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Abstract The author studies the structure of solutions to the interface problems for

second order linear elliptic partial differential equations in three space dimension. The set

of singular points consists of some singular lines and some isolated singular points. It is

proved that near a singular line or a singular point, each weak solution can be decomposed

into two parts, a singular part and a regular part. The singular parts are some finite sum

of particular solutions to some simpler equations, and the regular parts are bounded in

some norms, which are slightly weaker than that in the Sobolev space H
2.
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1 Introduction

The structure of solutions near singular points for the interface problems of two dimensional

elliptic equations has been studied by a number of works (see [2, 5, 6, 9–14]). The results can be

summarized into a decomposition theorem. Solution near a singular point can be decomposed

into two parts, a singular part and a regular part. The singular part is a finite sum of particular

solutions with the form of rαϕ(θ), or rα logm rϕ(θ), where r is the distance to the singular point,

and θ is the polar angle.

The aim of this paper is to study three dimensional problems. The set of singular points,

which is one dimensional, is more complicated than that of two dimensional problems, where

the set of singular points is finite. Therefore we will study the structure of solutions near

singular lines and near singular points, the intersections of singular lines. The results on two

dimensional problems will be applied here.

We consider the equation

Lu =

3∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

3∑

i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x), x ∈ Ω, (1.1)

where Ω ⊂ R
3 is a polyhedral domain. We assume that Ω is decomposed into a finite number

of polyhedral sub-domains Ω(k), such that ∪Ω(k) = Ω, and we assume that aij ∈ C1
(
Ω(k)

)
,

bi ∈ L∞(Ω), c ∈ L∞(Ω). The matrix (aij) is not necessarily symmetric, but the condition of
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ellipticity,

3∑

i,j=1

aijξiξj ≥ χ|ξ|2, ∀ ξi, ξj ∈ R, (1.2)

should be satisfied, where χ > 0 is a constant. For simplicity, we impose the Dirichlet boundary

condition,

u|x∈∂Ω = 0, (1.3)

on (1.1), where ∂Ω is the boundary. If 0 is not an eigenvalue of the operator L, then the problem

(1.1), (1.3) admits a weak solution u ∈ H1
0 (Ω) provided f ∈ H−1(Ω) (see [3]).

The edges of the sub-domains Ω(k) will be generally known as singular line segments, and

the vertices of them will be known as singular points. In the following the terminology “singular

line” is understood as the open singular line segments.

We will recall some results on the two dimensional problems in the next section. Then we

will study the singular lines in Section 3. Then we will study the singular points in the last

three sections. In what follows we assume that the singular lines and the singular points are

situated in the interior of the domain Ω. For those singular lines and singular points on the

boundary the argument is analogous. We denote throughout this paper that C is a generic

constant and the notations of the Sobolev norms ‖ · ‖s and semi-norms | · |s are applied.

2 Two Dimensional Problems

We recall the results in [11] with some generalization. First of all we consider a homogeneous

equation with piecewise constant coefficients, depending on a parameter x3 ∈ I, I = (α, β),

L0u =
2∑

i,j=1

∂

∂xj

(
aij(x3)

∂u

∂xi

)
= 0, x ∈ D(o, r0), (2.1)

where aij depend on x3 continuously, D(o, r0) is a disk with center o and radius r0. The domain

D(o, r0) is divided into some sectors Sm, m = 1, · · · ,m0, by some rays starting from the origin.

aij are constants in each sector for a given x3 and satisfy the same elliptic condition as (1.2).

Let (r, ϕ) be the polar coordinates with the origin o. We take a parameter ξ ∈ (0, 1) and define

Γ0 = {(r, θ); r = r0}, and Γk = {(r, θ); r = ξkr0}. Denote the set {(r, θ); 0 ≤ r < ξkr0} by ξkΩ.

