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Kähler Manifolds with Almost
Non-negative Ricci Curvature
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Abstract Compact Kähler manifolds with semi-positive Ricci curvature have been inves-
tigated by various authors. From Peternell’s work, if M is a compact Kähler n-manifold
with semi-positive Ricci curvature and finite fundamental group, then the universal cover
has a decomposition fM ∼= X1 × · · · × Xm, where Xj is a Calabi-Yau manifold, or a hy-
perKähler manifold, or Xj satisfies H0(Xj , Ω

p) = 0. The purpose of this paper is to
generalize this theorem to almost non-negative Ricci curvature Kähler manifolds by us-
ing the Gromov-Hausdorff convergence. Let M be a compact complex n-manifold with
non-vanishing Euler number. If for any ǫ > 0, there exists a Kähler structure (Jǫ, gǫ) on
M such that the volume Volgǫ(M) < V , the sectional curvature |K(gǫ)| < Λ2, and the
Ricci-tensor Ric(gǫ)> −ǫgǫ, where V and Λ are two constants independent of ǫ. Then the
fundamental group of M is finite, and M is diffeomorphic to a complex manifold X such
that the universal covering of X has a decomposition, eX ∼= X1 × · · · × Xs, where Xi is a
Calabi-Yau manifold, or a hyperKähler manifold, or Xi satisfies H0(Xi, Ω

p) = {0}, p > 0.
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1 Introduction

In [6], the uniformization theorem of Mok for nonnegative bisectional curvature Kähler

manifolds is generalized to almost nonnegative bisectional curvature Kähler manifolds. On the

other hand, compact Kähler manifolds with semi-positive Ricci curvature have been investigated

in [5, 14]. If M is a compact Kähler n-manifold with semi-positive Ricci curvature and finite

fundamental group, then the universal cover has a decomposition M̃ ∼= X1 × · · · × Xm, where

Xj is a Calabi-Yau manifold, or a hyperKähler manifold, or Xj satisfies H0(Xj , Ω
p) = 0, by [14,

Theorem 5.13]. In this paper, we generalize this theorem to Kähler manifolds with almost non-

negative Ricci curvature and bounded sectional curvature. We call (J, ω, g) a Kähler structure

on a manifold M , if J is a complex structure on M , g is a Kähler metric compatible with J ,

and ω is the Kähler form associated to g.

Theorem 1.1 Let M be a compact complex n-manifold with non-vanishing Euler number,

χ(M) 6= 0. If for any ǫ > 0, there exists a Kähler structure (Jǫ, gǫ) on M such that

(1) Volgǫ
(M) < V , where Volgǫ

(M) is the volume of (M , gǫ), and V is a constant indepen-

dent of ǫ.
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(2) |K(gǫ)| < Λ2, where K(gǫ) is the sectional curvature, and Λ is a constant independent

of ǫ.

(3) Ric(gǫ) > −ǫgǫ, where Ric(gǫ) is the Ricci-tensor of gǫ.

Then,

(1) The fundamental group of M , π1(M), is finite.

(2) M is diffeomorphic to a complex manifold X such that the universal covering of X has

a decomposition, X̃ ∼= X1 × · · · × Xs, where Xi is a Calabi-Yau manifold, or a hyperKähler

manifold, or Xi satisfies H0(Xi, Ω
p) = {0}, p > 0.

(3) The holomorphic Euler number of M satisfies that

χ(M,O) ≤ 2n−1

|π1(M)| .

