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0 Introduction

In paper [5], the author has extended the theory of Selberg-type zeta functions to higher

rank p-adic groups. This extension remained incomplete insofar as within a higher rank group

only elements of splitrank one were considered.

In the analogous setting of real Lie groups, it emerged in recent years that the role of the

Selberg zeta function in higher rank spaces is played by certain Lefschetz formulae attached to

torus actions (see [6]).

We explain this in more detail. Recall for rank one groups the relation between the Selberg

zeta function and the trace formula. It is clear that the analytical properties of the zeta function

are derived by means of the trace formula. Less well known is the fact that one can deduce

the trace formula from the location of poles and zeros of the zeta function by evaluating a

contour integral. Likewise, in the case of higher rank groups and splitrank one elements, the

Selberg zeta function corresponds to a Lefschetz formula attached to the action of a minimal

split torus. There is no proper analogue of the zeta function for higher rank elements, but there

is a Lefschetz formula for that case, too. A special version of the Lefschetz formula in the real

setting was shown in [6] and a general version in [7]. In the present paper, we give the general

Lefschetz formula in the p-adic setting.

1 The Trace Formula

Let F be a nonarchimedean local field with valuation ring O and uniformizer ̟. Denote

by G a semisimple linear algebraic group over F . Let K ⊂ G be a good maximal compact

subgroup. Choose a parabolic subgroup P = LN of G with Levi component L. Let A denote

the largest split torus in the center of L. Then A is called the split component of P . Let

Φ = Φ(G, A) be the root system of the pair (G, A), i.e., Φ consists of all homomorphisms
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E-mail: deitmar@uni-tuebingen.de



464 A. Deitmar

α : A → GL1 such that there is X in the Lie algebra of G with Ad(a)X = aαX for every a ∈ A.

Given α, let nα be the Lie algebra generated by all such X and let Nα be the closed subgroup

of N corresponding to nα. Let Φ+ = Φ(P, A) be the subset of Φ consisting of all positive roots

with respect to P . Let ∆ ⊂ Φ+ be the subset of simple roots. Let A− ⊂ A be the set of all

a ∈ A such that |aα| < 1 for any α ∈ ∆.

There is a reductive subgroup M of L with compact center such that MA has finite index in

L. We can choose M such that KM = M ∩ K is a good maximal subgroup of M . An element

g of G is called elliptic, if it is contained in a compact torus. Let Mell denote the set of elliptic

elements in M .

Let X∗(A) = Hom(A, GL1) be the group of all homomorphisms as algebraic groups from A

to GL1. This group is isomorphic to Zr with r = dimA. Likewise let X∗(A) = Hom(GL1, A).

There is a natural Z-valued pairing

X∗(A) × X∗(A) → Hom(GL1, GL1) ∼= Z,

(α, η) 7→ α ◦ η.

For every root α ∈ Φ(A, G) ⊂ X∗(A), let ᾰ ∈ X∗(A) be its coroot. Then (α, ᾰ) = 2. The

valuation v of F gives a group homomorphism GL1(F ) → Z. Let Ac be the unique maximal

compact subgroup of A. Let Σ = A/Ac. Then Σ is a Z-lattice of rank r = dimA. By composing

with the valuation v the group X∗(A) can be identified with

Σ∗ = Hom(Σ, Z).

Let

a∗0 = Hom(Σ, R) ∼= X∗(A) ⊗ R

be the real vector space of all group homomorphisms from Σ to R and let a∗ = a∗0 ⊗ C =

Hom(Σ, C) ∼= X∗(A) ⊗ C. For a ∈ A and λ ∈ a∗, let

aλ = q−λ(a),

where q is the number of elements in the residue class field of F . In this way we get an

identification

a∗
/ 2πi

log q
Σ∗ ∼= Hom(Σ, C×).

A quasicharacter ν : A → C× is called unramified if ν is trivial on Ac. The set Hom(Σ, C×) can

be identified with the set of unramified quasicharacters on A. Any unramified quasicharacter

ν can thus be given a unique real part Re(ν) ∈ a∗0. This definition extends to not necessarily

unramified quasicharacters χ : A → C× as follows. Choose a splitting s : Σ → A of the exact

sequence

1 → Ac → A → Σ → 1.

Then ν = χ ◦ s is an unramified character of A. Set

Re(χ) = Re(ν).
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This definition does not depend on the choice of the splitting s. For quasicharacters χ, χ′ and

a ∈ A, we will frequently write aχ instead of χ(a) and aχ+χ′

instead of χ(a)χ′(a). Note that

the absolute value satisfies |aχ| = aRe(χ) and that a quasicharacter χ actually is a character if

and only if Re(χ) = 0.

