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Abstract In this paper, the stability and the Hopf bifurcation of small-world networks

with time delay are studied. By analyzing the change of delay, we obtain several sufficient

conditions on stable and unstable properties. When the delay passes a critical value, a

Hopf bifurcation may appear. Furthermore, the direction and the stability of bifurcating

periodic solutions are investigated by the normal form theory and the center manifold

reduction. At last, by numerical simulations, we further illustrate the effectiveness of

theorems in this paper.
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1 Introduction

In 1998, Watts and Strogatz [1] proposed a model of small-world network. This kind of

network is different from regular network and random network. It is a special model with a

high degree of local clustering as well as a small average distance. Because of its promising

potential of applications in biological, social and man-made systems, more and more attentions

are paid to the research of small-world network recently (see [1–5]). In 1999, Newman and

Watts [2] studied the behavior of the small-world model, which is concentrated on its scaling

properties. Due to the existence of time delay and the nonlinear interaction in spreading, in

2001, Yang [3] considered a new model of small-world network which extended that in [2].

Moreover, by numerical simulations and analytic analysis, chaos was investigated in different

type of small-world networks. In 2004, Li and Chen [9] considered the local stability and

the Hopf bifurcation in small-world delayed networks, and nonlinear interaction strength was

regarded as a parameter.

In order to further show the effect of delay on small-world networks, we will regard the

delay as a parameter and investigate the stability and the Hopf bifurcation. This paper is

organized as follows. In Section 2, we study the existence of the Hopf bifurcation and the

local stability of the positive equilibrium for one dimensional and high dimensional small-world

networks, respectively. In Section 3, by using the normal form theory and the center manifold

reduction (see [6]), we derive the formulas which determine the direction, stability and period
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of the bifurcating periodic solutions. In Section 4, we give a numerical example to show the

effectiveness of theorems in this paper. In Section 5, we conclude the paper.

2 Existence of Hopf Bifurcation and Local Stability

of Positive Equilibrium

Consider one dimensional small-world networks with delay (see [3]) as follows

dV (t)

dt
= ξ + V (t− τ) − µξV 2(t− τ), (2.1)

where V (t) is the total influenced volume, ξ is the Newman-Watts length scale, µ is a measure

of nonlinear interaction, and τ is the time delay.

The initial condition of equation (2.1) is given by

V (s) = φ(s), s ∈ [−τ, 0].

It easily follows that V ∗ =
1+

√
1+4µξ2

2µξ
is a positive equilibrium of equation (2.1). Let

u(t) = V (t) − V ∗. Then equation (2.1) can be written as

du(t)

dt
= −

√

1 + 4µξ2 u(t− τ) − µξu2(t− τ). (2.2)

The characteristic equation of linear part of equation (2.2) is given by

λ+
√

1 + 4µξ2 e−λτ = 0. (2.3)

Let λ = ±iω (ω > 0) be a pair of purely imaginary roots of equation (2.3). Then

{√

1 + 4µξ2 cos(ωτ) = 0,

ω −
√

1 + 4µξ2 sin(ωτ) = 0.

Then










ωτ =
(2n+ 1)π

2
,

(2n+ 1)π

2τ
−

√

1 + 4µξ2 (−1)n = 0,

where n = 0, 1, 2, · · · .
Thus by solving the above equations, we have















τn =
(2n+ 1)π

2
√

1 + 4µξ2
,

ωn =
(2n+ 1)π

2τn
, n = 0, 2, 4, · · · .

(2.4)

That is, if τn = (2n+1)π

2
√

1+4µξ2
(n = 0, 2, 4, · · · ), then equation (2.3) has a pair of purely imaginary

roots ±i
√

1 + 4µξ2 (n = 0, 2, 4, · · · ).
Next, we consider the case that equation (2.3) has roots with positive real parts. Assume

that α+ iω is a root of equation (2.3) with τn = (2n+1)π

2
√

1+4µξ2
(n = 0, 2, 4, · · · ), where α, ω > 0.
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From equation (2.3), we have

{

α+
√

1 + 4µξ2 e−ατn cos(ωτn) = 0,

ω =
√

1 + 4µξ2 e−ατn sin(ωτn),

which implies that

(

m+
1

2

)

π < ωτn < (m+ 1)π, m, n = 0, 2, 4, · · · , (2.5)

ω <
√

1 + 4µξ2.