The condition (2) in the above theorem seems too strong. If we remove this condition, and

fix a complex structure, then a weaker conclusion also can be obtained. Let (M, J, ω, g) be a

compact Kähler n-manifold. We call the first Chern c1(M) class of M numerically effective, if

for every ǫ > 0 there is a smooth hermitian metric hǫ on the anti-canonical bundle −KM =

∧0,n
J T ∗M such that the curvature satisfies

√
−1Θhǫ

(−KM ) ≥ −ǫω (see [5, 13]). This implies

that, for any ǫ > 0, there exists a Kähler metric gǫ with Kähler form ωǫ such that the Ricci form

satisfies Ric(gǫ) ≥ −ǫωǫ, and ωǫ ∈ [ω] by arguments in the proof of Theorem 1.1 in [5]. A (1, 1)-

class [α] is integrable if it contains a closed positive current T of the form T = α +
√
−1 ∂∂ϕ

with
∫

M
e−ϕωn < ∞. For example, if [α] contains a closed positive current T whose Lelong

numbers are small enough, i.e. max ν(T, x) < 2, then [α] is integrable (see [13, §2]).

Proposition 1.1 Let (M, J, ω, g) be a compact Kähler n-manifold with the first Chern

c1(M) class numerically effective and integrable. Then hp,0(M) ≤ ( n
p ). Furthermore, if

hn,0(M) 6= 0, then c1(M) = 0.

We organize this paper as follows: In Section 2, we discuss the convergence of (p, q)-forms;

in Section 3, we prove Theorem 1.1 and Proposition 1.1 respectively.

2 Convergence of Harmonic (p, q)-Forms

Let (M, J) be a compact complex manifold satisfying the hypothesis in Theorem 1.1. Then

we have a sequence of Kähler structures (Jk, gk) such that

(1) Volk(M) < V , where Volk(M) is the volume of (M, gk).

(2) |K(gk)| < Λ2, where K(gk) is the sectional curvature, and Λ is a constant independent

of k.

(3) Rick > − 1
k
gk, where Rick is the Ricci-tensor of (M, gk).

Lemma 2.1 There are constants D and v, independent of k, such that Volk(M) > v and

diamk(M) < D, where diamk(M) is the diameter of (M, gk).

Proof First, we claim that there is a sequence {xk} ⊂ M such that, for any k, the injectivity

radius of gk at xk satisfies ik(xk) > ι, where ι is a constant independent of k. If not, there is a

k such that the injectivity radius of (M, gk) is less than ι, ik(M, gk) < ι, where ι is the critical
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injectivity radius in the sense of [4]. Then by [4], there exists an F -structure of positive rank

on M as |K(gk)| < Λ2. It is contradict to χ(M) 6= 0 (see [4]).

Then, since |K(gk)| < Λ2, we have

Volk(Bxk(1)) > Volk(Bxk(ι)) > v,

where v is a constant independent of k. Then by [13, Lemma 2.3], the diameter of (M, gk) is

bounded by a constant D from above, diamk(M) < D.

Finally, Volk(M) > Volk(Bxk(ι)) > v.

By the lemma, the Kähler manifolds (M, Jk, gk) satisfy that diamk(M) < D, Volk(M) > v,

and |K(gk)| < Λ2. Then, by Gromov’s compactness theorem (see [15, Theorem 4.1]), there exist

a subsequence of {k}, denoted also by {k}, and a C1,α-Kähler manifold (X, J∞, g∞), 0 < α < 1,

such that, for k large, there exist diffeomorphisms fk : X → M satisfying:

(1) ĝk = f∗
kgk converges to g∞ in the C1,α sense.

(2) Ĵk = (f−1
k )∗ · Jk · (fk)∗ converges to J∞ in the C1,α sense.

In fact, there is a finite family of harmonic balls {Bm(r)} corresponding to ĝN , N ≫
1, such that X is covered by {Bm( r

2 )}. For each Bm(r), there is a harmonic coordinate,

{(x1, · · · , x2n)}, 2n =dimM , such that ĝk =
∑
i,j

ĝk,ijdxidxj satisfying µ−1Id < (ĝk,ij) < µ Id,

and ĝk,ij → ĝ∞,ij in C1,α(Bm(r)). Furthermore, ĝ∞ =
∑
i,j

ĝ∞,ijdxidxj is a C1,α-Kähler metric,

that is, g∞(J∞·, J∞·) = g∞( · , · ) and ∇∞J∞ = 0 where ∇∞ is the Levi-Civita connection of

g∞ (see [15, 6]).

