Kähler Manifolds with Almost Non-negative Ricci Curvature

Yuguang ZHANG*

Abstract Compact Kähler manifolds with semi-positive Ricci curvature have been investigated by various authors. From Peternell's work, if M is a compact Kähler n-manifold with semi-positive Ricci curvature and finite fundamental group, then the universal cover has a decomposition $\widetilde{M} \cong X_1 \times \cdots \times X_m$, where X_j is a Calabi-Yau manifold, or a hyperKähler manifold, or X_j satisfies $H^0(X_j, \Omega^p) = 0$. The purpose of this paper is to generalize this theorem to almost non-negative Ricci curvature Kähler manifolds by using the Gromov-Hausdorff convergence. Let M be a compact complex n-manifold with non-vanishing Euler number. If for any $\epsilon > 0$, there exists a Kähler structure $(J_{\epsilon}, g_{\epsilon})$ on M such that the volume $\operatorname{Vol}_{g_{\epsilon}}(M) < V$, the sectional curvature $|K(g_{\epsilon})| < \Lambda^2$, and the Ricci-tensor $\operatorname{Ric}(g_{\epsilon}) > -\epsilon g_{\epsilon}$, where V and Λ are two constants independent of ϵ . Then the fundamental group of M is finite, and M is diffeomorphic to a complex manifold X such that the universal covering of X has a decomposition, $\widetilde{X} \cong X_1 \times \cdots \times X_s$, where X_i is a Calabi-Yau manifold, or a hyperKähler manifold, or X_i satisfies $H^0(X_i, \Omega^p) = \{0\}, p > 0$.

Keywords Gromov-Hausdorff, Ricci curvature, Kähler metric 2000 MR Subject Classification 53C55, 53C21

1 Introduction

In [6], the uniformization theorem of Mok for nonnegative bisectional curvature Kähler manifolds is generalized to almost nonnegative bisectional curvature Kähler manifolds. On the other hand, compact Kähler manifolds with semi-positive Ricci curvature have been investigated in [5, 14]. If M is a compact Kähler n-manifold with semi-positive Ricci curvature and finite fundamental group, then the universal cover has a decomposition $\widetilde{M} \cong X_1 \times \cdots \times X_m$, where X_j is a Calabi-Yau manifold, or a hyperKähler manifold, or X_j satisfies $H^0(X_j, \Omega^p) = 0$, by [14, Theorem 5.13]. In this paper, we generalize this theorem to Kähler manifolds with almost nonnegative Ricci curvature and bounded sectional curvature. We call (J, ω, g) a Kähler structure on a manifold M, if J is a complex structure on M, g is a Kähler metric compatible with J, and ω is the Kähler form associated to g.

Theorem 1.1 Let M be a compact complex n-manifold with non-vanishing Euler number, $\chi(M) \neq 0$. If for any $\epsilon > 0$, there exists a Kähler structure $(J_{\epsilon}, g_{\epsilon})$ on M such that

(1) $\operatorname{Vol}_{g_{\epsilon}}(M) < V$, where $\operatorname{Vol}_{g_{\epsilon}}(M)$ is the volume of (M, g_{ϵ}) , and V is a constant independent of ϵ .

Manuscript received December 29, 2005. Published online July 2, 2007.

^{*}Department of Mathematics, Capital Normal University, Beijing 100037, China.

E-mail: zhangyuguang76@yahoo.com

(2) $|K(g_{\epsilon})| < \Lambda^2$, where $K(g_{\epsilon})$ is the sectional curvature, and Λ is a constant independent of ϵ .

(3) $\operatorname{Ric}(g_{\epsilon}) > -\epsilon g_{\epsilon}$, where $\operatorname{Ric}(g_{\epsilon})$ is the Ricci-tensor of g_{ϵ} . Then,

(1) The fundamental group of M, $\pi_1(M)$, is finite.

(2) M is diffeomorphic to a complex manifold X such that the universal covering of X has a decomposition, $\widetilde{X} \cong X_1 \times \cdots \times X_s$, where X_i is a Calabi-Yau manifold, or a hyperKähler manifold, or X_i satisfies $H^0(X_i, \Omega^p) = \{0\}, p > 0$.

