Chin. Ann. Math. o
28B(4), 2007, 421-428 Chinese A']nals Of_
DOT: 10.1007/s11401-005-0584-7 Mathematics, Series B
© The Editorial Office of CAM and
Springer-Verlag Berlin Heidelberg 2007

Kahler Manifolds with Almost
Non-negative Ricci Curvature

Yuguang ZHANG*

Abstract Compact Kdhler manifolds with semi-positive Ricci curvature have been inves-
tigated by various authors. From Peternell’s work, if M is a compact Kéahler n-manifold
with semi-positive Ricci curvature and finite fundamental group, then the universal cover
has a decomposition M 2= X; x --- x X,,, where X; is a Calabi-Yau manifold, or a hy-
perKihler manifold, or X; satisfies H°(X;,QF) = 0. The purpose of this paper is to
generalize this theorem to almost non-negative Ricci curvature Kéhler manifolds by us-
ing the Gromov-Hausdorff convergence. Let M be a compact complex n-manifold with
non-vanishing Euler number. If for any € > 0, there exists a Kédhler structure (Je, gc) on
M such that the volume Vol,, (M) < V, the sectional curvature |K(g.)| < A?, and the
Ricci-tensor Ric(ge)> —ege, where V and A are two constants independent of e. Then the
fundamental group of M is finite, and M is diffeomorphic to a complex manifold X such
that the universal covering of X has a decomposition, X = X; X --- X X, where X is a
Calabi-Yau manifold, or a hyperKihler manifold, or X; satisfies H°(X;, QP) = {0}, p > 0.
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1 Introduction

In [6], the uniformization theorem of Mok for nonnegative bisectional curvature Kéhler
manifolds is generalized to almost nonnegative bisectional curvature Kéhler manifolds. On the
other hand, compact Kéhler manifolds with semi-positive Ricci curvature have been investigated
in [5, 14]. If M is a compact Kéahler n-manifold with semi-positive Ricci curvature and finite
fundamental group, then the universal cover has a decomposition M=X 1 X -+ X Xy, where
X is a Calabi-Yau manifold, or a hyperKéhler manifold, or X satisfies H°(X;, QP) = 0, by [14,
Theorem 5.13]. In this paper, we generalize this theorem to Kahler manifolds with almost non-
negative Ricci curvature and bounded sectional curvature. We call (J,w, g) a Kéhler structure
on a manifold M, if J is a complex structure on M, g is a Kahler metric compatible with J,

and w is the Kahler form associated to g.

Theorem 1.1 Let M be a compact complex n-manifold with non-vanishing Fuler number,
X(M) #£ 0. If for any € > 0, there exists a Kahler structure (Je, ge) on M such that

(1) Vol, (M) <V, where Voly, (M) is the volume of (M, ge), and V is a constant indepen-
dent of .
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(2) |K(ge)| < A%, where K(ge) is the sectional curvature, and A is a constant independent
of €.

(3) Ric(ge) > —€ge, where Ric(ge) is the Ricci-tensor of ge.
Then,

(1) The fundamental group of M, m (M), is finite.

(2) M s diffeomorphic to a complex manifold X such that the universal covering of X has
a decomposition, X X7 X -+ x Xg, where X; is a Calabi-Yau manifold, or a hyperKdihler
manifold, or X; satisfies H°(X;,QP) = {0}, p > 0.

(3) The holomorphic Euler number of M satisfies that

2n71

WLONE man)

The condition (2) in the above theorem seems too strong. If we remove this condition, and
fix a complex structure, then a weaker conclusion also can be obtained. Let (M, J,w,g) be a
compact Kédhler n-manifold. We call the first Chern ¢; (M) class of M numerically effective, if
for every e > 0 there is a smooth hermitian metric h. on the anti-canonical bundle —K,; =
A%’”T*M such that the curvature satisfies /=10, (—Kjy) > —ew (see [5, 13]). This implies
that, for any € > 0, there exists a Kéhler metric g, with Kéhler form w, such that the Ricci form
satisfies Ric(ge) > —ewe, and w, € [w] by arguments in the proof of Theorem 1.1 in [5]. A (1,1)-
class [a] is integrable if it contains a closed positive current T' of the form T' = a + /=199y
with | 1 € ¥w" < oco. For example, if [a] contains a closed positive current T whose Lelong

numbers are small enough, i.e. maxv (7T, z) < 2, then [« is integrable (see [13, §2]).