Denote the harmonic (p, q)-forms space of (M, Jk, gk) by H
p,q
k (M), and the complex Lapla-

cian operator by △∂k
= (∂k +∂

∗
k)2. Let βk be a harmonic (p, q)-form of (M, Jk, gk), △∂k

βk = 0,

such that

1

Volk(M)

∫

M

|βk|2k d Volk = 1, (2.1)

where d Volk is the volume form. Let β̂k = f∗
kβk. It is obvious that β̂k is a harmonic (p, q)-form

of (X, Ĵk, ĝk).

Lemma 2.2 A subsequence of β̂k converges to a C1,α-form β∞ in the C1,α sense. Fur-

thermore, β∞ is a harmonic (p, q)-form of (X, g∞, J∞).

Proof (I) On any Bm(r), β̂k =
∑
I

β̂k
I dxI , where dxI = dxi1 ∧· · ·∧dxip+q , and (x1, · · · , x2n)

is the harmonic coordinate associated to ĝN . By Weitzenböck formula, we have

0 = △∂k
β̂k = ∇∗∇β̂k + Rkβ̂k, (2.2)

where the operators Rk come from the curvature operators of ĝk. In the coordinate, it can be

written as

∑

ij

ĝ
ij
k

∂2β̂k
I

∂xi∂xj
+

∑

i,L

b̂
i,L
k,I

∂β̂k
L

∂xi
+

∑

L

ĉL
k,I β̂

k
L = 0. (2.3)
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First, we obtain the uniform C0,α bounds of ĝ
ij
k , b̂

i,L
k,I and a uniform positive bound from below

for the minimal eigenvalue of ĝ
ij
k , k ≫ N . Second, ĉL

k,I are uniformly L∞-bounded by the

hypothesis |K(gk)| < Λ2, and ĝk are Kähler metrics on X . By the elliptic estimate (see [1]),

for any s, we obtain

‖β̂k
I ‖L2,s(B( r

2
)) ≤ C

∑

L

‖β̂k
L‖Ls(B(r)), (2.4)

where C is a constant depending only on the bounds of the coefficients.

On the other hand,

∑

L

‖β̂k
L‖Ls(B(r)) ≤ C′

∑

L

sup
B(r)

|β̂k
L| ≤ C′′ sup

B(r)

|β̂k|k ≤ C′′′ sup
X

|β̂k|k.

By [10, Lemma 8], we have

△d|β̂k|k ≤ K|β̂k|k, (2.5)

where △d = (d + d∗)2, and K is a constant depending only on the bound Λ, p + q and n. Then

[9, Proposition 3.2] implies that

sup
X

|β̂k|k ≤ K ′
( 1

Volk(M)

∫

M

|β̂k|2k
) 1

2

, (2.6)

where K ′ is a constant depending only on V , Λ and D. Thus

‖β̂k
I ‖L2,s(B( r

2
)) ≤ C, (2.7)

where C is a constant independent of k. By the Sobolev embedding theorem, there is a compact

embedding, L2,s →֒ C1,1− 2n
s . Thus, a subsequence of β̂k converges to a C1,α (p + q)-form β∞

in the C1,α sense, α < 1 − 2n
s

.

(II) Let Πp,q
k be the projection operators to the (p, q)-forms corresponding to the complex

structures Ĵk. Since

Πp,q
k = ⊗p 1 −

√
−1 Ĵk

2
⊗⊗q 1 +

√
−1 Ĵk

2
, (2.8)

and Ĵk converges to J∞ in the C1,α sense, we obtain that Πp,q
k converges to Πp,q

∞ in the C1,α

sense, where Πp,q
∞ is the projection operator to the (p, q)-forms corresponding to the complex

structure Ĵ∞. Then

0 = (Id − Πp,q
k )β̂k → (Id − Πp,q

∞ )β∞ (2.9)

in the C1,α sense. Thus β∞ is a (p, q)-form corresponding to J∞.