Then we have

Lemma 2.1 Let u ∈ C(I;H1(Ω)) be a solution to (2.1) for all x3 ∈ I. Then u = u1 + u2,

u1 =

N∑

n=1

cn(x3)r
αn(x3) logmn(x3) rϕ(x3)

n (θ), (2.2)

where αn(x3) > 0, ϕ
(x3)
n are continuous and piecewise sufficiently smooth, and

‖u2‖2,ξΩ∩Sm
≤ C‖u‖1, ∀x3 ∈ I, 1 ≤ m ≤ m0. (2.3)

u2 and each term in (2.2) are the solutions to (2.1), and the constants N , C are independent

of x3.
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Proof Let g = u|Γ0
∈ H1/2(Γ0). Then g → u|Γ1

defines a compact operator X in

H = H1/2 (see [11]). The eigenvalues are arranged as |λ1| ≥ |λ2| ≥ · · · . Two spectrum sets

{λ1, · · · , λN}, {λN+1, · · · , 0} are defined such that |λN | ≥ ξ and |λN+1| < ξ. N depends on

x3, so it is denoted by N(x3). The space H is decomposed into two subspaces, H = H1 ⊕H2,

accordingly. λn depends on x3 continuously. For a given x
(0)
3 ∈ I, one has N0 = N(x

(0)
3 ). There

is a neighborhood of x
(0)
3 such that |λN0+1| < ξ for all x3, so N(x3) ≤ N0. We pick up a finite

number of those neighborhoods covering the interval I. Then we get an upper bound of N(x3),

denoted by N . The constant N in (2.2) is thus obtained.

We construct a closed curve C, such that λN+1, · · · , 0 are situated in the interior of it, and

λ1, · · · , λN in the exterior of it. Denote by R(λ,X) the resolvents of the operators X . In a

neighborhood of x
(0)
3 , it is analytic near C. The projection operator from H to H2 is

P = −
1

2πi

∫

C

R(λ,X) dλ.

Therefore P is bounded in this neighborhood. Using the same argument, we can prove that P

is bounded on I.

The remaining part of the proof is the same as that in [11], and thus is omitted.

Secondly, let us consider the nonhomogeneous equation

L0u =

2∑

i,j=1

∂

∂xj

(
aij(x3)

∂u

∂xi

)
= f, x ∈ Ω = D(o, r0). (2.4)

Lemma 2.2 If f ∈ L2(Ω), then there is a particular solution u to (2.4) such that

‖u‖1,ξΩ + ‖rγD2u‖0,ξΩ∩Sm
≤ C‖rγf‖0, (2.5)

where γ ∈ (0, b), b is a positive constant, and C depends on γ, but is independent of x3.

Proof Let ε be a positive constant to be determined. For a fixed x3, we define the spectrum

sets like the previous lemma but require that |λN | ≥ ξ + ε and |λN+1| < ξ + ε. Since

lim
k→∞

‖Xk
H2

‖
1
k = |λN+1|,

where ‖ · ‖ stands for the spectrum norm and XH2
is the operator X restricted on H2, we have

‖Xk
H2

‖ < (|λN+1| + ε)k (2.6)

for sufficiently large k. Let us fix one k, denoted by K0. By continuity, there is a neighborhood

of x3 such that (2.6) holds with k = K0, and |λN | ≥ ξ + ε
2 , |λN+1| < ξ + ε. Using the same

argument as the previous lemma, we know that K0 is uniformly bounded on I.

Let Ωk = {(r, θ); ξk > r > ξk+1}. Following the proof of Lemma 8 in [11], we define

fk =

{
f, x ∈ Ωk,

0, otherwise.

Then f =
∑
fk. Let uk be the solution to the equation (2.4) on the whole plane, where f

is replaced by fk. Because uk satisfies the homogeneous equation (2.1) on ξk+1Ω, we have
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the decomposition uk = u
(1)
k + u

(2)
k with u

(1)
k |Γk+1

∈ H1 and u
(2)
k |Γk+1

∈ H2. We extend u
(1)
k

analytically to Ω which is still denoted by u
(1)
k . Let u =

∞∑
k=1

(uk − u
(1)
k ). On the sub-domain Ωl,

u =
∑

k≥l−1

uk +
∑

k<l−1

u
(2)
k −

∑

k≥l−1

u
(1)
k . (2.7)

The estimate of the first and the third terms is the same as that in [11]. We study the second

term only. Define a mapping Tk : x→ ξkx. Let ũ = uk ◦Tk. Then ũ satisfies L0ũ = ξ2kfk ◦ Tk.