Let ∆P : P → R+ be the modular function of the group P . Then there is ρ ∈ a∗0 such that

∆P (a) = |a2ρ|. For ν ∈ a∗ and a root α let

να = (ν, ᾰ) ∈ X∗(GL1) ⊗ C ∼= C.

Note that ν ∈ a∗0 implies να ∈ R for every α. For ν ∈ a∗0, we say that ν is positive, ν > 0, if

να > 0 for every positive root α.

Example 1.1 Let G = GLn(F ) and ̟j ∈ G be the diagonal matrix ̟j = diag(1, · · · , 1, ̟,

1, · · · , 1) with the ̟ on the j-th position. Let ν ∈ a∗ and

νj = ν(̟jAc) ∈ C.

Let α be a root, say α(diag(a1, · · · , an)) = ai

aj
. Then

να = νi − νj .

Hence ν ∈ a∗0 is positive if and only if ν1 > ν2 > · · · > νn.

We will fix Haar-measures of G and its reductive subgroups as follows. For H ⊂ G being

a torus, there is a unique maximal compact subgroup UH which is open. Then we fix a Haar

measure on H such that vol(UH) = 1. If H is connected reductive with compact center, then

we choose the unique positive Haar-measure which up to sign coincides with the Euler-Poincaré

measure (see [8]). So in the latter case, our measure is determined by the following property:

For any discrete torsionfree cocompact subgroup ΓH ⊂ H , we have

vol(ΓH\H) = (−1)q(H)χ(ΓH , Q),

where q(H) is the k-rank of the derived group Hder and χ(ΓH , Q) the Euler-Poincaré charac-

teristic of H•(ΓH , Q). For the applications, recall that centralizers of tori in connected groups

are connected (see [1]).

Assume that we are given a discrete subgroup Γ of G such that the quotient space Γ\G

is compact. Let (ω, Vω) be a finite dimensional unitary representation of Γ and L2(Γ\G, ω)

be the Hilbert space consisting of all measurable functions f : G → Vω such that f(γx) =

ω(γ)f(x) and |f | is square integrable over Γ\G (modulo null functions). Let R denote the

unitary representation of G on L2(Γ\G, ω) defined by right shifts, i.e., R(g)ϕ(x) = ϕ(xg) for

ϕ ∈ L2(Γ\G, ω). It is known that as a G-representation this space splits as a topological direct

sum:

L2(Γ\G, ω) =
⊕

π∈ bG NΓ,ω(π)π

with finite multiplicities NΓ,ω(π) < ∞.
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Let f be integrable over G, so f is in L1(G). The integral

R(f) :=

∫

G

f(x)R(x)dx

defines an operator on the Hilbert space L2(Γ\G, ω).

For g ∈ G and any function f on G, we define the orbital integral

Og(f) :=

∫

Gg\G

f(x−1gx)dx,

whenever the integral exists. Here Gg is the centralizer of g in G. It is known that the group

Gg is unimodular, so we have an invariant measure on Gg\G.

A function f on G or any of its closed subgroups is called smooth if it is locally constant. It

is called uniformly smooth if there is an open subgroup U of G such that f factors over U\G/U .

This is in particular the case if f is smooth and compactly supported.

Proposition 1.1 (Trace Formula) Let f be integrable and uniformly smooth. Then we

have ∑

π∈ bG NΓ,ω(π) trπ(f) =
∑

[γ]

trω(γ) vol(Γγ\Gγ) Oγ(f),

where the sum on the right hand side runs over the set of Γ-conjugacy classes [γ] in Γ and Γγ

denotes the centralizer of γ in Γ. Both sides converge absolutely and the left hand side actually

is a finite sum.

Proof At first fix a fundamental domain F for Γ\G and let ϕ ∈ L2(Γ\G, ω). Then

R(f) =

∫

G

f(y)ϕ(xy)dy =

∫

G

f(x−1y)ϕ(y)dy =
∑

γ∈Γ

∫

F

f(x−1γy)ϕ(γy)dy

=

∫

Γ\G

( ∑

γ∈Γ

f(x−1γy)ω(γ)
)
ϕ(y)dy.

We want to show that the sum
∑
γ∈Γ

f(x−1γy)ω(γ) converges in End(Vω) absolutely and

uniformly in x and y. Since y can be replaced by γy, γ ∈ Γ and since ω is unitary, we only

have to show the convergence of
∑
γ∈Γ

|f(x−1γy)| locally uniformly in y. Let γ and τ be in Γ and

assume that x−1γy and x−1τy lie in the same class in G/U . Then it follows that τyU∩γyU 6= ∅,

so with V = yUy−1 we have γ−1τV ∩ V 6= ∅. It is clear that V depends on y only up to U ,

so to show locally uniform convergence in y it suffices to fix V . Since V is compact also

V 2 = {vv′ | v, v′ ∈ V } is compact and so Γ ∩ V 2 is finite. This implies that there are only

finitely many γ ∈ Γ with γV ∩ V 6= ∅. Hence the map Γ → G/U , γ 7→ x−1γyU is finite to one

with fibers having ≤ n elements for some natural number n. For y fixed modulo U , we get

∑

γ∈Γ

|f(x−1γy)| ≤ n

∫

G/U

|f(x)| dx =
n

vol(U)
‖ f ‖1 .