Proposition 1.1 Let (M, J,w,g) be a compact Kdhler n-manifold with the first Chern
c1(M) class numerically effective and integrable. Then hP°(M) < (}). Furthermore, if
h™O(M) # 0, then ¢ (M) = 0.

We organize this paper as follows: In Section 2, we discuss the convergence of (p, g)-forms;

in Section 3, we prove Theorem 1.1 and Proposition 1.1 respectively.

2 Convergence of Harmonic (p, q)-Forms

Let (M, J) be a compact complex manifold satisfying the hypothesis in Theorem 1.1. Then
we have a sequence of Kéhler structures (Jy, gi) such that

(1) Vol (M) < V, where Vol (M) is the volume of (M, gi).

(2) |K(gx)| < A%, where K(gy) is the sectional curvature, and A is a constant independent
of k.

(3) Rick > —1gx, where Ricy, is the Ricci-tensor of (M, gi).

Lemma 2.1 There are constants D and v, independent of k, such that Volz(M) > v and
diamy (M) < D, where diamy (M) is the diameter of (M, gi).

Proof First, we claim that there is a sequence {z*} C M such that, for any k, the injectivity
radius of g;, at z* satisfies iz, (z¥) > ¢, where ¢ is a constant independent of k. If not, there is a

k such that the injectivity radius of (M, gx) is less than ¢, i (M, gx) < ¢, where ¢ is the critical
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injectivity radius in the sense of [4]. Then by [4], there exists an F-structure of positive rank
on M as |K(gx)| < A% Tt is contradict to x(M) # 0 (see [4]).
Then, since |K(gx)| < A%, we have

VOlk(Bwk(l)) > VOlk(Bmk (L)) >,

where v is a constant independent of k. Then by [13, Lemma 2.3], the diameter of (M, gx) is
bounded by a constant D from above, diamy (M) < D.
Finally, Vol (M) > Voli(B,x (1)) > v.

By the lemma, the Kéhler manifolds (M, Ji, gx) satisfy that diamy(M) < D, Voli(M) > v,
and |K (gx)| < A%. Then, by Gromov’s compactness theorem (see [15, Theorem 4.1]), there exist
a subsequence of {k}, denoted also by {k}, and a C1:*-Kihler manifold (X, Joo, goo), 0 < o < 1,
such that, for k large, there exist diffeomorphisms fi : X — M satisfying:

(1) Gr = figr converges to goo in the CH* sense.

(2) Jp = (fi")s - Tk - (fr)« converges to Joo in the C1 sense.

In fact, there is a finite family of harmonic balls {B,,(r)} corresponding to gn, N >
1, such that X is covered by {Bn(3)}. For each B, (r), there is a harmonic coordinate,
{(z',- ,2®™)}, 2n =dim M, such that gy = > Gr.i;dr’da? satisfying p=1Id < (G,ij) < pld,
and Gk,ij — Goo,ij in CH¥(Bp,(1)). Furthermoréj, Joo = Z Joo,ijda’ 'dx? is a C1-Kihler metric,

ij
that 18, goo(Joo®s Joo') = goo( -, - ) and V>°J, = 0 where V™ is the Levi-Civita connection of

Joo (see [15, 6]).