(3) The holomorphic Euler number of M satisfies that

$$\chi(M,\mathcal{O}) \le \frac{2^{n-1}}{|\pi_1(M)|}.$$

The condition (2) in the above theorem seems too strong. If we remove this condition, and fix a complex structure, then a weaker conclusion also can be obtained. Let (M, J, ω, g) be a compact Kähler *n*-manifold. We call the first Chern $c_1(M)$ class of M numerically effective, if for every $\epsilon > 0$ there is a smooth hermitian metric h_{ϵ} on the anti-canonical bundle $-K_M =$ $\wedge_J^{0,n}T^*M$ such that the curvature satisfies $\sqrt{-1}\Theta_{h_{\epsilon}}(-K_M) \ge -\epsilon\omega$ (see [5, 13]). This implies that, for any $\epsilon > 0$, there exists a Kähler metric g_{ϵ} with Kähler form ω_{ϵ} such that the Ricci form satisfies $\operatorname{Ric}(g_{\epsilon}) \ge -\epsilon\omega_{\epsilon}$, and $\omega_{\epsilon} \in [\omega]$ by arguments in the proof of Theorem 1.1 in [5]. A (1, 1)class $[\alpha]$ is integrable if it contains a closed positive current T of the form $T = \alpha + \sqrt{-1} \partial \overline{\partial} \varphi$ with $\int_M e^{-\varphi} \omega^n < \infty$. For example, if $[\alpha]$ contains a closed positive current T whose Lelong numbers are small enough, i.e. $\max \nu(T, x) < 2$, then $[\alpha]$ is integrable (see [13, §2]).

Proposition 1.1 Let (M, J, ω, g) be a compact Kähler n-manifold with the first Chern $c_1(M)$ class numerically effective and integrable. Then $h^{p,0}(M) \leq \binom{n}{p}$. Furthermore, if $h^{n,0}(M) \neq 0$, then $c_1(M) = 0$.

We organize this paper as follows: In Section 2, we discuss the convergence of (p, q)-forms; in Section 3, we prove Theorem 1.1 and Proposition 1.1 respectively.

2 Convergence of Harmonic (p, q)-Forms

Let (M, J) be a compact complex manifold satisfying the hypothesis in Theorem 1.1. Then we have a sequence of Kähler structures (J_k, g_k) such that

(1) $\operatorname{Vol}_k(M) < V$, where $\operatorname{Vol}_k(M)$ is the volume of (M, g_k) .

(2) $|K(g_k)| < \Lambda^2$, where $K(g_k)$ is the sectional curvature, and Λ is a constant independent of k.

(3) $\operatorname{Ric}_k > -\frac{1}{k}g_k$, where Ric_k is the Ricci-tensor of (M, g_k) .

Lemma 2.1 There are constants D and v, independent of k, such that $\operatorname{Vol}_k(M) > v$ and $\operatorname{diam}_k(M) < D$, where $\operatorname{diam}_k(M)$ is the diameter of (M, g_k) .

Proof First, we claim that there is a sequence $\{x^k\} \subset M$ such that, for any k, the injectivity radius of g_k at x^k satisfies $i_k(x^k) > \iota$, where ι is a constant independent of k. If not, there is a k such that the injectivity radius of (M, g_k) is less than ι , $i_k(M, g_k) < \iota$, where ι is the critical

injectivity radius in the sense of [4]. Then by [4], there exists an *F*-structure of positive rank on *M* as $|K(g_k)| < \Lambda^2$. It is contradict to $\chi(M) \neq 0$ (see [4]).

Then, since $|K(g_k)| < \Lambda^2$, we have

$$\operatorname{Vol}_k(B_{x^k}(1)) > \operatorname{Vol}_k(B_{x^k}(\iota)) > v,$$

where v is a constant independent of k. Then by [13, Lemma 2.3], the diameter of (M, g_k) is bounded by a constant D from above, diam_k(M) < D.

Finally, $\operatorname{Vol}_k(M) > \operatorname{Vol}_k(B_{x^k}(\iota)) > v$.

By the lemma, the Kähler manifolds (M, J_k, g_k) satisfy that $\operatorname{diam}_k(M) < D$, $\operatorname{Vol}_k(M) > v$, and $|K(g_k)| < \Lambda^2$. Then, by Gromov's compactness theorem (see [15, Theorem 4.1]), there exist a subsequence of $\{k\}$, denoted also by $\{k\}$, and a $C^{1,\alpha}$ -Kähler manifold $(X, J_{\infty}, g_{\infty}), 0 < \alpha < 1$, such that, for k large, there exist diffeomorphisms $f_k : X \to M$ satisfying:

- (1) $\widehat{g}_k = f_k^* g_k$ converges to g_∞ in the $C^{1,\alpha}$ sense.
- (2) $\widehat{J}_k = (f_k^{-1})_* \cdot J_k \cdot (f_k)_*$ converges to J_∞ in the $C^{1,\alpha}$ sense.

