ‖E‖∞
)

≤ 2|q| · ‖B‖∞ · diam(Ω) +
2

Dcla
· |q| · ‖E‖∞ ·m · diam(Ω)

≤ Dcla.

We deduce that |P (s1) − P (s2)| ≤ 2Dcla, ∀ sin ≤ s1 ≤ s2 ≤ sout.

(2) If |P (s1)| ≤ Dcla and |P (s2)| ≤ Dcla we have |P (s1)−P (s2)| ≤ 2Dcla. If |P (s1)| > Dcla,

by applying the previous point for t = s1 we deduce that |P (s2)−P (s1)| ≤ Dcla ≤ 2Dcla, ∀ s2.
If |P (s2)| > Dcla we apply the previous point with t = s2.

6.2 The relativistic case

Let us establish some preliminary properties concerning the function v(p), p ∈ R
N
p .

Lemma 6.2 Consider v : R
N
p → R

N given by v(p) = p
m ·

(
1 + |p|2

(mc0)2

)−1/2

. Then we have

(1) |v(p)| ≤ c0, ∀ p ∈ R
N
p ;

(2) (v(p1) − v(p2), p1 − p2) > 0, ∀ p1 6= p2;

(3) |v(p1) − v(p2)|2 ≤ N

m2
|p1 − p2|2

∫ 1

0

(
1 +

|tp1 + (1 − t)p2|2
(mc0)2

)−1

dt, ∀ p1, p2 ∈ R
N
p ;

(4) |v(p1)−v(p2)| ≤
2
√
N

m
· |p1−p2| ·

(
1+

|p1|2
(mc0)2

)−1/2

, if |p1−p2| ≤
|p1|
2
, ∀ p1, p2 ∈ R

N
p .

Proof (1) is obvious. For the point (2) consider the function ϕ : R → R given by

ϕ(u) = mc20
(
1 + u2

(m2c20)
1/2 − 1

)
and check that ϕ is strictly convex on R and strictly increasing

on [0,+∞[. We deduce that E(p) is strictly convex on R
N
p . Indeed, for λ ∈]0, 1[ we have

E(λp1 + (1 − λ)p2) = ϕ(|λp1 + (1 − λ)p2|)
≤ ϕ(λ|p1| + (1 − λ)|p2|) ≤ λϕ(|p1|) + (1 − λ)ϕ(|p2|)
≤ λE(p1) + (1 − λ)E(p2),

with equality iff |λp1 + (1− λ)p2| = λ|p1|+ (1− λ)|p2| and |p1| = |p2|, which means iff p1 = p2.

Therefore we have for p1 6= p2 that

(∇pE(p1) −∇pE(p2), p1 − p2) > 0 or (v(p1) − v(p2), p1 − p2) > 0.

The point (3) follows by direct computation by writing

v(p1) − v(p2) =

∫ 1

0

∇pv(tp1 + (1 − t)p2) · (p1 − p2)dt.
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For (4) we write

|tp1 + (1 − t)p2| ≥ |p1| − (1 − t)|p1 − p2| ≥ |p1| − |p1 − p2| ≥
|p1|
2
, ∀ t ∈ [0, 1],

and the conclusion follows by (3).

Proof of Lemma 2.2 We have P (s) = P (t) + q
∫ s
t
E(τ,X(τ))dτ and we deduce that

|P (s) − P (t)| ≤ |q| · |s− t| · ‖E‖∞ ≤ |P (t)|
2

, sin ≤ s ≤ sout, |s− t| ≤ |P (t)|
2 · |q| · ‖E‖∞

.

Note that if ‖E‖∞ = 0 the above inequality holds ∀ s ∈ [sin, sout]. By Lemma 6.2 we have

|v(P (s)) − v(P (t))| ≤ 2
√
N

m
· |P (s) − P (t)| ·

(
1 +

|P (t)|2
m2c20

)−1/2

≤ 2
√
N

m
· |q| · ‖E‖∞ · |s− t| ·

(
1 +

|P (t)|2
m2c20

)−1/2

, ∀ r1 ≤ s ≤ r2, (6.3)

where

r1 = max
{
sin, t−

|P (t)|
2 · |q| · ‖E‖∞

}
, r2 = min

{
sout, t+

|P (t)|
2 · |q| · ‖E‖∞

}
,

if ‖E‖∞ > 0 and r1 = sin, r2 = sout if ‖E‖∞ = 0. By using the equation dX
ds = v(P (s)) and