Then, from the first equation of (2.4), we have

2m+ 1

2n+ 1

√

1 + 4µξ2 < ω <
2m+ 2

2n+ 1

√

1 + 4µξ2, m, n = 0, 2, 4, · · · .

So, equation (2.3) may have roots with positive real parts except for n = 0.

Let λ(τ) = α(τ) + iω(τ) be a root of equation (2.3) satisfying

α(τn) = 0, ω(τn) =
√

1 + 4µξ2.

By equation (2.3), we have

{

α+
√

1 + 4µξ2 e−ατ cos(ωτ) = 0,

ω −
√

1 + 4µξ2 e−ατ sin(ωτ) = 0.
(2.6)

Taking the derivative of α and ω with respect to τ in (2.6), we have











dα

dτ
+

√

1 + 4µξ2 e−ατ
(

− dα

dτ
τ−α

)

cos(ωτ)−
√

1 + 4µξ2 e−ατ sin(ωτ)
(dω

dτ
τ+ ω

)

= 0,

dω

dτ
−

√

1 + 4µξ2 e−ατ
(

− dα

dτ
τ−α

)

sin(ωτ)−
√

1 + 4µξ2 e−ατ cos(ωτ)
(dω

dτ
τ+ω

)

= 0,

(2.7)

which means
dα

dτ
(τn, α(τn), ω(τn)) =

4 + 16µξ2

4 + (2n+ 1)2π2
> 0. (2.8)

When τ = 0, the root of equation (2.3) has negative real parts. By the above analysis and

[11, Lemma 2.2], we obtain the following lemma.

Lemma 2.1 ( i ) If τ ∈ [0, τ0), all the roots of equation (2.3) have strictly negative real

parts.

( ii ) If τ = τ0, equation (2.3) has a pair of purely imaginary roots ±iω0 and all other roots

have strictly negative real parts.

(iii) If τ > τ0, equation (2.3) has at least one pair of roots with positive real parts.

Applying (2.8), Lemma 2.1 and [12, Chapter 11, Theorem 1.1], we have the following theo-

rem.

Theorem 2.1 ( i ) If τ ∈ [0, τ0), the positive equilibrium V ∗ of equation (2.1) is asymp-

totically stable.

( ii ) If τ > τ0, the positive equilibrium V ∗ of equation (2.1) is unstable.

(iii) τn (n = 0, 2, 4, · · · ) are Hopf bifurcation values for equation (2.1).
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Next, we consider the high dimensional small-world networks with delay (see [3]) as follows:

ddV (t)

dtd
= ξd + V (t− τ) − µξdV 2(t− τ), (2.9)

where V (t), ξ, µ and τ are the same as those of equation (2.1), and d is the dimension of the

network.

The initial condition of equation (2.9) is given by

V (s) = φ(s), s ∈ [−τ, 0].

It easily follows that V ∗ =
1+

√
1+4µξ2d

2µξd is a positive equilibrium of equation (2.9). Let

u(t) = V (t) − V ∗. Then equation (2.9) can be written as

ddu(t)

dtd
= −

√

1 + 4µξ2d u(t− τ) − µξdu2(t− τ). (2.10)

The characteristic equation of linear part of equation (2.10) is given by

λd +
√

1 + 4µξ2d e−λτ = 0. (2.11)

When τ = 0, equation (2.11) has at least a pair of roots with positive real parts for d ≥ 3

and d ∈ N . Similarly to the analysis in one dimensional case, we obtain the following remarks.
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Figure 1 Waveform plots for system (2.9) with d = 2, τ = 0, ξ = 1, µ = 1; V (0) =
0.001, V ′(0) = 0.3, for left figure t = 100s, for right figure t = 500s.

Remark 2.1 ( i ) For d = 2, if τ ∈ (0,+∞), equation (2.11) has at least a pair of roots

with positive real parts.

For d ≥ 3 and d ∈ N , if τ ∈ [0,+∞), equation (2.11) has at least a pair of roots with

positive real parts.

(ii) If d = 4k − 1, k = 1, 2, · · · , equation (2.11) has a pair of purely imaginary roots ±iω0

at τ = τn, where τn = (2n+1)π

2 8k−2
√

1+4µξ8k−2
, n = 1, 3, · · · , ω0 = 8k−2

√

1 + 4µξ8k−2.