In fact, there is a finite family of harmonic balls $\{B_m(r)\}$ corresponding to \widehat{g}_N , $N \gg 1$, such that X is covered by $\{B_m(\frac{r}{2})\}$. For each $B_m(r)$, there is a harmonic coordinate, $\{(x^1, \dots, x^{2n})\}$, $2n = \dim M$, such that $\widehat{g}_k = \sum_{i,j} \widehat{g}_{k,ij} dx^i dx^j$ satisfying $\mu^{-1} \mathrm{Id} < (\widehat{g}_{k,ij}) < \mu \mathrm{Id}$, and $\widehat{g}_{k,ij} \to \widehat{g}_{\infty,ij}$ in $C^{1,\alpha}(B_m(r))$. Furthermore, $\widehat{g}_\infty = \sum_{i,j} \widehat{g}_{\infty,ij} dx^i dx^j$ is a $C^{1,\alpha}$ -Kähler metric, that is, $g_\infty(J_\infty, J_\infty) = g_\infty(\cdot, \cdot)$ and $\nabla^\infty J_\infty = 0$ where ∇^∞ is the Levi-Civita connection of g_∞ (see [15, 6]).

Denote the harmonic (p,q)-forms space of (M, J_k, g_k) by $H_k^{p,q}(M)$, and the complex Laplacian operator by $\Delta_{\overline{\partial}_k} = (\overline{\partial}_k + \overline{\partial}_k^*)^2$. Let β^k be a harmonic (p,q)-form of (M, J_k, g_k) , $\Delta_{\overline{\partial}_k} \beta^k = 0$, such that

$$\frac{1}{\operatorname{Vol}_k(M)} \int_M |\beta^k|_k^2 \, d \operatorname{Vol}_k = 1, \tag{2.1}$$

where $d \operatorname{Vol}_k$ is the volume form. Let $\widehat{\beta}^k = f_k^* \beta^k$. It is obvious that $\widehat{\beta}^k$ is a harmonic (p, q)-form of $(X, \widehat{J}_k, \widehat{g}_k)$.

Lemma 2.2 A subsequence of $\widehat{\beta}^k$ converges to a $C^{1,\alpha}$ -form β^{∞} in the $C^{1,\alpha}$ sense. Furthermore, β^{∞} is a harmonic (p,q)-form of $(X, g_{\infty}, J_{\infty})$.

Proof (I) On any $B_m(r)$, $\hat{\beta}^k = \sum_I \hat{\beta}_I^k dx^I$, where $dx^I = dx^{i_1} \wedge \cdots \wedge dx^{i_{p+q}}$, and (x^1, \cdots, x^{2n}) is the harmonic coordinate associated to \hat{g}_N . By Weitzenböck formula, we have

$$0 = \Delta_{\overline{\partial}_k} \widehat{\beta}^k = \nabla^* \nabla \widehat{\beta}^k + R^k \widehat{\beta}^k, \qquad (2.2)$$

where the operators R^k come from the curvature operators of \hat{g}_k . In the coordinate, it can be written as

$$\sum_{ij} \widehat{g}_k^{ij} \frac{\partial^2 \widehat{\beta}_I^k}{\partial x^i \partial x^j} + \sum_{i,L} \widehat{b}_{k,I}^{i,L} \frac{\partial \widehat{\beta}_L^k}{\partial x^i} + \sum_L \widehat{c}_{k,I}^L \widehat{\beta}_L^k = 0.$$
(2.3)

First, we obtain the uniform $C^{0,\alpha}$ bounds of \hat{g}_k^{ij} , $\hat{b}_{k,I}^{i,L}$ and a uniform positive bound from below for the minimal eigenvalue of \hat{g}_k^{ij} , $k \gg N$. Second, $\hat{c}_{k,I}^L$ are uniformly L^{∞} -bounded by the hypothesis $|K(g_k)| < \Lambda^2$, and \hat{g}_k are Kähler metrics on X. By the elliptic estimate (see [1]), for any s, we obtain

$$\|\widehat{\beta}_{I}^{k}\|_{L^{2,s}(B(\frac{r}{2}))} \le C \sum_{L} \|\widehat{\beta}_{L}^{k}\|_{L^{s}(B(r))},$$
(2.4)

where C is a constant depending only on the bounds of the coefficients.