(6.3) we find for r1 ≤ s ≤ r2 that

diam(Ω) ≥
∣∣∣
(
X(s) −X(t),

v(P (t))

|v(P (t))|
)∣∣∣ =

∣∣∣
∫ s

t

(
v(P (τ)),

v(P (t))

|v(P (t))|
)
dτ

∣∣∣

≥
∣∣∣
∫ s

t

(
v(P (t)),

v(P (t))

|v(P (t))|
)
dτ

∣∣∣ −
∣∣∣
∫ s

t

(
v(P (τ)) − v(P (t)),

v(P (t))

|v(P (t))|
)
dτ

∣∣∣

≥ |s− t| · |v(P (t))| −
∣∣∣
∫ s

t

|v(P (τ)) − v(P (t))|dτ
∣∣∣

≥ |s− t| · |v(P (t))| −
√
N · |q| · ‖E‖∞

m
|s− t|2

(
1 +

|P (t)|2
m2c20

)−1/2

.

We consider also the function

F1(s) =
1

2
|s−t|2·2

√
N ·|q|·‖E‖∞

(
1+

|P (t)|2
m2c20

)−1/2

−|s−t|·|P (t)|·
(
1+

|P (t)|2
m2c20

)−1/2

+m·diam(Ω).

By the above computations we have F1(s) ≥ 0, ∀ r1 ≤ s ≤ r2. Moreover, the condition ∆ > 0

is equivalent to α2 > β
√

1 + α2 where α = |P (t)|
mc0

. The previous inequality can be written

also as
(
α2 − β2

2

)2
> β2 + β4

4 and thus ∆ > 0 if α2 > β + β2 > β2

2 +
√
β2 + β4

4 . But

α = |P (t)|
mc0

> (β + β2)1/2 is satisfied by hypothesis. By Corollary 6.1 we deduce that

max{t− r1, r2 − t} ≤ 2m · diam(Ω)

|P (t)|
(
1 +

|P (t)|2
m2c20

)1/2

. (6.4)

Suppose that t+ |P (t)|
2·|q|·‖E‖∞

< sout, or r2 = t+ |P (t)|
2·|q|·‖E‖∞

. We have by (6.4) that

|P (t)|
2 · |q| · ‖E‖∞

≤ 2m · diam(Ω)

|P (t)|
(
1 +

|P (t)|2
m2c20

)1/2

,
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which is equivalent to α2
√

1+α2
≤ β√

N
with the previous notations. Since N ≥ 1 we would

deduce that α2
√

1+α2
≤ β or ∆ ≤ 0 but we have proved that ∆ > 0. Finally we deduce that

sout ≤ t+ |P (t)|
2·|q|·‖E‖∞

and similarly we have t− |P (t)|
2·|q|·‖E‖∞

≤ sin. It follows that

r1 = sin, r2 = sout, max{t− sin, sout − t} ≤ 2diam(Ω)

|v(P (t))| , sout − sin ≤ 4diam(Ω)

|v(P (t))| .

We check easily that if |P (t)| > Dele
rel , then

|v(P (t))| = c0
|P (t)|
mc0

(
1 +

|P (t)|2
m2c20

)−1/2

> c0

√
β(1 + β)√

1 + β(1 + β)

and thus we obtain that

max{t− sin, sout − t} < 2diam(Ω)

c0
·
√

1 + β(1 + β)√
β(1 + β)

.

Finally we find for sin ≤ s ≤ sout

|P (s) − P (t)| ≤ |q| · ‖E‖∞ · |s− t| < 2|q| · ‖E‖∞ · diam(Ω)

c0
·
√

1 + β(1 + β)√
β(1 + β)

=
βmc0

2
√
N

·
√

1 + β(1 + β)√
β(1 + β)

< mc0
√
β(1 + β) = Dele

rel . (6.5)

(2) If max{|P (s1)|, |P (s2)|} ≤ Dele
rel , then we have |P (s1)−P (s2)| ≤ 2Dele

rel . If |P (s1)| > Dele
rel ,

by the point (1) with t = s1 we deduce that |P (s2) − P (s1)| ≤ Dele
rel ≤ 2Dele

rel and the same if

|P (s2)| > Dele
rel by taking t = s2.
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