If d = 4k − 3, k = 1, 2, · · · , equation (2.11) has a pair of purely imaginary roots ±iω0 at

τ = τn, where τn = (2n+1)π

2 8k−6
√

1+4µξ8k−6
, n = 0, 2, 4, · · · , ω0 = 8k−6

√

1 + 4µξ8k−6.
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If d = 4k, k = 1, 2, · · · , equation (2.11) has a pair of purely imaginary roots ±iω0 at τ = τn,

where τn = nπ
2d
√

1+4µξ2d
, n = 1, 3, · · · , ω0 = 2d

√

1 + 4µξ2d.

If d = 4k − 2, k = 1, 2, · · · , equation (2.11) has a pair of purely imaginary roots ±iω0 at

τ = τn, where τn = nπ
2d
√

1+4µξ2d
, n = 0, 2, 4, · · · , ω0 = 2d

√

1 + 4µξ2d.

Remark 2.2 ( i ) For d = 2, if τ ∈ (0,+∞), the positive equilibrium V ∗ of equation (2.9) is

unstable; for d = 2 and τ = 0, the zero solution is a center of the corresponding linear equations

of equation (2.10). By a numerical simulation, we know that the zero solution of equation (2.10)

is a stable focus (see Figure 1). For d ≥ 3 and d ∈ N , if τ ∈ [0,+∞), the positive equilibrium

V ∗ of equation (2.9) is unstable.

(ii) For d = 4k − 1, k = 1, 2, · · · , τn are Hopf bifurcation values for equation (2.9), where

τn = (2n+1)π

2 8k−2
√

1+4µξ8k−2
, n = 1, 3, · · · .

For d = 4k − 3, k = 1, 2, · · · , τn are Hopf bifurcation values for equation (2.9), where

τn = (2n+1)π

2 8k−6
√

1+4µξ8k−6
, n = 0, 2, 4, · · · .

For d = 4k, k = 1, 2, · · · , τn are Hopf bifurcation values for equation (2.9), where τn =
nπ

2d
√

1+4µξ2d
, n = 1, 3, · · · .

For d = 4k − 2, k = 1, 2, · · · , τn are Hopf bifurcation values for equation (2.9), where

τn = nπ
2d
√

1+4µξ2d
, n = 0, 2, 4, · · · .

3 Stability and Direction of Bifurcating Periodic Solutions

For convenience, let t = sτ, u(sτ) = X(s), τ = τ0 + γ, γ ∈ R. Then equation (2.2) can be

written as
dX(s)

ds
= −(τ0 + γ)[

√

1 + 4µξ2X(s− 1) + µξX2(s− 1)]. (3.1)

For ϕ(θ) ∈ C[−1, 0], define a family of operators

Lγϕ =

∫ 0

−1

dη(θ, γ)ϕ(θ), F (γ, ϕ) = −(τ0 + γ)µξϕ2(−1),

where dη(θ, γ) = −(τ0 + γ)
√

1 + 4µξ2 δ(θ + 1) and δ is the Dirac function.

For ϕ ∈ C1[−1, 0], define

A(γ)ϕ =















dϕ(θ)

dθ
, θ ∈ [−1, 0),

∫ 0

−1

dη(s, γ)ϕ(s), θ = 0,
R(γ)ϕ =

{

0, θ ∈ [−1, 0),

F (γ, ϕ), θ = 0.

Then equation (3.1) can be written as

Ẋt = A(γ)Xt +R(γ)Xt, (3.2)

where Xt(θ) = X(t+ θ) for θ ∈ [−1, 0].

For ψ ∈ C1[0, 1], the adjoint operator A∗ of A is defined as

A∗(γ)ψ(s) =















−dψ(s)

ds
, s ∈ (0, 1],

∫ 0

−1

dη(t, γ)ψ(−t), s = 0.



458 Z. Chen, D. H. Zhao and J. Ruan

For ϕ ∈ C([−1, 0], R) and ψ ∈ C([0, 1], R), we define the bilinear form by

〈ψ, ϕ〉 = ψ(0)ϕ(0) −
∫ 0

−1

∫ θ

0

ψ(s− θ)dη(θ)ϕ(s)ds,

where η(θ) = η(θ, 0).