(III) Notice that d =
∑
i

dxi∧ ∂
∂xi , and d∗k = −∑

ij

ĝ
ij
k ι(dxi) ∂

∂xj +
∑
i

bi
kι(dxi), where bi

k involves

only the 1-order derivations of ĝ
ij
k and ĝk,ij . Thus

0 = (d + d∗k)β̂k → (d + d∗∞)β∞ (2.10)
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in the C0,α sense. Since g∞ is Kählerian,

∫

X

|(d + d∗∞)β∞|2d Vol∞ = 2

∫

X

|(∂∞ + ∂
∗
∞)β∞|2d Vol∞.

Then we obtain

(∂∞ + ∂
∗
∞)β∞ = 0. (2.11)

Thus, β∞ is a harmonic (p, q)-form.

Lemma 2.3 For any β∞ ∈ Hp,q
∞ (X), there exists a sequence βk ∈ H

p,q
k (X) such that βk

converges to β∞ in the C1,α sense.

Proof For fixed p and q, since dimH
p,q
k (M) ≤ bp+q(M), we assume l ≡ dimH

p,q
k (M) by

passing to a subsequence. Suppose that {βk
1 , · · · , βk

l } is an orthonormal basis of the harmonic

space H
p,q
k (M) such that

1

Volk(M)

∫

M

〈βk
i , βk

j 〉kd Volk =
1

Volk(X)

∫

X

〈β̂k
i , β̂k

j 〉kd Volk = δij . (2.12)

By Lemma 2.2, we can assume that β̂k
i converges to a C1,α form β∞

i , for each i.

∣∣∣ 1

Vol∞(X)

∫

X

〈β∞
i , β∞

j 〉∞d Vol∞ − δij

∣∣∣

=
∣∣∣ 1

Vol∞(X)

∫

X

〈β∞
i , β∞

j 〉∞d Vol∞ − 1

Volk(X)

∫

X

〈β̂k
i , β̂k

j 〉kd Volk

∣∣∣

=
∣∣∣
∫

X

( ∑

L,H

gl1h1

∞ · · · glp+qhp+q

∞ β∞
i,Lβ∞

j,H

√
det g∞

Vol∞(X)

−
∑

L,H

ĝl1h1

k · · · ĝlp+qhp+q

k β̂k
i,Lβ̂k

j,H

√
det ĝk

Volk(X)

)
dx1 · · · dx2n

∣∣∣

→ 0,

when k → ∞. Thus

1

Vol∞(X)

∫

X

〈β∞
i , β∞

j 〉∞d Vol∞ = δij . (2.13)

By Lemma 2.2, we obtain Hp,q
∞ (X) ⊃ Span{β∞

1 , · · · , β∞
l }. So hp,q(X) = dim Hp,q

∞ (X) ≥ l.

Then we have

bs(X) =
∑

p+q=s

hp,q(X) ≥
∑

p+q=s

hp,q(M) = bs(M),

where bs is the Betti-number. Thus

Hp,q
∞ (X) = Span{β∞

1 , · · · , β∞
l }.

Lemma 2.4 All harmonic (p, 0)-forms of (X, J∞, g∞) are parallel, that is, ∇∞β∞ = 0 for

any β∞ ∈ Hp,0
∞ (X).
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Proof By Lemma 2.3, for any β∞ ∈ Hp,0
∞ (X), there exists a sequence βk ∈ H

p,0
k (X) such

that βk converges to β∞ in the C1,α sense. By the Weitzenböck formula (see [17]), we have

−∆k|βk|2k = |∇kβk|2k + |∇k
βk|2k +

∑

I

(∑

i∈I

Rick(ei, ei)
)
|βk

I |2, (2.14)

where {ei, Ĵkei} is an orthnormal basis of TxX corresponding to ĝk, and βk =
∑
I

βk
I ξI , ξI =

(e∗i1 +
√
−1 Ĵke∗i1) ∧ · · · ∧ (e∗ip

+
√
−1 Ĵke∗ip

).