Denote the harmonic (p, ¢)-forms space of (M, Ji, gr) by HL'?(M), and the complex Lapla-
cian operator by Ay = (O —1—52)2. Let 3" be a harmonic (p, q)-form of (M, Jx, gx.), Dg, g =0,
such that

k
Volk / 8% 12 d Vol = 1, (2.1)

where d Voly, is the volume form. Let 5k I B*. It is obvious that 5k is a harmonic (p, ¢)-form
of (Xa Jkagk)'

Lemma 2.2 A subsequence of Bk converges to a CY“-form > in the C1® sense. Fur-

thermore, 5% is a harmonic (p, q)-form of (X, goo, Joo)-
Proof (I) On any By, (r), Bk = > B}“dxl, where dz! = dz A+ Adxirra, and (2, 22")
T
is the harmonic coordinate associated to gn. By Weitzenbock formula, we have

0=Ag (" = V*VF" + RFGF, (2.2)

where the operators R* come from the curvature operators of g. In the coordinate, it can be

written as

A~ 7 6
g2 ax%axa +Z b g+ Z (35 =o0. (2.3)

ij
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First, we obtain the uniform C%® bounds of E,Zj , 32? and a uniform positive bound from below
for the minimal eigenvalue of g;/, k > N. Second, /c\ﬁ ; are uniformly L*-bounded by the
hypothesis |K (gx)| < A%, and gi are Kihler metrics on X. By the elliptic estimate (see [1]),

for any s, we obtain
Hﬂ]fHLM(B(g)) < CZ 1BE N (B (2.4)
L

where C' is a constant depending only on the bounds of the coefficients.
On the other hand,

A
L

By [10, Lemma 8], we have

LBy < C' Z sup || < C" sup |3*|x < C" sup |54
1, B(r) B(r) X

Al B*1 < K5k, (2.5)
where Ay = (d+d*)?, and K is a constant depending only on the bound A, p+ ¢ and n. Then
[9, Proposition 3.2] implies that

1
sup |3, < K/ ( BH2)" (2.6)
X

v

where K’ is a constant depending only on V', A and D. Thus
18712 (B(3)) < C, (2.7)

where C' is a constant independent of k. By the Sobolev embedding theorem, there is a compact
embedding, L?* — cLi-%. Thus, a subsequence of 3* converges to a C1 (p + ¢)-form 3>
2n

in the C® sense, a < 1 — =

(IT) Let II7Y be the projection operators to the (p, ¢)-forms corresponding to the complex

structures Ji. Since

e = gl = VLI o o 14+ VT,
v 2 ?

- (2.8)

and j\k converges to Jo, in the C1% sense, we obtain that 117 converges to 12 in the Ch
sense, where II2: is the projection operator to the (p, ¢)-forms corresponding to the complex

structure joo. Then
0= (Id — """ 3" — (Id — I1%9) 5> (2.9)

in the C1'® sense. Thus 3 is a (p, q)-form corresponding to Ju.

(III) Notice that d =3 dxi/\%, and dj, = — Zﬁ;ﬂ(dzl)a—i +3° b 1(dzt), where bt involves

only the 1-order derivations of ’g\;f and gy ;;. Thus

~

0= (d+d;)3* — (d+d )3~ (2.10)
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in the C%® sense. Since g is Kihlerian,
/ I(d+ d2.) B> dVoloo—Q/ (B + T~ )% [2d Vol
Then we obtain
(Ooo +0.,)B° =0. (2.11)

Thus, 5 is a harmonic (p, q)-form.

Lemma 2.3 For any 3 € HEY(X), there exists a sequence 3* € HP'?(X) such that B*

converges to 3% in the C1® sense.

Proof For fixed p and ¢, since dim H"?(M) < by q(M), we assume | = dim H}?(M) by
passing to a subsequence. Suppose that {3¥, - ,ﬁl } is an orthonormal basis of the harmonic
space H;"Y(M) such that

1 i k& 1 / L Ok
Voly, (M) /M< 0 A7 ped Vol Vol (X) X< 0 A7 I Voli = 0 (212)

By Lemma 2.2, we can assume that ﬂk converges to a Ch< form 3%, for each i.