On the other hand,

$$\sum_{L} \|\widehat{\beta}_{L}^{k}\|_{L^{s}(B(r))} \leq C' \sum_{L} \sup_{B(r)} |\widehat{\beta}_{L}^{k}| \leq C'' \sup_{B(r)} |\widehat{\beta}^{k}|_{k} \leq C''' \sup_{X} |\widehat{\beta}^{k}|_{k}.$$

By [10, Lemma 8], we have

$$\Delta_d |\widehat{\beta}^k|_k \le K |\widehat{\beta}^k|_k, \tag{2.5}$$

where $\triangle_d = (d + d^*)^2$, and K is a constant depending only on the bound Λ , p + q and n. Then [9, Proposition 3.2] implies that

$$\sup_{X} |\widehat{\beta}^{k}|_{k} \le K' \left(\frac{1}{\operatorname{Vol}_{k}(M)} \int_{M} |\widehat{\beta}^{k}|_{k}^{2}\right)^{\frac{1}{2}},\tag{2.6}$$

where K' is a constant depending only on V, Λ and D. Thus

$$\|\widehat{\beta}_{I}^{k}\|_{L^{2,s}(B(\frac{r}{2}))} \le C,$$
 (2.7)

where C is a constant independent of k. By the Sobolev embedding theorem, there is a compact embedding, $L^{2,s} \hookrightarrow C^{1,1-\frac{2n}{s}}$. Thus, a subsequence of $\widehat{\beta}^k$ converges to a $C^{1,\alpha}$ (p+q)-form β^{∞} in the $C^{1,\alpha}$ sense, $\alpha < 1 - \frac{2n}{s}$.

(II) Let $\Pi_k^{p,q}$ be the projection operators to the (p,q)-forms corresponding to the complex structures \hat{J}_k . Since

$$\Pi_k^{p,q} = \otimes^p \frac{1 - \sqrt{-1}\,\widehat{J}_k}{2} \otimes \otimes^q \frac{1 + \sqrt{-1}\,\widehat{J}_k}{2},\tag{2.8}$$

and \widehat{J}_k converges to J_{∞} in the $C^{1,\alpha}$ sense, we obtain that $\Pi_k^{p,q}$ converges to $\Pi_{\infty}^{p,q}$ in the $C^{1,\alpha}$ sense, where $\Pi_{\infty}^{p,q}$ is the projection operator to the (p,q)-forms corresponding to the complex structure \widehat{J}_{∞} . Then

$$0 = (\mathrm{Id} - \Pi_k^{p,q})\widehat{\beta}^k \to (\mathrm{Id} - \Pi_\infty^{p,q})\beta^\infty$$
(2.9)

in the $C^{1,\alpha}$ sense. Thus β^{∞} is a (p,q)-form corresponding to J_{∞} .

(III) Notice that $d = \sum_{i} dx^{i} \wedge \frac{\partial}{\partial x^{i}}$, and $d_{k}^{*} = -\sum_{ij} \widehat{g}_{k}^{ij} \iota(dx^{i}) \frac{\partial}{\partial x^{j}} + \sum_{i} b_{k}^{i} \iota(dx^{i})$, where b_{k}^{i} involves only the 1-order derivations of \widehat{g}_{k}^{ij} and $\widehat{g}_{k,ij}$. Thus

$$0 = (d + d_k^*)\widehat{\beta}^k \to (d + d_\infty^*)\beta^\infty$$
(2.10)

in the $C^{0,\alpha}$ sense. Since g_{∞} is Kählerian,

$$\int_X |(d+d_\infty^*)\beta^\infty|^2 d\operatorname{Vol}_\infty = 2\int_X |(\overline{\partial}_\infty + \overline{\partial}_\infty^*)\beta^\infty|^2 d\operatorname{Vol}_\infty.$$

Then we obtain

$$(\overline{\partial}_{\infty} + \overline{\partial}_{\infty}^*)\beta^{\infty} = 0.$$
(2.11)

Thus, β^{∞} is a harmonic (p, q)-form.

Lemma 2.3 For any $\beta^{\infty} \in H^{p,q}_{\infty}(X)$, there exists a sequence $\beta^k \in H^{p,q}_k(X)$ such that β^k converges to β^{∞} in the $C^{1,\alpha}$ sense.

Proof For fixed p and q, since dim $H_k^{p,q}(M) \leq b_{p+q}(M)$, we assume $l \equiv \dim H_k^{p,q}(M)$ by passing to a subsequence. Suppose that $\{\beta_1^k, \dots, \beta_l^k\}$ is an orthonormal basis of the harmonic space $H_k^{p,q}(M)$ such that

$$\frac{1}{\operatorname{Vol}_k(M)} \int_M \langle \beta_i^k, \beta_j^k \rangle_k d\operatorname{Vol}_k = \frac{1}{\operatorname{Vol}_k(X)} \int_X \langle \widehat{\beta}_i^k, \widehat{\beta}_j^k \rangle_k d\operatorname{Vol}_k = \delta_{ij}.$$
 (2.12)