From the discussion in Section 2, we know that ±iτ0ω0 are eigenvalues of A(0) and other

eigenvalues have strictly negative real parts. Furthermore, they are eigenvalues of A∗(0), too.

We easily obtain that

q(θ) = eiω0τ0θ, θ ∈ [−1, 0]

is the eigenvector of A(0) with respect to iω0τ0, and

q∗(θ) = Beiω0τ0s, s ∈ [0, 1]

is the eigenvector of A∗(0) with respect to −iω0τ0, where

B =
1

1 − τ0
√

1 + 4µξ2 eiω0τ0

.

Moreover,

〈q∗, q〉 = 1, 〈q∗, q〉 = 0.

Let z(t) = 〈q∗, Xt〉, w(t, θ) = Xt(θ) − 2Re{z(t)q(θ)}.
On the center manifold C0 (refer to [6]), we have

w(t, θ) = w(z(t), z(t), θ),

where w(z, z, θ) = w20(θ)
z2

2 +w11(θ)zz+w02(θ)
z2

2 +w30
z3

6 +· · · , z and z are the local coordinates

for the center manifold C0 in the directions of q∗ and q∗ respectively.

For the solution Xt ∈ C0 of equation (3.1), since γ = 0, we have

ż(t) = iτ0ω0z(t) + 〈q∗(θ), F (0, w + 2Re{z(t)q(θ)})〉 = iτ0ω0z(t) + q∗(0)F0(z, z), (3.3)

where F0(z, z) = F (0, w(z, z, θ) + 2Re{z(t)q(θ)}). Rewrite (3.3) as

ż(t) = iτ0ω0z(t) + g(z, z),

where

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (3.4)

By (3.2) and (3.3), we have

ẇ = Ẋt − żq − ż q =

{

Aw − 2Re{q∗(0)F0q(θ)}, θ ∈ [−1, 0)

Aw − 2Re{q∗(0)F0q(θ)} + F0, θ = 0
:= Aw +H(z, z, θ),

where H(z, z, θ) = H20(θ)
z2

2 +H11(θ)zz +H02
z2

2 + · · · .
Expanding the above series and comparing the coefficients, we obtain

{

(A− 2iω0τ0)w20(θ) = −H20(θ),

Aw11(θ) = −H11(θ).
(3.5)
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F0(z, z) = −τ0µξX2
t (t− 1) = −µξτ0[w(z, z,−1) + ze−iω0τ0 + zeiω0τ0 ]2

= −µξτ0[z2e−2iω0τ0 + z2e2iω0τ0 + 2zz + 2w(z, z,−1)ze−iω0τ0

+ 2w(z, z,−1)zeiω0τ0 + · · · ]
= −µξτ0[z2e−2iω0τ0 + z2e2iω0τ0 + 2zz + 2w11(−1)e−iω0τ0z2z + w02(−1)eiω0τ0z2z

+ w20(−1)eiω0τ0z2z + 2w11(−1)eiω0τ0zz2 + · · · ]
= −µξτ0e−2iω0τ0z2 − 2µξτ0zz − µξτ0e

2iω0τ0z2 − µξτ0[2e
−iω0τ0w11(−1)

+ eiω0τ0w20(−1)]z2z + · · ·
= µξτ0z

2 − 2µξτ0zz + µξτ0z
2 − µξτ0i[−2w11(−1) + w20(−1)]z2z + · · · .

So

g(z, z) = q∗(0)F0(z, z) = B{µξτ0z2−2µξτ0zz+µξτ0z
2−µξτ0i[−2w11(−1)+w20(−1)]z2z+· · · }.

Comparing the above coefficients with those in (3.4), we have

g20 = 2µξτ0B, g11 = −2µξτ0B,

g02 = 2µξτ0B, g21 = −2µξτ0Bi[−2w11(−1) + w20(−1)].

Next, we will compute w11(−1) and w20(−1).

Since H(z, z)|θ=0 = −2Re{q∗(0)F0q(0)} + F0. We have

H20(0) = −g20q(0) − g02q(0) + 2µξτ0,

H11(0) = −g11q(0) − g11q(0) − 2µξτ0.