Let l = k + 2 + κK0 + l′, where κ is a nonnegative integer and 0 ≤ l′ < K0. We notice that X

is a bounded operator. Then using an estimate in [11], for the solutions of the equation (2.4),

we have

‖(u
(2)
k ◦ Tk)|Γl−k−1

‖H = ‖X l−k−2(u
(2)
k ◦ Tk)|Γ1

‖H

≤ C(|λN+1| + ε)κK0‖(u
(2)
k ◦ Tk)|Γ1

‖H

≤ C(|λN+1| + ε)κK0ξk‖fk‖0.

Then by scaling and interior estimation, we get

|u
(2)
k |2,Ωl∩Sm

≤ C(|λN+1| + ε)κK0ξk−l+1‖fk‖0.

Consequently, we have

∣∣∣
∑

k<l−1

u
(2)
k

∣∣∣
2,Ωl∩Sm

≤ C

l−2∑

k=1

(|λN+1| + ε)κK0ξk−l+1‖fk‖0 ≤ C

l−2∑

k=1

(ξ + 2ε

ξ

)l−k
‖fk‖0.

Combining the estimates for these three terms, we have

|u|22,Ωl∩Sm
≤ C

(
ξ−bl‖r

b
2 f‖2

0,ξl−1Ω +
( l−2∑

k=1

(ξ + 2ε

ξ

)l−k
‖f‖0,Ωk

)2)
,

where b is a sufficiently small positive constant. We multiply the both sides by ξ2γl and then

sum the inequality with respect to l. We have the estimate for the second term:

C

∞∑

l=1

ξ2γl
( l−2∑

k=1

(ξ + 2ε

ξ

)l−k
‖f‖0,Ωk

)2

≤ C

∞∑

l=1

ξ2γl
l−2∑

k=1

( ξ

ξ + 2ε

)l−k l−2∑

k=1

(ξ + 2ε

ξ

)3(l−k)

‖f‖2
0,Ωk

≤ C

∞∑

l=1

ξ2γl
l−2∑

k=1

(ξ + 2ε

ξ

)3(l−k)

‖f‖2
0,Ωk

= C

∞∑

k=1

‖f‖2
0,Ωk

∞∑

l=k+2

ξ2γl
(ξ + 2ε

ξ

)3(l−k)

.

Let ε satisfy 0 < ε < 1
2 (ξ1−

2γ
3 − ξ). Then the right hand side is bounded by C‖rγf‖0.

The estimate of the first term is the same as that in [11].

We remark that because we intend to get an estimate independent of x3, the result of Lemma

2.2 is different from that in [11].
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We are now in a position to consider the general equations. Let u ∈ H1(Ω) be a solution to

the equation

2∑

i,j=1

∂

∂xj

(
aij(x, x3)

∂u

∂xi

)
+

2∑

i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x) +

2∑

i=1

∂fi(x)

∂xi
, (2.8)

where f ∈ L2, fi ∈ H1(Sm), m = 1, 2, · · · ,m0, and aij ∈ C(I;C1(Sm )), bi ∈ L∞, c ∈ L∞. The

matrix (aij) satisfies the condition of ellipticity.

Theorem 2.1 u can be decomposed into two parts, u = v+w, and v, w possess the following

properties:

v =

N∑

n=1

un =

N∑

n=1

cn(x3)r
αn(x3) logmn(x3) rϕ(x3)

n (θ), (2.9)

where αn(x3) > 0. Each term un is a particular solution to the homogeneous equation

2∑

i,j=1

∂

∂xj

(
aij(0, x3)

∂u

∂xi

)
= 0, (2.10)

where aij(0, x3) is a piecewise constant function, the coefficients aij frozen at o. v and w satisfy

the estimation

‖v‖1 + ‖rγD2w‖0 ≤ C
(
‖u‖1 + ‖rγf‖0 +

∑

m

∑

i

|fi|1,Sm

)
, (2.11)

where the constant C is independent of x3 and γ is given in Lemma 2.2.

