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Abstract The classical Hardy theorem asserts that f and its Fourier transform bf can
not both be very rapidly decreasing. This theorem was generalized on Lie groups and also
for the Fourier-Jacobi transform. However, on SU(1, 1) there are infinitely many “good”

functions in the sense that f and its spherical Fourier transform ef both have good decay.
In this paper, we shall characterize such functions on SU(1, 1).
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1 Introduction

The classical Hardy theorem (see [2]) asserts that f and its Fourier transform f̃ can not

both be “very rapidly decreasing”. More precisely, suppose that a measurable function f on R

and its Fourier transform f̃ on R satisfy

|f(x)| ≤ Ae−ax
2

and |f̃(λ)| ≤ Be−bλ
2

(1.1)

for some positive constants A, B, a and b. If ab > 1
4 , then f = 0, and if ab = 1

4 , then f

is a constant multiple of e−ax
2

. Recently, an analogue of Hardy’s theorem was established

on Lie groups by various people, where the heat kernel on Lie groups plays an essential role

in controlling the decay of f and, in the case of ab = 1
4 , in expressing a unique function up

to a constant multiplication. We refer to [9] and the references therein for more information.

Moreover, Hardy’s theorem was generalized for the Fourier-Jacobi transform (see [1, 3]) and,

as an application, Andersen pointed out that Hardy’s theorem on SU(1, 1) does not hold unless

the K-type of f is fixed: Let G = SU(1, 1), and for g ∈ G let g = kφaxkψ, 0 ≤ x, 0 ≤ φ, ψ ≤ 4π,

denote the Cartan decomposition of g. Let ht denote the heat kernel on G and for integrable

functions f on G let f̃n,m, n,m ∈ 1
2Z, the spherical Fourier transform of f corresponding to

the K-type (n,m) (see (2.10) below). We suppose that a measurable function f on G and its

spherical Fourier transform f̃n,m on R satisfy

|fn,m(g)| ≤ Ah1/(4a)(g) and |f̃n,m(λ)| ≤ Be−bλ
2

for all n,m ∈ 1

2
Z (1.2)
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for some positive constants A, B, a and b. Then, f = 0 if ab > 1
4 . However, there are infinitely

many linearly independent functions onG satisfying the above condition if ab = 1
4 (see Corollary

4.1).

In this paper, we restrict our attention to functions on G with K-types (n,m), n,m =

0, 1, 2, · · · , and we show that the condition (1.2) under ab = 1
4 determines a function on G

uniquely in the following sense: In the classical case the condition (1.1) under ab = 1
4 guarantees

the limit

lim
x→∞

eax
2

f(x) = c

and then f is uniquely determined as f(x) = ce−ax
2

. On SU(1, 1), similarly, the condition (1.2)

under ab = 1
4 guarantees the limit

lim
x→∞

h1/(4a)(x)
−1f(kφax) = F (φ)

and then f is uniquely determined by using the Fourier coefficients of F . Here F ∈ H2(T) is

real analytic. Moreover, the L2-norm of F on T coincides with the L2-norm of the principal

part of f on G and the Fourier coefficients {dn;n = 0, 1, 2, · · · } of F satisfy

∞∑

n=0

|dn|2
(
1 +

n−1∑

k=0

ke2b(2k+1)2
)
<∞.

In Theorem 5.1 we shall give a characterization of F .

2 Notations

Let G = SU(1, 1) and A, K the subgroups of G of the matrices

ax =




cosh
x

2
sinh

x

2

sinh
x

2
cosh

x

2


 , x ∈ R and kφ =

(
eiφ/2 0

0 e−iφ/2

)
, 0 ≤ φ ≤ 4π

respectively. According to the Cartan decomposition of G, each g ∈ G can be written uniquely

as g = kφaxkψ where 0 ≤ x, 0 ≤ φ, ψ ≤ 4π. Let πj,λ (j = 0, 1
2 , λ ∈ R) denote the principal

series representation of G. Then the (vector-valued) spherical Fourier transform πj,λ(f) of f on

G is defined as πj,λ(f) =
∫
G
f(f)πj,λ(g)dg, where dg a Haar measure on G. In the following,

we shall consider functions f on G satisfying

f(ax) = f(a−x), x ∈ R

and we identify f with an even function on R, which is denoted by the same symbol f . Under

this restriction, we may suppose that πj,λ(f) is supported on j = 0 and λ > 0 and the K-types

(m,n) of f is supported on m,n ∈ Z (cf. [6] and [8, §8]).