By Lemma 2.2, we can assume that $\widehat{\beta}_i^k$ converges to a $C^{1,\alpha}$ form β_i^{∞} , for each *i*.

$$\begin{split} & \left| \frac{1}{\operatorname{Vol}_{\infty}(X)} \int_{X} \langle \beta_{i}^{\infty}, \beta_{j}^{\infty} \rangle_{\infty} d\operatorname{Vol}_{\infty} - \delta_{ij} \right| \\ &= \left| \frac{1}{\operatorname{Vol}_{\infty}(X)} \int_{X} \langle \beta_{i}^{\infty}, \beta_{j}^{\infty} \rangle_{\infty} d\operatorname{Vol}_{\infty} - \frac{1}{\operatorname{Vol}_{k}(X)} \int_{X} \langle \widehat{\beta}_{i}^{k}, \widehat{\beta}_{j}^{k} \rangle_{k} d\operatorname{Vol}_{k} \right| \\ &= \left| \int_{X} \left(\sum_{L,H} g_{\infty}^{l_{1}h_{1}} \cdots g_{\infty}^{l_{p+q}h_{p+q}} \beta_{i,L}^{\infty} \overline{\beta_{j,H}^{\infty}} \frac{\sqrt{\det g_{\infty}}}{\operatorname{Vol}_{\infty}(X)} - \sum_{L,H} \widehat{g}_{k}^{l_{1}h_{1}} \cdots \widehat{g}_{k}^{l_{p+q}h_{p+q}} \widehat{\beta}_{i,L}^{k} \overline{\beta_{j,H}^{k}} \frac{\sqrt{\det \widehat{g}_{k}}}{\operatorname{Vol}_{k}(X)} \right) dx^{1} \cdots dx^{2n} \right| \\ &\to 0, \end{split}$$

when $k \to \infty$. Thus

$$\frac{1}{\operatorname{Vol}_{\infty}(X)} \int_{X} \langle \beta_{i}^{\infty}, \beta_{j}^{\infty} \rangle_{\infty} d \operatorname{Vol}_{\infty} = \delta_{ij}.$$
(2.13)

By Lemma 2.2, we obtain $H^{p,q}_{\infty}(X) \supset \text{Span}\{\beta_1^{\infty}, \cdots, \beta_l^{\infty}\}$. So $h^{p,q}(X) = \dim H^{p,q}_{\infty}(X) \ge l$. Then we have

$$b_s(X) = \sum_{p+q=s} h^{p,q}(X) \ge \sum_{p+q=s} h^{p,q}(M) = b_s(M),$$

where b_s is the Betti-number. Thus

$$H^{p,q}_{\infty}(X) = \operatorname{Span}\{\beta_1^{\infty}, \cdots, \beta_l^{\infty}\}.$$

Lemma 2.4 All harmonic (p, 0)-forms of $(X, J_{\infty}, g_{\infty})$ are parallel, that is, $\nabla^{\infty}\beta^{\infty} = 0$ for any $\beta^{\infty} \in H^{p,0}_{\infty}(X)$.

Proof By Lemma 2.3, for any $\beta^{\infty} \in H^{p,0}_{\infty}(X)$, there exists a sequence $\beta^k \in H^{p,0}_k(X)$ such that β^k converges to β^{∞} in the $C^{1,\alpha}$ sense. By the Weitzenböck formula (see [17]), we have

$$-\Delta_k |\beta^k|_k^2 = |\nabla^k \beta^k|_k^2 + |\overline{\nabla}^k \beta^k|_k^2 + \sum_I \left(\sum_{i \in I} \operatorname{Ric}_k(e_i, e_i)\right) |\beta_I^k|^2,$$
(2.14)

where $\{e_i, \widehat{J}_k e_i\}$ is an orthnormal basis of $T_x X$ corresponding to \widehat{g}_k , and $\beta^k = \sum_I \beta_I^k \xi^I$, $\xi^I = (e_{i_1}^* + \sqrt{-1} \widehat{J}_k e_{i_1}^*) \wedge \cdots \wedge (e_{i_p}^* + \sqrt{-1} \widehat{J}_k e_{i_p}^*)$.

$$\begin{split} 0 &= \int_{M} \left(|\nabla^{k} \beta^{k}|^{2} + |\overline{\nabla}^{k} \beta^{k}|^{2} + \sum_{I} \left(\sum_{i \in I} \operatorname{Ric}_{k}(e_{i}, e_{i}) \right) |\beta_{I}^{k}|^{2} \right) d\operatorname{Vol}_{k} \\ &\geq \int_{M} \left(|\nabla^{k} \beta^{k}|^{2} + |\overline{\nabla}^{k} \beta^{k}|^{2} - \frac{C}{k} \int_{M} |\beta^{k}|^{2} \right) d\operatorname{Vol}_{k} \\ &\to \int_{X} (|\nabla^{\infty} \beta^{\infty}|^{2} + |\overline{\nabla}^{\infty} \beta^{\infty}|^{2}) d\operatorname{Vol}_{\infty} \geq 0, \end{split}$$

when $k \to \infty$. Thus, we obtain $\nabla^{\infty} \beta^{\infty} \equiv 0$, where ∇^{∞} is the Levi-Civita connection of g_{∞} .