0 =

∫

M

(
|∇kβk|2 + |∇k

βk|2 +
∑

I

( ∑

i∈I

Rick(ei, ei)
)
|βk

I |2
)
d Volk

≥
∫

M

(
|∇kβk|2 + |∇k

βk|2 − C

k

∫

M

|βk|2
)
d Volk

→
∫

X

(|∇∞β∞|2 + |∇∞
β∞|2)d Vol∞ ≥ 0,

when k → ∞. Thus, we obtain ∇∞β∞ ≡ 0, where ∇∞ is the Levi-Civita connection of g∞.

3 Proofs of Theorem 1.1 and Proposition 1.1

Now, it is the place to prove Theorem 1.1 and Proposition 1.1.

Proof of Theorem 1.1 (I) Let M be any finite covering of M , π : M → M . Give M the

metric gk = π∗gk. By the same arguments as in Section 2, there exist diffeomorphisms from

M to X, each of which is a finite covering of X , and gk converges to a C1,α Kähler metric g∞.

Furthermore, all lemmas in Section 2 are valid for the present case.

If h1,0(X) 6= 0, let β∞ ∈ H1,0
∞ (X), β∞ 6= 0. By Lemma 2.4, β∞ is parallel, ∇∞β∞ ≡ 0.

Thus |β∞| ≡constant6= 0. It contradicts χ(X) = dχ(X) 6= 0. So h1,0(X) = 0.

On the other hand, by the hypothesis diamk(M) < D, Volk(M) > v, |K(gk)| < Λ2, Rick >

− 1
k
gk, and the final remark in [7], the fundamental group of M , π1(M), has polynormial growth.

By [14, Proposition 5.8], we obtain that π1(M) is finite.

(II) Let M̃ , X̃ be the universal covering of M , X respectively. All lemmas in Section 2 are

valid for M̃ and X̃ . Let g̃∞ be the C1,α-Kähler metric on X̃ obtained by Section 2. Since de

Rham decomposition Theorem is valid for C1,α-Kähler metric (see [6]), we obtain

(X̃, g̃∞) ∼= (X1, g̃∞,1) × · · · × (Xs, g̃∞,s), (3.1)

where (Xi, g̃∞,i) are C1,α-Kähler manifolds with irreducible holonomy groups Hi. If βi is a

harmonic (p, 0)-form of (Xi, g̃∞,i), then P ∗
i βi is a harmonic (p, 0)-form of (X̃, g̃∞), where Pi is

the projection from (X̃, g̃∞) to (Xi, g̃∞,i). By Lemma 2.4, P ∗
i βi is parallel. So βi is parallel

corresponding to g̃∞,i. Thus, any element of Hp,0
∞ (Xi) is parallel.

By the Berger Theorem (see [3]), there are only three possibilities for Hi, namely U(ni),

SU(ni) and Sp(ni

2 ), in case ni is even. Since Calabi-Yau manifolds are characterised by Hi =

SU(ni) and hyperKähler manifolds by Hi = Sp(ni

2 ), we only have to exclude that Hi = U(ni).

As there is no U(ni)-invariant linear subspace of T
∗,(p,0)
x Xi, p > 0, we have Hp,0

∞ (Xi) = {0}.
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(III) Finally, note that hp,0(X̃) ≤ ( n
p ), and χ(M,O) = χ(X,O). Then we have χ(M,O) =

χ(X,O) = χ( eX,O)
|π1(M)| ≤ 2n−1

|π1(M)| .