By (3.5),

−τ0
√

1 + 4µξ2 w20(−1) = 2iω0τ0w20(0) −H20(0), (3.6)

−τ0
√

1 + 4µξ2 w11(−1) = −H11(0). (3.7)

It follows easily that

w11(−1) =
H11(0)

τ0
√

1 + 4µξ2
.

Next, we need only to computer w20(−1).

By (3.5) and the definition of A, we have

ẇ20(θ) = 2iω0τ0w20(θ) − g20q(0)eiω0τ0θ − g02q(0)e−iω0τ0θ.

Solving for w20, we get

w20(θ) =
g20

iω0τ0
q(0)eiω0τ0θ − g20

3iω0τ0
q(0)e−iω0τ0θ + E1e

2iω0τ0θ. (3.8)

Substituting (3.8) into (3.6), we have

E1 =
−

√

1 + 4µξ2 [ g20

iω0

e−iω0τ0 − g
20

3iω0

eiω0τ0 ] − 2g20 + 2
3g20 +H20

τ0
√

1 + 4µξ2e−2iω0τ0 + 2iω0τ0
.

So, w20(0) = g20

iω0τ0

− g
20

3iω0τ0

+ E1.
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Then, by (3.6) and (3.7), we have

w20(−1) =
2g20 − 2

3g20 + 2iω0τ0E1 −H20(0)

−τ0
√

1 + 4µξ2
.

So,

g21 = −2µξBi
[ −2H11(0)
√

1 + 4µξ2
+
g20

iω0
− g20

3iω0
+ E1τ0

]

.

Thus, we can compute the following quantities

C1(0) =
i

2ω0τ0

[

g11g20 − 2|g11|2 −
1

3
|g02|2

]

+
g21

2
,

µ2 = −ReC1(0)

α′(τ0)
,

β2 = 2ReC1(0),

τ2 = − ImC1(0) + µ2w
′(τ0)

ω0τ0
.

(3.9)

Then, we give the main result in this section.

Theorem 3.1 In formulas (3.9), the direction of Hopf bifurcation is determined by µ2;

the stability of bifurcating periodic solutions is determined by β2; the period of the bifurcating

periodic solutions is determined by T2.

4 Numerical Simulation

In this section, we consider an example of system (2.1) with ξ = 1, µ = 1. By (2.4), we find

that τ0 = 0.7025.

From (3.9), it follows that µ2 = 0.2847, T2 = 0.5926, β2 = −0.8212.
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Figure 2 Waveform plot and phase plot for system (2.1) with τ = 0.5.

These calculations show that the equilibrium is stable when τ < τ0 as is illustrated by

computer simulations (Figure 2: τ = 0.5, Figure 3: τ = 0.7). When τ passes through the

critical value τ = 0.7025, the equilibrium loses its stability and a Hopf bifurcation occurs, i.e.,
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Figure 3 Waveform plot and phase plot for system (2.1) with τ = 0.7.
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Figure 4 Waveform plot and phase plot for system (2.1) with τ = 0.705.
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Figure 5 Waveform plot and phase plot for system (2.1) with τ = 0.71.
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a periodic solution bifurcates from the equilibrium. The periodic orbit is stable since β2 < 0.

Since µ2 > 0, the bifurcating periodic solutions exist at least for the values of τ slightly larger

than the critical value τ0 = 0.7025. For τ = 0.705, as predicted by the theory, Figure 4 shows

that there is an orbitally stable limit cycle. Since T2 > 0, the period of the periodic solutions

increases as τ increases. For τ = 0.71, the phase plot and the waveform plot are shown in Figure

5. Comparing Figure 4 with Figure 5, we can see that the period of the orbit with τ = 0.71 is

larger than that with τ = 0.705.

5 Conclusions

In this paper, a small-world network with nonlinear interaction and time delay in the one-

dimensional case and higher dimensional case have been studied. By using the delay time as

the bifurcation parameter, we have shown that a Hopf bifurcation occurs when this parameter

passes through a critical value. We have also determined the stability and the direction of

the bifurcating periodic orbits by applying the normal form theory and the center manifold

reduction. Our simulation results have verified and demonstrated the correctness of the theo-

retical results. We will further investigate the complex dynamics behavior of higher dimensional

small-world networks and its control.
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