Before introducing the explicit form of the spherical Fourier transform of f on G, we shall

recall the theory of the Jacobi transform on R+ (see [4, 5]). Let α, β, λ ∈ C and x ∈ R and

consider the differential equation

(Lα,β + λ2 + ρ2)f(x) = 0, (2.1)
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where ρ = α+ β + 1 and

Lα,β =
d2

dx2
+ ((2α+ 1) cothx+ (2β + 1) tanhx)

d

dx
.

Then, for α /∈ −N, the Jacobi function of the first kind with order (α, β)

φα,βλ (x) = F
(ρ+ iλ

2
,
ρ− iλ

2
;α+ 1;− sinh2 x

)
(2.2)

is a unique solution of (2.1) satisfying φα,βλ (0) = 1 and
dφα,β

λ

dx (0) = 0. For λ /∈ −iN, the Jacobi

function of the second kind with order (α, β)

Φα,βλ (t) = (et − e−t)iλ−ρF
(ρ− 2α− iλ

2
,
ρ− iλ

2
; 1 − iλ;− sinh−2 t

)
(2.3)

is another solution of (2.1). Then Γ(α+ 1)−1φα,βλ is entire of α, β, and for λ /∈ iZ, we have the

identity
√
π

Γ(α+ 1)
φα,βλ (t) =

1

2
(Cα,β(λ)Φ

α,β
λ (t) + Cα,β(−λ)Φα,β−λ (t)), (2.4)

where Cα,β(λ) is the C-function given by

Cα,β(λ) =
2ρΓ( iλ2 )Γ(1+iλ

2 )

Γ(ρ+iλ2 )Γ(ρ−2β+iλ
2 )

(2.5)

(see [4, (2.5), (2.6)]). For convenience we assume α > −1 and β ∈ R in the following. Then

Cα,β(−λ)−1 has only simple poles for ℑλ ≥ 0 which lie in the finite set Dα,β = {i(|β| −α− 1−
2m);m = 0, 1, 2, · · · , |β| − α− 1 − 2m > 0}. We denote the residue of (Cα,β(λ)Cα,β(−λ))−1 at

γ ∈ Dα,β by

dα,β(γ) = −iResλ=γ(Cα,β(λ)Cα,β(−λ))−1.

Let f be a compactly supported C∞ even function on R. We define the Jacobi transform

f̂α,β(λ) by

f̂α,β(λ) =

√
2

Γ(α+ 1)

∫ ∞

0

f(x)φα,βλ (x)∆α,β(x)dx, (2.6)

where ∆α,β(x) = (2 sinhx)2α+1(2 coshx)2β+1 (see [4, (3.2)] and [5, (2.12)]). Then the inversion

formula and the Plancherel formula are respectively given as follows:

f(x) =

√
2

Γ(α+ 1)

(∫ ∞

0

f̂α,β(λ)φ
α,β
λ (x)|Cα,β(λ)|−2dλ+

∑

γ∈Dα,β

f̂α,β(γ)φ
α,β
γ (x)dα,β(γ)

)
, (2.7)

∫ ∞

0

|f(x)|2∆α,β(x)dx =

∫ ∞

0

|f̂α,β(λ)|2|Cα,β(λ)|−2dλ+
∑

γ∈Dα,β

|f̂α,β(γ)|2dα,β(γ) (2.8)

(see [4, Theorem 4.2, (5.1)] and [5, Theorems 2.3 and 2.4]).