3 Proofs of Theorem 1.1 and Proposition 1.1

Now, it is the place to prove Theorem 1.1 and Proposition 1.1.

Proof of Theorem 1.1 (I) Let \overline{M} be any finite covering of $M, \pi : \overline{M} \to M$. Give \overline{M} the metric $\overline{g}_k = \pi^* g_k$. By the same arguments as in Section 2, there exist diffeomorphisms from \overline{M} to \overline{X} , each of which is a finite covering of X, and \overline{g}_k converges to a $C^{1,\alpha}$ Kähler metric \overline{g}_{∞} . Furthermore, all lemmas in Section 2 are valid for the present case.

If $h^{1,0}(\overline{X}) \neq 0$, let $\beta^{\infty} \in H^{1,0}_{\infty}(\overline{X}), \ \beta^{\infty} \neq 0$. By Lemma 2.4, β^{∞} is parallel, $\nabla^{\infty}\beta^{\infty} \equiv 0$. Thus $|\beta^{\infty}| \equiv \text{constant} \neq 0$. It contradicts $\chi(\overline{X}) = d\chi(X) \neq 0$. So $h^{1,0}(\overline{X}) = 0$.

On the other hand, by the hypothesis diam_k(M) < D, Vol_k(M) > v, $|K(g_k)| < \Lambda^2$, Ric_k > $-\frac{1}{k}g_k$, and the final remark in [7], the fundamental group of M, $\pi_1(M)$, has polynormial growth. By [14, Proposition 5.8], we obtain that $\pi_1(M)$ is finite.

(II) Let \widetilde{M} , \widetilde{X} be the universal covering of M, X respectively. All lemmas in Section 2 are valid for \widetilde{M} and \widetilde{X} . Let \widetilde{g}_{∞} be the $C^{1,\alpha}$ -Kähler metric on \widetilde{X} obtained by Section 2. Since de Rham decomposition Theorem is valid for $C^{1,\alpha}$ -Kähler metric (see [6]), we obtain

$$(X, \widetilde{g}_{\infty}) \cong (X_1, \widetilde{g}_{\infty, 1}) \times \dots \times (X_s, \widetilde{g}_{\infty, s}),$$
(3.1)

where $(X_i, \tilde{g}_{\infty,i})$ are $C^{1,\alpha}$ -Kähler manifolds with irreducible holonomy groups H_i . If β_i is a harmonic (p, 0)-form of $(X_i, \tilde{g}_{\infty,i})$, then $P_i^*\beta_i$ is a harmonic (p, 0)-form of $(\tilde{X}, \tilde{g}_{\infty})$, where P_i is the projection from $(\tilde{X}, \tilde{g}_{\infty})$ to $(X_i, \tilde{g}_{\infty,i})$. By Lemma 2.4, $P_i^*\beta_i$ is parallel. So β_i is parallel corresponding to $\tilde{g}_{\infty,i}$. Thus, any element of $H^{p,0}_{\infty}(X_i)$ is parallel.

By the Berger Theorem (see [3]), there are only three possibilities for H_i , namely $U(n_i)$, SU (n_i) and Sp $(\frac{n_i}{2})$, in case n_i is even. Since Calabi-Yau manifolds are characterised by $H_i =$ SU (n_i) and hyperKähler manifolds by $H_i = \text{Sp}(\frac{n_i}{2})$, we only have to exclude that $H_i = U(n_i)$. As there is no $U(n_i)$ -invariant linear subspace of $T_x^{*,(p,0)}X_i$, p > 0, we have $H_{\infty}^{p,0}(X_i) = \{0\}$. (III) Finally, note that $h^{p,0}(\widetilde{X}) \leq {\binom{n}{p}}$, and $\chi(M,\mathcal{O}) = \chi(X,\mathcal{O})$. Then we have $\chi(M,\mathcal{O}) = \chi(X,\mathcal{O}) = \frac{\chi(\widetilde{X},\mathcal{O})}{|\pi_1(M)|} \leq \frac{2^{n-1}}{|\pi_1(M)|}$.