Proof The proof follows the same lines as that in [11]. The weak form of (2.8) can be

written as
∫

ξΩ

2∑

i,j=1

aij(0, x3)
∂u

∂xi

∂v

∂xj
dx =

∫

ξΩ

2∑

i,j=1

(
(aij(0, x3) − aij(x, x3))

∂u

∂xi
+ fj

) ∂v

∂xj
dx

+

∫

ξΩ

( 2∑

i=1

bi
∂u

∂xi
+ cu− f

)
v dx, ∀ v ∈ H1

0 (ξΩ).

Then a function z in H1 is defined such that it belongs to H2 in each sub-domain Sm and

2∑

i,j=1

aij(0, x3)
∂z

∂xi
nj =

2∑

i,j=1

(aij(0, x3) − aij(x, x3))
∂u

∂xi
nj +

2∑

j=1

fjnj ,

on the interfaces, where (n1, n2) is the unit exterior normal vector on the boundary of each Sm.

The weak form is thus reduced to
∫

ξΩ

2∑

i,j=1

aij(0, x3)
∂(u− z)

∂xi

∂v

∂xj
dx =

∫

ξΩ

{ 2∑

i,j=1

∑

m

(
−

∂

∂xj

(
(aij(0, x3) − aij(x, x3))

∂u

∂xi

)

−
∂fj

∂xj
+

∂

∂xj

(
aij(0, x3)

∂z

∂xi

))
+

2∑

i=1

bi
∂u

∂xi
+ cu−f

}
v dx.

By virtue of Lemma 2.2 a function w is taken to satisfy the above nonhomogeneous equation.

Then u − z − w is a solution to the equation (2.10). Using the results of Lemma 2.1, we have

the desired decomposition of u− z − w. Then we regard z + w + u2 as the function w, and u1

the function v in the theorem, and the proof is completed.
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3 Singular Lines

Without losing generality, we assume that the singular line of the solution u to the equation

(1.1) is x1 = x2 = 0, x3 ∈ I. We consider a cylinder S = D(o, r0)× I, where r0 is small enough

so that there is no other singular point in S. We study the regularity and decomposition of the

solution u.

The solution u is heterogeneous in S. We introduce some notations. As usualD2u stands for

the Hessian matrix
(

∂2u
∂xi∂xj

)3

i,j=1
. For our convenience, its sub-matrix

(
∂2u

∂xi∂xj

)2

i,j=1
is denoted

by ∂2u. A function f ∈ L2(S) is regarded as a mapping x3(∈ I) → L2(D(o, r0)) and it is

expressed by f ∈ L2(I;L2(D(o, r0))), or in a simpler form, f ∈ L2(L2). The above spaces L2

can be replaced by other Banach spaces.

Lemma 3.1 ∂u
∂x3

∈ H1(S′), where S′ ⊂⊂ S.

Proof Denote by τh the shift operator, τhu(x1, x2, x3) = u(x1, x2, x3 + h), and by ∆h the

difference operator ∆h = 1
h (τh − E), where E is the identity operator. Then we have

3∑

i,j=1

∂

∂xj

(
∆haij

∂u

∂xi
+ τhaij

∂∆hu

∂xi

)
= ∆h

{
f −

3∑

i=1

bi
∂u

∂xi
− cu

}
.

The H−1 norm of the right hand side is bounded, and

∥∥∥
3∑

i,j=1

∂

∂xj

(
∆haij

∂u

∂xi

)∥∥∥
−1

is also bounded. Using the standard argument (see [3]), we can get the H1-norm estimate for
∂u
∂x3

.