Let hα,βt denote the heat kernel for the Jacobi transform, that is, an even function on R

satisfying

(hα,βt )∧α,β(λ) = e−t(λ
2+ρ2), t, λ ∈ R. (2.9)
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We return to harmonic analysis on SU(1, 1). Let n,m ∈ Z and ψn,mλ (g) (λ ∈ R, g ∈ G)

denote the matrix coefficient of π0,λ(g) with K-type (n,m). Let f be a compactly supported

C∞ function on G. We define the scalar-valued spherical Fourier transform f̃n,m(λ) by

f̃n,m(λ) =

∫ ∞

0

f(x)ψ
(n,m)
λ (x)∆0,0(x)dx. (2.10)

We recall that the explicit form of ψn,mλ (g) is given by using the Jacobi function (2.2) (cf. [5,

(4.17)] and [6, (3.4.10)]): for g = kφaxkψ ∈ G,

ψn,mλ (g) = (coshx)n+m(sinh x)|n−m|Qn,m(λ)φ
|n−m|,n+m
λ (x)einφeimψ,

where Qn,m(λ) can be expressed by binomial coefficient as

Qn,m(λ) =



−1

2
− iλ

2
∓m

|n−m|



 , (2.11)

and ∓m is equal to −m if m ≥ n and m if m ≤ n. Hence from (2.6) and (2.9) it follows that

f̃n,m(λ) = 2−2(n+m)−2|n−m|Qn,m(λ)

×
(
f(x)(sinh x)−|n−m|(coshx)−(n+m)

)∧

|n−m|,n+m
(λ). (2.12)

We shall consider the case of n = m. Let F be a compactly supported C∞ even function on R.

We put

f(g) = F (x)(cosh x)2nein(φ+ψ), g = kφaxkψ ∈ G. (2.13)

Then letting α = 0, β = 2n in (2.8) and (2.11), we see that

∫ ∞

0

|f(x)|2∆0,0(x)dx =

∫ ∞

0

|f̃n,n(λ)|2|C0,0(λ)|−2dλ+

|n|−1∑

k=0

(
k +

1

2

)
|f̃n,n((2k + 1)i)|2 (2.14)

(see [6, (4.21)] and [8, Theorem 8.2]). This is nothing but the Plancherel formula for central

compactly supported C∞ functions on G. We denote by fP and ◦f respectively the principal

part and discrete part of f on G;

f = fP + ◦f.

Then (2.14) corresponds to the relation ‖f‖2
L2(G) = ‖fP ‖2

L2(G) + ‖◦f‖2
L2(G).

3 Asymptotic Behavior of Heat Kernels

When α ≥ β ≥ − 1
2 , the asymptotic behavior of hα,βt (x) is well-known (see [1] and [3,

Theorem 3.1]). In particular,

h0,0
t (x) ∼ t−1e−ρ

2te−ρxe−x
2/(4t)(1 + t+ x)−1/2(1 + x). (3.1)

In this section we shall treat the case of α, β = 0, 1, 2, · · · , and we shall investigate a leading

term of hα,βt (x) when x→ ∞. In the following, we fix t > 0 and we denote a = 1
4t for simplicity.
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For an even function f on R let W σ
µ (f), µ ∈ C, σ > 0, denote the Weyl type fractional

integral of f , which is defined by

W σ
µ (f)(y) = Γ(µ)−1

∫ ∞

y

f(x)(coshσx− coshσy)µ−1d(coshσx) (3.2)

for ℜµ > 0 and is extended to an entire function in µ (see [4, (3,10), (3.11)]). Then it is known

that

f̂α,β(λ) = F(23α+3/2W 1
α−β ◦W 2

β+1/2(f)),

where F denotes the Euclidean Fourier transform (see [4, (3.7), (3.12)]). Therefore, letting

α = β = 0, it follows from (2.9) that

W 2
1/2(h

0,0
t )(x) =

1

22
√
t
e−te−ax

2

(3.3)

and moreover, letting α = m, β = n, 23m+3/2et(m+n+1)2W 1
m−n◦W 2

n+1/2(h
m,n
t ) does not depend

on m,n. Hence, it follows that

hm,nt = 2−3me−t((m+n+1)2−1)W 2
−1/2−n ◦W 1

n−m ◦W 2
1/2(h

0,0
t ). (3.4)

Lemma 3.1 For n = 0, 1, 2, · · · ,

W 2
−n ◦W 1

n(f)(x) =

n−1∑

l=0

cnl (coshx)−(n+l)W 1
l (f)(x), (3.5)

where 4cnl = cn−1
l − (n+ l − 2)cn−1

l−1 . In particular, cn0 = 2−2n, |cnn−1| = 2−2n(2n− 3)!!, cnl > 0

if l is even and cnl < 0 if l is odd, and

|cnl | ≤
(2n− 3)!!

22n(n− 1 − l)!
, 0 < l ≤ n− 1.