We have shown the uniform convergence of the sum

kf (x, y) =
∑

γ∈Γ

f(x−1γy)ω(γ).
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Observe that R(f) factors over L2(Γ\G, ω)U = L2(Γ\G/U, ω), which is finite dimensional

since Γ\G/U is a finite set. So R(f) acts on a finite dimensional space and kf (x, y) is the

matrix of this operator. We infer that R(f) is of trace class, its trace equals

∑

π∈ bG NΓ,ω(π) trπ(f),

and the sum is finite. Further, since kf (x, y) is the matrix of R(f), this trace also equals

∫

Γ\G

trkf (x, x) dx =
∑

γ∈Γ

∫

F

f(x−1γx)dx trω(γ)

=
∑

[γ]

∑

σ∈Γγ\Γ

∫

F

f((σx)−1γ(σx))dx trω(γ)

=
∑

[γ]

∫

Γγ\G

f(x−1γx)dx trω(γ)

=
∑

[γ]

vol(Γγ\Gγ)

∫

Gγ\G

f(x−1γx)dx trω(γ).

2 The Covolume of a Centralizer

Suppose that γ ∈ Γ is G-conjugate to some aγmγ ∈ A−Mell. We want to compute the

covolume

vol(Γγ\Gγ).

An element x of G is called neat if for every representation ρ : G → GLn(F ) of G the matrix

ρ(x) has no eigenvalue which is a root of unity different from 1. A subset A of G is called neat

if each element of it is neat. Every arithmetic Γ has a finite index subgroup which is neat (see

[2]).

Lemma 2.1 Let x ∈ G be neat and semisimple. Let Gx denote its centralizer in G. Then

for every k ∈ N, we have Gx = Gxk .

Proof Since G is linear algebraic, it is a subgroup of some H = GLn(F ), where F is

an algebraic closure of F . If we can show the claim for H then it follows for G as well since

Gx = Hx ∩G. In H we can assume x to be a diagonal matrix. Since x is neat, this implies the

claim.

We suppose that Γ is neat. This implies that for any γ ∈ Γ, the Zariski closure of the group

generated by γ is a torus. It then follows that Gγ is a connected reductive group (see [1]).

An element γ ∈ Γ is called primitive if γ = σn with σ ∈ Γ and n ∈ N implies n = 1. It is

a property of discrete cocompact torsion free subgroups Γ of G that every γ ∈ Γ, γ 6= 1, is a

positive power of a unique primitive element. In other words, given a nontrivial γ ∈ Γ, there

exists a unique primitive γ0 and a unique µ(γ) ∈ N, such that

γ = γ
µ(γ)
0 .
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Let Σ be a group of finite cohomological dimension cd(Σ) over Q. We write

χ(Σ) = χ(Σ, Q) :=

cd(Σ)∑

p=0

(−1)p dimHp(Σ, Q)

for the Euler-Poincaré characteristic. We also define the higher Euler characteristic as

χ
r
(Σ) = χ

r
(Σ, Q) :=

cd(Σ)∑

p=0

(−1)p+r

(
p

r

)
dimHp(Σ, Q) for r = 1, 2, 3, · · · .

It is known that Γ has finite cohomological dimension over Q.

We denote by EP (Γ) the set of all conjugacy classes [γ] in γ such that γ is in G conjugate

to an element aγmγ ∈ AM , where mγ is elliptic and aγ ∈ A−.

Let γ ∈ EP (Γ). To simplify the notation we assume that γ = aγmγ ∈ A−Mell. Let Cγ be

the connected component of the center of Gγ . Then Cγ = ABγ , where Bγ is the connected

center of Mmγ
. The latter group will also be written as Mγ . Let Mder

γ be the derived group of

Mγ . Then Mγ = Mder
γ Bγ .

Lemma 2.2 Bγ is compact.

Proof Since mγ is elliptic, there is a compact Cartan subgroup T of M containing mγ .

Since M modulo its center is a connected semisimple linear algebraic group, it follows that T is

a torus and therefore abelian. Therefore T ⊂ Mmγ
. Let b ∈ Bγ . Then b commutes with every

t ∈ T . Therefore b lies in the centralizer of T in M which equals T . So we have shown Bγ ⊂ T .