1 o0 00 -
m/}(< 7, 357 )ood Volog — 65
1 1 o~
S % 3%) sod Volyy — ——— k%) ed Vol
Voloo (X) A< i 7ﬂ] ) o Vol (X) A< zvﬂy)k Ok}
= /(Zgllhl.. p+q p+a 300 ”detgoo
JHVI (X)

Z’\llhl .. p+q p+qﬁk Y det g 9k )d!El R

S H Vol (X)

— 0,

when k — oco. Thus

1 00 Qo0 _ 5.

By Lemma 2.2, we obtain H2:%(X) D Span{f{°,---,5°}. So h?9(X) = dim HZY(X) > 1.

Then we have
= > PUX) > Y RPUM) = by(M),

ptg=s ptq=s

where b, is the Betti-number. Thus
Hgoq(X) = Spa’n{ﬁloov e 76?0}

Lemma 2.4 All harmonic (p,0)-forms of (X, Jeo, goo) are parallel, that is, V>°(5°° =0 for
any > € HRO(X).
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Proof By Lemma 2.3, for any 3> € HZ(X), there exists a sequence 3% € H,f’O(X) such
that BF converges to 3 in the C™* sense. By the Weitzenbock formula (see [17]), we have

—AIBHE = [VEBHE + [V ﬁk|k+z(zm eived) ) 951, (2.14)

el
where {e;, fkei} is an orthnormal basis of T, X corresponding to g, and ¥ = > gr¢l, ¢! =
T

(e;, + \/—_1j\ke;?‘1) AN (e + J—_lfkefp).
/ (1958 + 9" 8" +Z(ZR1ck irei) ) 1852 )d Vol

iel
> / (lV’“ﬂ’“lQ + [V E2 - E/ |Bk|2)dVolk
M M
H/ (1982 + [V 5 2)d Voloy > 0,
X
when k — co. Thus, we obtain V>3 = 0, where V™ is the Levi-Civita connection of g..

3 Proofs of Theorem 1.1 and Proposition 1.1

Now, it is the place to prove Theorem 1.1 and Proposition 1.1.

Proof of Theorem 1.1 (I) Let M be any finite covering of M, 7 : M — M. Give M the
metric g, = 7*gr. By the same arguments as in Section 2, there exist diffeomorphisms from
M to X, each of which is a finite covering of X, and g, converges to a O Kihler metric g, .
Furthermore, all lemmas in Section 2 are valid for the present case.

If h19(X) # 0, let 3~ € HLO(X), B>~ # 0. By Lemma 2.4, 3 is parallel, V3% =
Thus |3°°| =constant# 0. It contradicts x(X) = dx(X) # 0. So h*°(X) = 0.

On the other hand, by the hypothesis diamg (M) < D, Volx(M) > v, |K(gx)| < A%, Ricg >
—% gk, and the final remark in [7], the fundamental group of M, 1 (M), has polynormial growth.
By [14, Proposition 5.8], we obtain that 71 (M) is finite.

(I) Let M , X be the universal covering of M, X respectively. All lemmas in Section 2 are
valid for M and X. Let g, be the C*-Kihler metric on X obtained by Section 2. Since de

Rham decomposition Theorem is valid for C1:*-Kihler metric (see [6]), we obtain
(Xvagocg = (legoql) XX (X8750<>,S)7 (3-1)

where (X, §oo,i) are C1*-Kihler manifolds with irreducible holonomy groups H;. If 3; is a
harmonic (p, 0)-form of (X;, §ooi), then P} f; is a harmonic (p, 0)-form of (X, Gsc), where P, is
the projection from ()Z',goo) to (Xi,0c0,i). By Lemma 2.4, P/j; is parallel. So f; is parallel
corresponding to goo ;. Thus, any element of H2?(X;) is parallel.