Proof Since

W 2
−1 =

1

2 sinh 2x

d

dx
=

1

4 coshx
W 1

−1,

(3.5) and the recursive relation 4cnl = cn−1
l − (n + l − 2)cn−1

l−1 follows from the induction on

n. In particular, 4cn0 = cn−1
l and 4cnn−1 = −(2n − 3)cn−1

n−2, and thus, cn0 = 2−2n > 0 and

|cnn−1| = 2−2n(2n − 3)!!. The sign of general cnl follows from the recursive relation. Since

4n−1(2n − 3)|cn−1
l−1 | ≤ 4n|cnl |, it follows that 4|cnl | ≤ |cn−1

l | + 4(n+l−2)
2n−3 |cnl | and thus, 4|cnl | ≤

2n−3
n−l−1 |c

n−1
l |. This means that

|cnl | ≤
(2n− 3)!!

22(n−l−1)(n− l − 1)!(2l − 1)!!
|cl+1
l | =

(2n− 3)!!

22n(n− 1 − l)!
.

Lemma 3.2. Let p, q ≥ 0 and suppose q = 0 if p = 0. Then there exists a positive constant

c such that for all l = 0, 1, 2, · · · , and x ≥ max(1, 1
a ),

W 1
l (e−ax

2−pxxq) ≤ c2−l(2a)lel
2/(4a)e−ax

2−(p−l)xxq−l.
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Here, if l ≥ 1, then (2a)lx−l can be replaced by Γ(l)−1(2a)−1x−1. Moreover, if 2−lel
2/(4a) is

replaced by 2−2l, then the lower bound follows.

Proof The case of l = 0 is obvious, so we may suppose that l ≥ 1. Since 2 sinhx ≤ ex,

s+ x ≤ (1 + s)(1 + x) ≤ 2x(1 + s) for x ≥ 1, s ≥ 0, and e−px(1 + s)q ≤ c, it follows from (3.2)

that

Γ(l)W 1
l (e−ax

2−pxxq)

=

∫ ∞

x

e−as
2−pssq(cosh s− coshx)l−1 sinh sds

= e−ax
2−px

∫ ∞

0

e−as
2−ps−2axs(x + s)q

(
2 sinh

(s
2

+ x
)

sinh
(s

2

))l−1

sinh(s+ x)ds

≤ ce−ax
2−(p−l)xxq

∫ ∞

0

e−as
2+(l/2+1/2)s−2axs

(
sinh

(s
2

))l−1

ds

≤ c2−le−ax
2−(p−l)xxq

∫ ∞

0

e−as
2+ls−2axsds

= c2−lel
2/(4a)e−ax

2−(p−l)xxq(2ax)−1, (3.6)

where we used the fact that −as2 + ls = −a(s− l
2a )2 + l2

4a . Since sinhx ≤ xex, the integral in

(3.6) is also estimated as

≤ c2−lel
2/(4a)c

∫ ∞

0

e−2axssl−1ds = c2−lcel
2/(4a)Γ(l)(2ax)−l.

Therefore, we can deduce the first estimate.

We note that sinhx ≥ xex

2 for 0 ≤ x ≤ 1
2 . Since 0 ≤ 1

2ax ≤ 1
2 and s+ x ≥ x for s, x ≥ 0, it

follows that

Γ(l)W 1
l (e−ax

2−pxxq) ≥ c2−2le−ax
2−(p−l)xxq

∫ 1/(2bx)

0

e−as
2−(p−l)s−2axssl−1ds

≥ c2−2le−ax
2−(p−l)x(2ax)−l

∫ 1

0

e−ssl−1ds.

Since Γ(l)−1

∫ 1

0

e−ssl−1ds is bounded below, the lower estimate follows.

Lemma 3.3 Let p, q ≥ 0 and suppose q = 0 if p = 0. Then there exist a positive constants

c such that for all l, n = 0, 1, 2, · · · , and x ≥ max(1, 1
a ),

|W 2
−1/2((coshx)n+lW 1

l (e−ax
2−pxxq))|

≤ c2n(2a)−lel
2/(4a)e−ax

2−(n+1+p)xxq−l((n+ l)x−1/2 + x1/2).