Proof of Proposition 1.1 (I) By [13, Theorem 2], there is a family of Kähler metrics $\{g_k\}$ such that $\operatorname{Ric}_k \cdot \operatorname{diam}_k^2 > -\frac{\operatorname{diam}_k^2}{k}g_k$, and $\frac{\operatorname{diam}_k^2}{k} \to 0$ when $k \to \infty$. For any holomorphic (p, 0) form $\beta \in H^{p,0}(M)$, by the Weitzenböck formula (see [17]), we have

$$-\Delta_k |\beta|_k^2 = |\nabla^k \beta|_k^2 + \sum_I \left(\sum_{i \in I} \operatorname{Ric}_k(e_i, e_i)\right) |\beta_I|^2,$$
(3.2)

where $\{e_i, J_k e_i\}$ is an orthormal basis of $T_x M$ corresponding to g_k , and $\beta = \sum_I \beta_I \zeta^I$, $\zeta^I = (e_{i_1}^* + \sqrt{-1}J_k e_{i_1}^*) \wedge \cdots \wedge (e_{i_p}^* + \sqrt{-1}J_k e_{i_p}^*)$. By $|\nabla^k \beta|_k^2 \ge |d|\beta|_k|^2$, we have $\Delta_k |\beta|_k \le \frac{pC_n}{k \cdot \text{diam}^2(g_k)} |\beta|_k$. So [8, Theorem 3.3] is valid for the present case. Thus we obtain

$$\dim H^{p,0}(M) \le \binom{n}{p} \xi^2 \left(\frac{\operatorname{diam}_k}{\sqrt{k}}\right),$$

where $\xi\left(\frac{\operatorname{diam}_k}{\sqrt{k}}\right)$ is a function such that $\xi\left(\frac{\operatorname{diam}_k}{\sqrt{k}}\right) \to 1$ when $k \to \infty$. Letting k_0 be large enough, we have

$$h^{(p,0)}(M) = \dim H^{p,0}(M) \le \binom{n}{p}.$$
 (3.3)

(II) The following argument is similar to the proof of Proposition 2.1 in [12]. Let $K_M = \wedge_J^{n,0}T^*M$ be the canonical line bundle of (M, J). Since the first Chern class $c_1(M)$ of M is numerically effective, there is a family of hermitian metric $\{h'_k\}$ on $-K_M$ such that the curvature forms satisfy $\sqrt{-1}\Theta_k(-K_M) \geq -\frac{1}{k}\omega$ (see [5]). Then we obtain a family of hermitian metric $\{h_k\}$ on K_M whose curvature forms satisfy

$$\sqrt{-1}\,\Theta_k(K_M) \le \frac{1}{k}\omega. \tag{3.4}$$

If $h^{n,0}(M) \neq 0$, there exists a non-zero holomorphic section s of K_M , $s \in H^0(M, \mathcal{O}(K_M))$. For any $x \in M$, we choose complex normal coordinates (z_1, \dots, z_n) such that $\omega = \sqrt{-1} \sum g_{\alpha\overline{\beta}} dz_\alpha \wedge d\overline{z}_\beta$ satisfies $g_{\alpha\overline{\beta}}|_x = \delta_{\alpha\overline{\beta}}$ and $dg_{\alpha\overline{\beta}}|_x = 0$. For any k, we choose a holomorphic basis e^k of K_M in a neighborhood of x such that $s = s_k e^k$, $||s||_{h_k}^2 = h_k s_k \overline{s_k}$, $h_k(x) = 1$, $dh_k(x) = 0$ and $\sqrt{-1}\Theta_k(K_M) = -\sqrt{-1}\partial\overline{\partial}\log h_k$. At x, for any $\epsilon > 0$, we have

$$\partial\overline{\partial} \log(\|s\|_{h_k}^2 + \epsilon^2) = \frac{\partial\overline{\partial} \|s\|_{h_k}^2}{\|s\|_{h_k}^2 + \epsilon^2} - \frac{\partial\|s\|_{h_k}^2 \wedge \overline{\partial} \|s\|_{h_k}^2}{(\|s\|_{h_k}^2 + \epsilon^2)^2},$$

$$\partial\overline{\partial} \|s\|_{h_k}^2 = \partial s_k \wedge \overline{\partial s_k} - \|s\|_{h_k}^2 \Theta_k(K_M), \text{ and } \partial\|s\|_{h_k}^2 \wedge \overline{\partial} \|s\|_{h_k}^2 = \|s\|_{h_k}^2 \partial s_k \wedge \overline{\partial s_k}.$$