Theorem 3.1 The solution u of (1.1) can be decomposed in S into two parts: u = v + w.

v =

N∑

n=1

un =

N∑

n=1

cn(x3)r
αn(x3) logmn(x3) rϕ(x3)

n (θ),

where (r, θ) are the polar coordinates on the (x1, x2) plane at each point x3 ∈ I, αn(x3) > 0,

and N, αn(x3), mn(x3) and the functions ϕ
(x3)
n depend on aij(0, 0, x3) only. Moreover, each

term un is a particular solution to the homogeneous equation

2∑

i,j=1

∂

∂xj

(
aij(0, 0, x3)

∂u

∂xi

)
= 0, (3.1)

‖v‖L2(H1) + ‖rγ∂2w‖L2(L2) ≤ C(‖u‖1 + ‖rγf‖0). (3.2)

Proof The equation (1.1) can be rewritten as

2∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

2∑

j=1

∂

∂xj

(
a3j(x)

∂u

∂x3

)

+
3∑

i=1

ai3(x)
∂2u

∂xi∂x3
+

2∑

i=1

bi(x)
∂u

∂xi
+ b3(x)

∂u

∂x3
+ c(x)u = f(x).
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By Lemma 3.1 a3j
∂u
∂x3

piecewise belongs to H1, and ai3
∂2u

∂xi∂x3
and b3

∂u
∂x3

belong to L2. We

notice that for almost all x3, the solution u( · , · , x3) belongs to H1(D(o, r0)). Then by the

results of Theorem 2.1, the conclusion follows.

The number 1 − min
x3

Reα1(x3) describes the singularity of the solution. We take η >

1 − min
x3

Reα1(x3), η < 1. Then by Theorem 3.1 and Lemma 3.1 we have

Corollary 3.1 The solution u to the equation (1.1) satisfies

‖rηD2u‖0 ≤ C(|u|1 + ‖f‖0)

near a singular line.

The above result does not imply the regularity of the functions v and w with respect to x3.

In fact, mn(x3) and ϕ
(x3)
n are in general discontinuous with respect to x3. As a particular case,

if aij are independent of x3, then the spectrum of X is independent of x3, some results for the

regularity can be proved. We take derivatives of (2.1) and (2.4) with respect to x3, and then

follow the proof of Lemma 2.1 and Lemma 2.2 to get

Lemma 3.2 Under the conditions of Lemma 2.1 if u ∈ C1(I;H1(Ω)) and aij is independent

of x3, then u1 ∈ C1(I;H1(D(0, r0))), and

|cn|C1 + ‖u2‖C1(H2) ≤ C‖u‖C1(H1),

where cn is given in (2.2).

Lemma 3.3 There is a particular solution u to the nonhomogeneous equation

2∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
= f(x1, x2, x3),

such that

‖u‖C1(H1) + ‖rγ∂2u‖C1(L2) ≤ C‖rγf‖C1(L2).

Then we have the result for the regularity with respect to x3.

Corollary 3.2 If bi, c ∈ C1(I;L∞) and f ∈ C1(I ;L2), then the functions v and w in

Theorem 3.1 satisfy

|cn|C1 + ‖rγ∂2w‖C1(L2) ≤ C(‖u‖C1(I;H1) + ‖rγf‖C1(I;L2)).

Remark 3.1 It is easy to see that if higher order derivatives of bi, c, f exist, the higher

order derivatives of cn and w exist too.

4 Singular Points-Homogeneous Equations

Without losing generality, let the domain be Ω = B(o, 1), a ball with center o and radius 1.

We assume that o is a singular point, and there are a finite number of singular line segments,

{li}, starting from o, which are the intersections of interfaces. We consider the homogeneous

equation with piecewise constant coefficients

3∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
= 0 (4.1)
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in this section. Let the boundary of Ω, ∂Ω = Γ0. The same notations ξ ∈ (0, 1), Γk, Ωk, Sm,

H = H
1
2 (Γ0), and X : H → H are defined as in the two dimensional case. The definitions of

them are not repeated here.

Lemma 4.1 X is a compact operator.

Proof Let g ∈ H be the boundary value. Then the equation (4.1) admits a unique solution

u ∈ H1(Ω). For a given bounded set {gn} ⊂ H , there is a subsequence of the solutions {un},

which is still denoted by {un}, converging to u in H1(Ω) weakly. We may assume that ξ > 1
2 .