Here, if l ≥ 1, then (2a)−lx−l can be replaced by Γ(l)−1(2a)−1x−1. Moreover, if 2nel
2/(4a) is

replaced by 2n−l, then the lower bound follows.

Proof Since W 2
−1/2 = W 2

1/2 ◦W 2
−1, it follows that

W 2
−1/2 ◦ ((coshx)−(n+l)W 1

l )

=
1

4
W 2

1/2 ◦ (−(n+ l)(coshx)−(n+l+2)W 1
l + (coshx)−(n+l+1)W 1

l−1). (3.7)
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Therefore, we need to estimate

W 2
1/2((coshx)−(n+l+2)W 1

l (e−ax
2−pxxq)), l = −1, 0, 1, 2, · · · .

Substituting the estimate obtained in Lemma 3.2, we see that for l ≥ 0,

W 2
1/2((coshx)−(n+l+2)W 1

l (e−ax
2−pxxq))

≤ cc0

∫ ∞

x

e−as
2−(n+2+p)ssq−l(cosh 2s− cosh 2x)−1/22 sinh 2sds

≤ cc0e
−ax2−(n+p)x

∫ ∞

0

e−as
2−(n+p+2ax)s(s+ x)q−l(cosh 2(s+ x) − cosh 2x)−1/2ds,

where c0 = c2n(2a)lel
2/(4a). We note that, if l ≥ q, then (s + x)q−l ≤ xq−l, and if l ≤ q, then

(s+x)q−l ≤ (2x(1+ s))q−l and e−ps(1+ s)q−l ≤ e−ps(1+ s)q ≤ c. Therefore, applying [3, (3.1)]

to (cosh 2(s+ x) − cosh 2x)−1/2, we have that the above formula could be estimated as

≤ cc0e
−ax2−(n+1+p)xxq−l

∫ ∞

0

e−ax
2−(n+1+2ax)s

(1 + 2(x+ s)

s(x+ s)

)1/2

ds

≤ cc0e
−ax2−(n+1+p)xxq−l

( 1

x
+ 1

)1/2
∫ ∞

0

e−2axs 1√
s
ds

≤ cc0e
−ax2−(n+1+p)xxq−l−1/2. (3.8)

When l = −1, we note that |W 1
−1(e

−ax2−pxxq)| ≤ c(1 + x)q+1e−ax
2−px(sinhx)−1. Hence, (3.8)

is replaced by

≤ c2ne−ax
2−(n+p)x

∫ ∞

0

e−as
2−(n+p+2ax)s(s+ x)q+1(cosh(s+ x) − coshx)−1/2ds

≤ c2ne−ax
2−(n+1+p)xxq

∫ ∞

0

e−2axs 1√
s
((x + s)(1 + 2(x+ s))1/2ds.

The last integral is dominated by x1/2. Substituting these estimates to (3.7), we can deduce

the desired upper estimate. Other desired estimates follow from Lemma 3.2 and the arguments

used in [3, Theorem 3.1].

When p = q = 0 and l = 0, we have the following refinement.

Lemma 3.4 For all n = 0, 1, 2, · · · ,

W 2
−1/2((coshx)−ne−ax

2

) = c0(coshx)−nh0,0
t (x) +O(2nne−ax

2−(n+1)xx−1/2),

where c0 = 22
√
t et. Here f = O(g) means that

∣∣ f(x)
g(x)

∣∣ ≤ C when x → ∞. If C depends on

some parameters γ, then we use the symbol f = O(γ)(g).

Proof Since e−ax
2

= c0W
2
1/2(h

0,0
t ) (see (3.3)), the case of n = 0 is obvious and moreover,

for n ≥ 1, it follows that

c−1
0 W 2

−1/2((coshx)−ne−ax
2

)

= −
∫ ∞

x

d

d cosh 2s
(((coshx)−n−(cosh s)−n)W 2

1/2(h
0,0
t )(s))(cosh 2s− cosh 2x)−1/2d cosh 2s

+ (coshx)−nh0,0
t (x)

= −
∫ ∞

x

((coshx)−n−(cosh s)−n)e−as
2

(cosh 2s−cosh2x)−3/22 sinh 2sds+(coshx)−nh0,0
t (x).
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We note that for 0 ≤ x ≤ s,

(coshx)−n − (cosh s)−n ≤ n(cosh s− coshx)

coshx(coshx)n
.