Proof of Proposition 1.1 (I) By [13, Theorem 2], there is a family of Kähler metrics

{gk} such that Rick · diam2
k > −diam2

k

k
gk, and

diam2
k

k
→ 0 when k → ∞. For any holomorphic

(p, 0) form β ∈ Hp,0(M), by the Weitzenböck formula (see [17]), we have

−∆k|β|2k = |∇kβ|2k +
∑

I

(∑

i∈I

Rick(ei, ei)
)
|βI |2, (3.2)

where {ei, Jkei} is an orthnormal basis of TxM corresponding to gk, and β =
∑
I

βIζ
I , ζI =

(e∗i1+
√
−1Jke∗i1)∧· · ·∧(e∗ip

+
√
−1Jke∗ip

). By |∇kβ|2k ≥ |d|β|k|2, we have ∆k|β|k ≤ pCn

k·diam2(gk)
|β|k.

So [8, Theorem 3.3] is valid for the present case. Thus we obtain

dim Hp,0(M) ≤
(

n

p

)
ξ2

(diamk√
k

)
,

where ξ
(

diamk√
k

)
is a function such that ξ

(
diamk√

k

)
→ 1 when k → ∞. Letting k0 be large enough,

we have

h(p,0)(M) = dimHp,0(M) ≤
(

n

p

)
. (3.3)

(II) The following argument is similar to the proof of Proposition 2.1 in [12]. Let KM =

∧n,0
J T ∗M be the canonical line bundle of (M, J). Since the first Chern class c1(M) of M is

numerically effective, there is a family of hermitian metric {h′
k} on −KM such that the curvature

forms satisfy
√
−1Θk(−KM ) ≥ − 1

k
ω (see [5]). Then we obtain a family of hermitian metric

{hk} on KM whose curvature forms satisfy

√
−1Θk(KM ) ≤ 1

k
ω. (3.4)

If hn,0(M) 6= 0, there exists a non-zero holomorphic section s of KM , s ∈ H0(M,O(KM )). For

any x ∈ M , we choose complex normal coordinates (z1, · · · , zn) such that ω =
√
−1

∑
gαβdzα∧

dzβ satisfies gαβ|x = δαβ and dgαβ |x = 0. For any k, we choose a holomorphic basis ek of KM

in a neighborhood of x such that s = skek, ‖s‖2
hk

= hksksk, hk(x) = 1, dhk(x) = 0 and√
−1Θk(KM ) = −

√
−1 ∂∂ loghk. At x, for any ǫ > 0, we have

∂∂ log(‖s‖2
hk

+ ǫ2) =
∂∂ ‖s‖2

hk

‖s‖2
hk

+ ǫ2
−

∂‖s‖2
hk

∧ ∂ ‖s‖2
hk

(‖s‖2
hk

+ ǫ2)2
,

∂∂ ‖s‖2
hk

= ∂sk ∧ ∂sk − ‖s‖2
hk

Θk(KM ), and ∂‖s‖2
hk

∧ ∂ ‖s‖2
hk

= ‖s‖2
hk

∂sk ∧ ∂sk.

Hence, at x,

△log(‖s‖2
hk

+ ǫ2)ωn =
∑

gαβ ∂2

∂zα∂zβ

log(‖s‖2
hk

+ ǫ2)ωn

= −
‖s‖2

hk

‖s‖2
hk

+ ǫ2

√
−1Θk(KM ) ∧ ωn−1

+
ǫ2

(‖s‖2
hk

+ ǫ2)2
√
−1 ∂sk ∧ ∂sk ∧ ωn−1

≥ −1

k
ωn. (3.5)
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Thus △log(‖s‖2
hk

+ ǫ2)ωn ≥ − 1
k
ωn on M . By Fatou Lemma, we have

∫

M

△log‖s‖2
hk

ωn ≤ lim
ǫ→0

∫

M

△log(‖s‖2
hk

+ ǫ2)ωn = 0.

Note that the Poincare-Lelong equation shows that

√
−1

2π
∂∂ log‖s‖2

hk
= −

√
−1

2π
Θk(KM ) + [Zs],

where Zs = s−1(0) is the zero divisor of s (see [12]). Hence

Volω(Zs) ≤
1

k
Volω(M) → 0, (3.6)

when k → ∞. This implies that Zs is empty. Thus KM is a trivial bundle, and c1(M) = 0.
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