Then we consider the domain {x; 1
2 < ρ < 1}, where ρ is the distance to o. For each singular line

in it, we construct a cylinder S surrounding it as in the previous section. By Corollary 3.2 and

Remark 3.1, un = vn +wn and wn are uniformly bounded in the norm ‖rγ∂2 · ‖Hs(L2), where s

can be arbitrarily large. Thus there is a subsequence of wn converging in H1 strongly on each

domain S ∩ Sm. There are only a finite number of terms in vn, so converging subsequences

also exist. Then it is easy to see that there is a subsequence of un converging in any compact

sub-domain of {x; 1
2 < ρ < 1} ∩ Sm in the norm of H1 strongly, the limit of which is still u.

Restricted on Γ1, the subsequence converges in the norm of H
1
2 .

By the singularity of solutions near singular lines, we define a weight function on Ω. Let

t ∈ Γ0 be a point, ti ∈ Γ0 be the intersections of the singular lines li with Γ0, and t− ti be the

vector from ti to t. By Corollary 3.1, there is an exponent ηi corresponding to ti. Let x ∈ Ω,

and the angle between li with the ray ox be θi. Then we set

ψ0(x) =

{∏
θ
ηi

i , x 6= 0,

0, x = 0.

The following semi-norm with a weight ψ is denoted by

|u|2,ψ,Ω =
( ∑

m

‖ψD2u‖2
0,Sm

) 1
2

.

By Corollary 3.1, if u ∈ H1(Ω) is a solution to (4.1), then |u|2,ψ0,Ω′ < ∞ in any compact

sub-domain Ω′. Applying Corollary 3.2 to v and w, we find that the derivatives along singular

lines can be any order, so it also holds that |v|2,ψ0,Ω′ < ∞ and |w|2,ψ0,Ω′ < ∞ in any compact

sub-domain Ω′.

Let (λ, g) be an eigenpair of the operator X . Different from the two dimensional case the

eigenfunction g is singular, and the singular points are ti. We study the property of g.

Lemma 4.2 Near a singular point ti the eigenfunction g can be decomposed into two parts:

g = gv + gw. gv is a finite summation of some particular functions,

gv =
N∑

n=1

cn|t− ti|
αn logmn |t− ti|ϕn

( t− ti

|t− ti|

)
, (4.2)

where αn > 0, ϕn are continuous and piecewise sufficiently smooth, and ‖gw‖ 3
2
−δ < ∞ in

Sm
⋂

Γ0, where δ > 0.

Proof We consider the solution u of the equation (4.1) with boundary data g. Then

u|Γ1
= λg. We apply Theorem 3.1 in the domain Ω1 to get u = v + w. The traces of v and w

on Γ1 possess the desired property.
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Corollary 4.1 If the elementary divisor is quadratic for an eigenvalue λ of X, h ∈ N((X−

λE)2), and (X − λE)h = g, then the conclusion in Lemma 4.2 keeps true for h.

By the Riesz-Schauder Theorem, the spectrum of X consists of isolated eigenvalues and the

point 0. The eigenvalues are arranged as |λ1| ≥ |λ2| ≥ · · · . Two spectrum sets {λ1, · · · , λN},

{λN+1, · · · , 0} are defined such that |λN | ≥ ξ
1
2 and |λN+1| < ξ

1
2 . The space H is decomposed

into two subspaces, H = H1 ⊕ H2, accordingly, such that the spectrum of XH1
in H1 is just

{λ1, · · · , λN} and the spectrum of XH2
in H2 is {λN+1, · · · , 0}. For any g ∈ H , we have a

unique decomposition g = g1 + g2, g1 ∈ H1, g2 ∈ H2. Let u1, u2 be the solutions corresponding

to g1, g2 respectively.

Theorem 4.1 u1 is a finite summation in the form of

u1 =
N∑

n=1

cnρ
αn logmn ρϕn(t),

where αn > − 1
2 , ϕn can be decomposed into two parts, as stated in Lemma 4.2, |cn| ≤ C‖u‖1,Ω,

and |u2|2,ψ0,ξΩ ≤ C|u|1,Ω.

Proof The proof follows the same lines as for two dimensional problems. We only need

to check the regularity of u2. By Corollary 3.1 we have

‖ψ0D
2u2‖

2
0,Ωk

T
Sm

= ξ−k+1‖ψ0D
2(u2 ◦ Tk−1)‖

2
0,Ω1

T
Sm

≤ Cξ−k+1‖u2 ◦ Tk−1‖1,Ω\ξ3Ω.