Therefore, the similar argument in the proof of Lemma 3.3 (or [3, Theorem 3.1]) yields that

the last integral is dominated by 2nne−ax
2−(n+1)xx−1/2.

Now we shall obtain the asymptotic behavior of hm,nt (x) as x → ∞. It follows from (3.3),

(3.4) and (3.5) that

hm,nt = c−1
0 2−3me−t((m+n+1)2−1)

n−1∑

l=0

cnl W
2
−1/2((coshx)−(n+l)W 1

l−m(e−ax
2

)). (3.9)

Since

W 1
−m(e−ax

2

) ∼(m) (2ax)me−ax
2−mx,

here f ∼ g means that there exist positive constants c1, c2 such that c1f(x) ≤ g(x) ≤ c2f(x).

If c1, c2 depend on some parameters γ, then we use the symbol f ∼(γ) g. Lemmas 3.4 implies

that, when x→ ∞, the term corresponding to l = 0 contributes to the asymptotic behavior of

hm,nt (x):

Proposition 3.1 We fix t > 0 and m,n = 0, 1, 2, · · · . Then for x, ax ≥ 1,

hm,nt (x) ∼(t,m,n) e
−ρ2te−ρxe−x

2/(4t)(1 + x)m+1/2. (3.10)

Next we shall consider the behavior of (coshx)nh0,n
t (x). Let ǫ > 0 and we suppose that

x ≥ 1

2
log

( 1

2ǫ − 1

)
= x(ǫ),

that is, coshx ≤ 2−1+ǫex if x ≥ x(ǫ) and x→ ∞ if ǫ→ 0. Then it follows from (3.9), Lemmas

3.3 and 3.4 that

(coshx)nh0,n
t (x) = 2nǫe−t((n+1)2−1)

(
cn0h

0,0
t (x) +O

( n−1∑

l=1

|cnl |el
2/(4a)Γ(l)−1e−ax

2−xnx−1/2
))
.

We note that el
2/(4a) ≤ e(n−1)2/(4a) and

n−1∑

l=1

|cnl |Γ(l)−1 ≤
n−1∑

l=1

(n− 1)!

2n+2(n− l − 1)!Γ(l)
= 2−4(n− 1).

Hence, it follows that

(coshx)nh0,n
t (x) = 2nǫe−t((n+1)2−1)(cn0h

0,0
t (x) +O(e(n−1)2/(4a)e−ax

2−xn2x−1/2))

= 2nǫ2−2ne−t((n+1)2−1)h0,0
t (x)(1 +O(n222ne(n−1)2/(4a)x−1)). (3.11)

Letting x→ ∞, we have the following

Proposition 3.2 We fix t > 0 and n = 0, 1, 2, · · · . Then

lim
x→∞

(coshx)nh0,n
t (x)

h0,0
t (x)

= 2−2ne−t((n+1)2−1). (3.12)
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4 Hardy’s Theorem

We keep the notations in the previous section. We recall the proof of Hardy’s theorem for

the Jacobi transform of (α, β), α ≥ β ≥ − 1
2 (see [1, 3]). Then it is easy to see that Hardy’s

theorem for the Jacobi transform of (m,n), m,n = 0, 1, 2, · · · , also holds:

Theorem 4.1 Let m,n = 0, 1, 2, · · · , and f be a measurable function on R+ satisfying

( i ) g(x) = O(m,n)(h
m,n
1/(4a)(x)),

(ii) ĝm,n(λ) = O(m,n)(e
−bλ2

).

If ab > 1
4 , then g = 0, and if ab = 1

4 , then g is a constant multiple of hm,nb (x).

Applying this theorem, we have Hardy’s theorem on SU(1, 1) for a fixed K-type (see the

example in [7]).

Theorem 4.2 Let f be a measurable function on G of K-type (n,m), n,m = 0, 1, 2, · · · ,
satisfying

( i ) f(x) = O(n,m)(h
|n−m|,n+m
1/(4a) (x)(sinh x)|n−m|(coshx)n+m),

(ii) f̃n,m(λ) = O(n,m)(Qn,m(λ)e−bλ
2

).

If ab > 1
4 , then f = 0, and if ab = 1

4 , then f is a constant multiple of h
|n−m|,n+m
b (x)

·(sinhx)|n−m|(coshx)n+m.