Hence, at x,

$$\Delta \log(\|s\|_{h_k}^2 + \epsilon^2)\omega^n = \sum g^{\alpha\overline{\beta}} \frac{\partial^2}{\partial z_\alpha \partial \overline{z}_\beta} \log(\|s\|_{h_k}^2 + \epsilon^2)\omega^n$$
$$= -\frac{\|s\|_{h_k}^2}{\|s\|_{h_k}^2 + \epsilon^2} \sqrt{-1} \Theta_k(K_M) \wedge \omega^{n-1}$$
$$+ \frac{\epsilon^2}{(\|s\|_{h_k}^2 + \epsilon^2)^2} \sqrt{-1} \partial s_k \wedge \overline{\partial s_k} \wedge \omega^{n-1}$$
$$\geq -\frac{1}{k} \omega^n. \tag{3.5}$$

Thus $riangle \log(\|s\|_{h_k}^2 + \epsilon^2)\omega^n \ge -\frac{1}{k}\omega^n$ on M. By Fatou Lemma, we have

$$\int_{M} \triangle \log \|s\|_{h_{k}}^{2} \omega^{n} \leq \lim_{\epsilon \to 0} \int_{M} \triangle \log(\|s\|_{h_{k}}^{2} + \epsilon^{2}) \omega^{n} = 0.$$

Note that the Poincare-Lelong equation shows that

$$\frac{\sqrt{-1}}{2\pi}\partial\overline{\partial}\log\|s\|_{h_k}^2 = -\frac{\sqrt{-1}}{2\pi}\Theta_k(K_M) + [Z_s],$$

where $Z_s = s^{-1}(0)$ is the zero divisor of s (see [12]). Hence

$$\operatorname{Vol}_{\omega}(Z_s) \le \frac{1}{k} \operatorname{Vol}_{\omega}(M) \to 0,$$
(3.6)

when $k \to \infty$. This implies that Z_s is empty. Thus K_M is a trivial bundle, and $c_1(M) = 0$.

Acknowledgment The author would like to express the deepest gratitude to his advisor Professor Fuquan Fang for his guidance.

References

- Agmon, S., Douglis, S. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. on Pure. Appl. Math., 17, 1964, 35–92.
- [2] Anderson, M., Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math., 102, 1990, 429–445.
- [3] Besse, A. L., Einstein Manifolds, Ergebnisse der Math., Springer-Verlag, Berlin-New York, 1987.
- [4] Cheeger, J. and Gromov, M., Collapsing Riemannian manifolds while keeping their curvature bound I, J. Differ. Geom., 23, 1986, 309–364.
- [5] Demaily, J. P., Peternell, T. and Schneider, M., Kähler manifolds with numerically effective Ricci class, Comp. Math., 89, 1993, 217–240.
- [6] Fang, F., Kähler manifolds with almost non-negative bisectional curvature, Asian J. Math., 6, 2002, 385–398.
- [7] Fukaya, K. and Yamaguchi, T., The fundamental groups of almost non-negatively curved manifolds, Ann. of Math., 136, 1992, 253–333.
- [8] Gallot, S., A Soblev inequality and some geometric applications, Spectra of Riemannian Manifolds, Kaigai, Tokyo, 1983, 45–55.
- [9] Griffiths, H. and Harris, J., Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978.
- [10] Li, P., On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. École Norm. Sup., 13, 1980, 451–468.
- [11] Morrow, J. and Kodaira, K., Complex Manifolds, Holt, Rinenart and Winston, New York, 1971.
- [12] Mok, N., Bounds on the dimension of L² holomorphic sections of vector bundles over complete Kähler manifolds of finite volume, Math. Z., 191, 1986, 303–317.
- [13] Paun, M., On the Albanese map of compact Kähler manifolds with numerically effective Ricci curvature, Comm. Anal. Geom., 9, 2001, 35–60.
- [14] Peternell, T., Manifolds of semi-positive curvature, Lecture Notes in Math., 1646, Springer-Verlag, 1996, 98–142.
- [15] Ruan, W. D., On the convergence and collapsing of Kähler metrics, J. Differ. Geom., 52, 1999, 1–40.
- [16] Schoen, R. and Yau, S. T., Lectures on Differential Geometry, International Press, Boston, 1994.
- [17] Wu, H., The Bochner technique differential geometry, Mathematical Reports, Vol. 3, Part 2, Harwood Academic Publishers, London, 1988, 289–538.
- [18] Yamaguchi, T., Manifolds of almost nonnegative Ricci curvature, J. Differ. Geom., 28, 1988, 157-167.