We consider the boundary value problem on Ω\ξ3Ω and obtain

‖u2 ◦ Tk−1‖1,Ω\ξ3Ω ≤ C(‖Xk−1g2‖
2
H + ‖Xk+2g2‖

2
H).

Let ε > 0 and |λN+1| + ε < ξ
1
2 . Then for k large enough, we have

‖ψ0D
2u2‖

2
0,Ωk

T
Sm

≤ Cξ−k+1((|λN+1| + ε)2(k−1) + (|λN+1| + ε)2(k+2))‖g2‖
2
H .

Therefore
∞∑
k=1

‖ψ0D
2u2‖

2
0,Ωk

T
Sm

converges, which proves the assertion.

5 Singular Points-Nonhomogeneous Equations

We consider the equation

3∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
= f (5.1)

in this section. We make one hypothesis:

(H) The exponents αn in (4.2) satisfy Re(αn) > 1
3 for all n.

Then we prove an existence result for the problems on the entire space R
3. Let the closure

of C∞
0 (R3) with respect the norm | · |1 be Z1(R3), which is a Hilbert space with this norm (see

[7]).

Lemma 5.1 We assume that (H) holds, ψ0f ∈ L2(R3) and supp f ∈ B(o, 1). Then the

equation (5.1) admits a unique solution u ∈ Z1(R3).
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Proof Let v ∈ Z1(R3). It is proved in [7] that the norm

( ∫
|∇v|2 dx+

∫
v2

ρ2 + 1
dx

) 1
2

is equivalent to |v|1 in Z1(R3). It is also equivalent to the norm ‖v‖1 if the domain is the unit

ball. We show that the inner product in L2, (f, v), defines a bounded operator on Z1(R3). In

fact by the Hölder inequality

|(f, v)| =
∣∣∣
∫

r<1

fv dx
∣∣∣ ≤

( ∫

r<1

ψ2
0 |f |

2 dx
) 1

2
( ∫

r<1

|v|6 dx
) 1

6
( ∫

r<1

ψ−3
0 dx

) 1
3

.

By the embedding theorem H1 → L6, and by the hypothesis (H), we can take ηi <
2
3 , which

implies
∫
ψ−3

0 dx <∞. Therefore

|(f, v)| ≤ C‖ψ0f‖0|v|1.

Then by the Lax-Milgram Theorem the existence and uniqueness follows.

We define another weight

ψ1(x) =

{∏
θi, x 6= 0,

0, x = 0.

Theorem 5.1 If (H) holds and ψ0f ∈ L2, there is a particular solution u in Ω = B(o, 1)

to the equation (5.1) such that

‖u‖1,ξΩ + |u|2,ψ2,ξΩ ≤ C‖ψ0f‖0,

where

ψ2(x) =
ψ1(x)

(| log ρ| + 1)M
,

the integer M depends on the equation (4.1). Moreover, there is another solution u such that

‖u‖1,ξΩ + |u|2,ψ1,ξΩ ≤ C‖ψ0(| log ρ| + 1)Mf‖0,

provided the right hand side is bounded.

Proof We prove a weighted norm estimate in Ω1. Let u be a weak solution to (5.1). Let

Ω̃ ⊂ Ω1

⋂
Sm and the distance dist(Ω̃, li) ≥ d > 0, ∀ i, and let Ω′ = {x ∈ Sm; dist (x, Ω̃) < d

2}.

Then by the interior estimate

|u|2,eΩ ≤ C(d−1|u|1,Ω′ + ‖f‖0,Ω′).

Let d be small enough, then Ω′ ⊂ Ω \ ξ3Ω. Consequently,

|u|2,ψ1,Ω1
≤ C(|u|1,Ω\ξ3Ω + ‖ψ1f‖0,Ω\ξ3Ω). (5.2)

Analogous to Lemma 2.2, we define

fk =

{
f, x ∈ Ωk,

0, otherwise.