Proof Let g(x) = f(x)(sinhx)−|n−m|(coshx)−(n+m). Then

g(x) = O(n,m)(h
|n−m|,n+m
1/(4a) (x)),

ĝ|n−m|,n+m(λ) = 22(n+m)+2|n−m|f̃n,m(λ)Q−1
n,m(λ) = O(n,m)(e

−bλ2

)

(see (2.12)). Then Theorem 4.1 implies that, if ab > 1
4 , then g = 0, and if ab = 1

4 , then g is a

constant multiple of h
|n−m|,n+m
b (x) and thus, f is the desired form.

Let L2
0+(G) denote the subspace of L2(G) consisting of all f of the form

f =
∞∑

n,m=0

fn,m,

where fn,m is of K-type (n,m).

Corollary 4.1 Let f be in L2
0+(G) and satisfy for all n,m = 0, 1, 2, · · · ,

( i ) fn,m(x) = O(n,m)(h
0,0
1/(4a)(x)),

(ii) f̃n,m(λ) = O(n,m)(e
−bλ2

).

If ab > 1
4 , then f = 0, and if ab = 1

4 , then f is of the form

f(g) =

∞∑

n=0

anh
0,2n
b (x)(cosh x)2nein(φ+ψ), (4.1)

where g = kφaxkψ and an ∈ C.
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Proof Proposition 3.1 implies that

h
|n−m|,n+m
t (x)(sinh x)|m−n|(coshx)m+n ∼(m,n) h

0,0
t (x)(1 + x)|m−n| for x, ax ≥ 1. (4.2)

Hence fn,m(x) = O(n,m)(h
|n−m|,n+m
1/(4a) (x) (sinhx)|n−m|(coshx)n+m(1+x)−|n−m|) and f̃n,m(λ) =

O(n,m) (e−bλ
2

) = O(n,m)(Qn,m(λ)e−bλ
2

) (see (2.11)). Hence Theorem 4.2 implies that, if ab > 1
4 ,

then fn,m = 0, for all n,m ∈ Z, and thus f = 0. If ab = 1
4 , then fn,m is a constant multiple

of h
|n−m|,n+m
b (x)(sinh x)|n−m|(coshx)n+m. Since fn,m(x) = O(n,m)(h

0,0
1/(4a)(x)), it follows that

|n−m| = 0 (see (4.2)). Thereby, f must be of the desired form.

5 Main Theorem

We retain the notations and suppose that

f(g) =

∞∑

n=0

anh
0,2n
b (x)(cosh x)2nein(φ+ψ) ∈ L2

0+(G).

We recall that

f̃n,n(λ) = an2
−4ne−b((2n+1)2+λ2) (5.1)

(see (2.9) and (2.12)). Then letting t = b = 1
4a in (2.14), we obtain the L2-norm of f on G as

follows.
∫

G

|f(g)|2dg =

∞∑

n=0

|an|2
∫ ∞

0

|h0,2n
b (x)(cosh x)2n|2∆0,0(x)dx

=
∞∑

n=0

|an|22−8ne−2b(2n+1)2

×
(∫ ∞

0

e−2bλ2 |C0,0(λ)|−2dλ+
n−1∑

k=0

(
k +

1

2

)
e2b(2k+1)2

)
. (5.2)

We define the partial sum fN , N = 0, 1, 2, · · · , of f as

fN (g) =

N∑

n=0

anh
0,2n
b (x)(cosh x)2nein(φ+ψ).

Then Proposition 3.2 implies that

lim
N→∞

lim
x→∞

h0,0
b (x)−1fN (kφax) =

∞∑

n=0

an2
−4ne−b((2n+1)2−1)einφ =

∞∑

n=0

dne
inφ = F (φ), (5.3)

where dn = 2−4ne−b((2n+1)2−1)an. Obviously, (5.2) implies that

‖F‖L2(T) = c‖fP ‖L2(G) and
∞∑

n=0

|dn|2
(
1 +

n−1∑

k=0

ke2b(2k+1)2
)
∼ ‖f‖2

L2(G). (5.4)

Since
∞∑
n=0

|dn|2 <∞ and
∞∑
n=1

|dn|2(n−1)e2b(2n−1)2 <∞, there exists a positive constant C such

that |dn|(1 + n)1/2eb(2n−1)2 ≤ C for all n = 0, 1, 2, · · · . This means that F is real analytic and

|an|2−4n(1 + n)1/2e−b(2n+1)2eb(2n−1)2 ≤ C for all n = 0, 1, 2, · · · .
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Hence (5.1) implies

f̃n,n(λ) = O((1 + n)−1/2e−b(2n−1)2e−bλ
2

).