By the Berger Theorem (see [3]), there are only three possibilities for H;, namely U(n;),
SU(n;) and Sp(%), in case n; is even. Since Calabi-Yau manifolds are characterised by H; =
SU(n;) and hyperKéhler manifolds by H; = Sp(%-), we only have to exclude that H; = U(m)
As there is no U(n;)-invariant linear subspace of T3P0 X, , p> 0, we have H2X(X;) = {0}.
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(III) Finally, note that hPO(X) < (p), and x(M,O) = x(X,0). Then we have x(M,0) =
_ X(X,0) 2n !
X(X,0) = 2G0T < monr

Proof of Proposition 1.1 (I) By [13, Theorem 2], there is a family of Kahler metrics

{gx} such that Ricy, - diam} > —dlam" gk, and % — 0 when k£ — oo. For any holomorphic
(p,0) form 3 € HPO(M), by the Weltzenbéck formula (see [17]), we have
~AulE = (98 + 37 (D2 Rick(essen) ) 312, (3:2)
el

where {e;, Jye;} is an orthnormal basis of T, M corresponding to g, and § = ZﬁICI, ¢ =

(€5, V=TIl A -A(ef,+vTres, ). By [VEBI2 > [d]]i %, we have A8l < =2 Als.
So [8, Theorem 3.3] is valid for the present case. Thus we obtain

dim HPO(M) < (Z) 52((1?};’“)7

where 5((‘11\&/%"") is a function such that §(di3r£k) — 1 when k — oo. Letting ko be large enough,

we have

hPO (M) = dim HPO(M) < <Z> . (3.3)

(IT) The following argument is similar to the proof of Proposition 2.1 in [12]. Let Ky =
/\Z’OT*M be the canonical line bundle of (M, J). Since the first Chern class ¢ (M) of M is
numerically effective, there is a family of hermitian metric {h} } on —Kjs such that the curvature
forms satisfy v/—10y(—Kp) > —+w (see [5]). Then we obtain a family of hermitian metric

{hi,} on Kj; whose curvature forms satisfy

1
\/—1 @k(KJVI) S Ew. (34)
If h™9(M) # 0, there exists a non-zero holomorphic section s of Ky, s € H*(M,O(Ky)). For
any « € M, we choose complex normal coordinates (z1,- - , z,) such that w = /—1>_ 9opdza N

dzg satisfies 9a5|r = 0,7 and d905|r = 0. For any k, we choose a holomorphic basis e* of Ky,
in a neighborhood of z such that s = spe”, ||s slli, = hrsise, hie(x) = 1, dhg(z) = 0 and
V=104(Ky) = —v/—100loghy. At x, for any € > 0, we have
_ a0 |s|? sz Aa|s|?
99 1Og(||8||}2”‘ + 62) _ 2” Hh;c2 _ || ”h,C2 ”2 ||2hk:7
' l[sll%, + € (NIsll7, +€*)

99 |5I12, = s A Dk — 113,05 (Kar). and dsl3, AT sl2, = [15]3, 0sx A Tsr.

Hence, at x,

os_ 0
Alog(|Isll7, +€%) Zg 58 07 log(|[s]7, + €*)w"

” Hhk \/_@k(KM)

lsllz, + e

62

+ —
(Isllz, +€)?
> ——w™ (3.5)

V=109sp A Osp Aw" !
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Thus Alog(|[s]7, + €*)w™ > —fw™ on M. By Fatou Lemma, we have

/ Alog|[s|;, w" < lim/ Alog(||s|l7, + €)w™ = 0.
M e—=0 Jas
Note that the Poincare-Lelong equation shows that

VT, e
0D logsllf, = 5 —On(Ka) + [,

where Z; = s71(0) is the zero divisor of s (see [12]). Hence

1
Vol (Zs) < 7Volu(M) — 0, (3.6)

when k — oo. This implies that Z, is empty. Thus K is a trivial bundle, and ¢; (M) = 0.
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