Then applying Lemma 5.1, we construct the solution uk to (5.1) with the right hand side fk.

The solution u is given by (2.7). Applying (5.2), we see that the estimate for u is the same as

in [11] except that |u|2,Ω1

T
Sm

is replaced by ‖ψ1D
2u‖0,Ω1

T
Sm

.
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6 Singular Points-General Linear Equations

We consider the equation (1.1) in this section. We consider one singular point and denote

Ω = B(o, 1).

Theorem 6.1 Under the hypothesis (H) let u ∈ H1(Ω) be a solution to the equation (1.1).

Then u can be decomposed into u = v + w. v is a solution to the equation (4.1), where the

coefficients are aij(x) frozen at o, and v is a finite summation in the form of

v =
N∑

n=1

cnρ
αn logmn ρϕn(t),

where αn > − 1
2 , and

|cn| + ‖w‖1,ξΩ + |w|2,ψ2,ξΩ ≤ C(‖u‖1,Ω + ‖f‖0,Ω).

Moreover, we have

|cn| + ‖w‖1,ξΩ + |w|2,ψ1,ξΩ ≤ C(‖u‖1,Ω + ‖(| log ρ| + 1)Mf‖0,Ω),

provided the right hand side is bounded.

Proof Analogous to the proof in [11], we obtain

|u|2,ψ3,ξΩ ≤ C(‖u‖1,Ω + ‖ρf‖0,Ω),

where ψ3(x) = ρψ0(x). The weak form for the boundary value problem of (1.1) can be written

as

∫

ξΩ

3∑

i,j=1

aij(0)
∂u

∂xi

∂v

∂xj
dx =

∫

ξΩ

3∑

i,j=1

(
(aij(0) − aij(x))

∂u

∂xi

) ∂v

∂xj
dx

+

∫

ξΩ

( 3∑

i=1

bi
∂u

∂xi
+ cu− f

)
v dx, ∀ v ∈ H1

0 (ξΩ).

We consider the open sets, Gkl = {x ∈ Ω; ξk−1 > ρ > ξk+1, ε
2l−1 > |t−ti| >

ε
2l+1 }, k = 1, 2, · · · ,

l = 0, 1, · · · , ε > 0, and G00 = {x ∈ Ω; |t− ti| > ε, ∀ i}. They cover the domain Ω. Let {χkl}

be a partition of unity. Restricted to one sub-domain Sm, by the inverse trace theorem (see

[8]), there exist z̃mkl ∈ H2(Gkl ∩ Sm) such that

z̃mkl = 0,
∂z̃mkl

∂n
= ξk−1

{
χkl

(aij(0) − aij)
∂u
∂nnj

nTAn

}
◦ Tk−1

on ∂Sm, and

‖z̃mkl‖2 ≤ C
∥∥∥ξk−1

{
χkl

(aij(0) − aij)
∂u
∂nnj

nTAn

}
◦ Tk−1

∥∥∥
1
,

where n = (n1, n2, n3) is the unit exterior normal vector on ∂Sm, and the matrix A = (aij(0)).

Let zmkl = z̃mkl ◦ T1−k and z =
∑
mkl

zmkl. Then

∂z

∂n
=

(aij(0) − aij)
∂u
∂nnj

nTAn
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on the boundary provided that ε is small enough. Moreover, z satisfies

|z|2,ψ0,ξΩ ≤ C(‖u‖1,Ω + ‖ρf‖0,Ω).

Integrating by parts we get

∫

ξΩ

3∑

i,j=1

aij(0)
∂(u− z)

∂xi

∂v

∂xj
dx

=
∑

m

∫

ξΩ
T
Sm

{
−

3∑

i,j=1

∂

∂xj

(
(aij(0) − aij(x))

∂u

∂xi

)
+

3∑

i,j=1

∂

∂xj

(
aij(0)

∂z

∂xi

)}
v dx

+

∫

ξΩ

( 3∑

i=1

bi
∂u

∂xi
+ cu− f

)
v dx, ∀ v ∈ H1

0 (ξΩ).

Then applying the results of Theorem 4.1 and Theorem 5.1, we complete the proof. For details,

see [11].
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