We introduce a subspace A2
b(T) of H2(T) as follows:

A2
b(T) =

{
F (φ) =

∞∑

n=0

dne
inφ ∈ H2(T); ‖F‖2

A2

b
(T) =

∞∑

n=0

|dn|2
(
1 +

n−1∑

k=0

ke2b(2k+1)2
)
<∞

}
.

For F (φ)=
∞∑
n=0

dne
inφ ∈ A2

b(T), we define a function f onG as (4.1) with an=24neb((2n+1)2−1)dn.

Then (5.2) and (5.4) imply ‖f‖L2(G) ≤ c‖F‖2
A2

b
(T)

. Clearly, |fn.n(x)|= |an|h0,2n
b (x)(coshx)2n =

O(n)(h
0,0
b (x)) and (5.1) implies f̃n,n(λ) = O(n)(e

−bλ2

). Moreover,

lim
N→∞

lim
x→∞

h0,0
b (x)−1fN (kφax) = F (φ).

Finally, we have the following theorem.

Theorem 5.1 Let ab = 1
4 . Let f be in L2

0+(G) and satisfy for all n,m = 0, 1, 2, · · · ,
( i ) fn,m(x) = O(n,m)(h

0,0
1/(4a)(x)),

( ii ) f̃n,m(λ) = O(n,m)(e
−bλ2

).

Then, as an L2-function on T,

(iii) lim
N→∞

lim
x→∞

h0,0
b (x)−1fN (kφax) = F (φ)

exists and F ∈ A2
b(T). Here ‖F‖L2(T) = c‖fP‖L2(G) and ‖F‖A2

b
(T) ∼ ‖f‖L2(G). Let F (φ) =

∞∑
n=0

dne
inφ denote the Fourier series of F . Then f is uniquely determined as a central function

f(g) =

∞∑

n=0

dn2
4neb((2n+1)2−1)h0,2n

b (x)(coshx)2nein(φ+ψ),

where g = kφaxkψ, and each f̃n,n(λ) satisfies

f̃n,n(λ) = O((1 + n)−1/2e−b(2n−1)2e−bλ
2

).

Conversely, if F ∈ A2
b(T), then there exists a function f ∈ L2

0+(G) such that f satisfies (i), (ii)

and (iii).

Remark 5.1 (1) We note that, if f ∈ L2
0+(G) is of the form in (4.1) and F is given by

Theorem 5.1(iii), then |f(g) − h0,0
b (x)F (φ)|, g = kφaxkψ, is dominated as

( ∞∑

n=0

|an|2nǫe−t((n+1)2−1)n2e(n−1)2/(4a)
)
h0,0
b (x)x−1

(see (3.11)). Therefore, if this sum is finite, then we can replace Theorem 5.1(iii) by

(iii)′ lim
x→∞

h0,0
b (x)−1f(kφax) = F (φ),

and deduce that f ∈ L1(G) and f(x) = O(h0,0
b (x)).

(2) In Corollary 4.1 we can replace the condition (i) by
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(i)′ f(x) = O(h0,0
1/(4a)(x)),

because (i)′ implies (i). Also, in Theorem 5.1, it is true if we ignore the last statement of the

existence of f for F ∈ A2
b(T). As remarked in (1), in order to construct f ∈ L2

0+(G) from

F ∈ A2
b(T), which satisfies (i)′, (ii) and (iii), it is necessary to control the series in (1).

(3) In Corollary 4.1 and Theorem 5.1, if we replace the condition (i) by

(i)
′
P (fP )m,n(x) = O(n,m)(h

0,0
1/(4a)(x)),

then an = 0 for n 6= 0, that is, f is K-biinvariant. Actually, since f̃m,n = (fP )∼m,n, (i)
′
P and (ii)

imply that fP is of the form in (4.1). Since fP has no discrete part, (5.2) implies that an must

be 0 if n 6= 0.
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