Let Γγ,A = A∩ΓγBγ and Γγ,M = Mder
γ ∩ΓγABγ . Similarly to the proof of Lemma 3.3 of [9],

one shows that Γγ,A and Γγ,M are discrete cocompact subgroups of A and Mder
γ respectively.

Let

λγ
def
= vol(Γγ,A\A).

Proposition 2.1 Assume that Γ is neat and let γ ∈ Γ be G-conjugate to an element of

A+Mell. Then we get

vol(Γγ\Gγ) = λγ (−1)q(G)+r χ
r
(Γγ),

where r = dimA.

Proof We normalize the volume of Bγ to be 1. Then

vol(Γγ\Gγ) = vol(Γγ\AMγ) = vol(ΓγBγ\AMγ).

The space ΓγBγ\AMγ is the total space of a fibration with fibre Γγ,A\A and base space

ΓγABγ\MγA ∼= Γγ,M\Mder
γ . Hence

vol(ΓγBγ\AMγ) = vol(Γγ,A\A) vol(Γγ,M\Mder
γ ).

Since λγ = vol(Γγ,A\A), it remains to show

vol(Γγ,M\Mder
γ ) = (−1)rχr(Γγ).
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We know that

vol(Γγ,M\Mder
γ ) = (−1)q(Mγ )χ(Γγ,M ) = (−1)q(G)+rχ(Γγ,M ).

So it remains to show that χ(Γγ,M ) = χr(Γγ). The group Γγ,M is isomorphic to Γγ/Σ, where

Σ = Γ ∩ ABγ is isomorphic to Zr. So the proposition follows from the next lemma.

Lemma 2.3 Let Γ, Λ be of finite cohomological dimension over Q. Let Cr be a group

isomorphic to Zr and assume that there is an exact sequence

1 → Cr → Γ → Λ → 1.

Assume that Cr is central in Γ. Then

χ(Λ, Q) = χr(Γ, Q).

Proof We first consider the case r = 1. In this case, we want to prove for every r,

χr−1(Λ, Q) = χr(Γ, Q).

For this consider the Hochschild-Serre spectral sequence:

Ep,q
2 = Hp(Λ, Hq(C1, Q)),

which abuts to

Hp+q(Γ, Q).

Since C1
∼= Z, it follows that

Hq(C1, Q) =

{
Q, if q = 0, 1,

0, else.

Since C1 is infinite cyclic and central, it is an exercise to see that the spectral sequence degen-

erates at E2. Therefore,

χr(Γ) =
∑

j≥0

(−1)j+r

(
j

r

)
dimHj(Γ)

=
∑

j≥r

(−1)j+r

(
j

r

)
(dimHj(Λ) + dimHj−1(Λ))

=
∑

j≥r

(−1)j+r

(
j

r

)
dimHj(Λ) −

∑

j≥r−1

(−1)j+r

(
j + 1

r

)
dimHj(Λ).

Now replace
(

j+1
r

)
by

(
j
r

)
+

(
j

r−1

)
to get the claim. For the general case, write Cr = C1 ⊕ C1,

where C1 is cyclic and C1 ∼= Zr−1. Apply the above to C1 and iterate this to get the lemma

and hence the proposition.
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3 The Lefschetz Formula

For a representation π of G, let π∞ denote the subrepresentation of smooth vectors, i.e., π∞

is the representation on the space
⋃

H⊂G

πH , where H ranges over the set of all open subgroups

of G. Further, let πN denote the Jacquet module of π. By definition, πN is the largest quotient

MAN -module of π∞ on which N acts trivially. One can achieve this by factoring out the

vector subspace consisting of all vectors of the form v − π(n)v for v ∈ π∞, n ∈ N . It is known

that if π is an irreducible admissible representation, then πN is an admissible MA-module of

finite length. For a smooth M -module V let H•
c (M, V ) denote the continuous cohomology with

coefficients in V as in [3].

Theorem 3.1 (Lefschetz Formula) Let Γ be a neat discrete cocompact subgroup of G.

Let ϕ be a uniformly smooth function on A with support in A−. Suppose that the function

a 7→ ϕ(a)|a−2ρ| is integrable on A. Let σ be a finite dimensional representation of M . Let q be

the F -splitrank of G and r = dimA. Then

∑

π∈ bG NΓ,ω(π)

dim M∑

q=0

(−1)a

∫

A−

ϕ(a) tr(a|Hq
c (M, πN ⊗ σ)) da

equals

(−1)q+r
∑

[γ]∈EP (Γ)

λγ χr(Γγ) trω(γ) trσ(mγ)ϕ(aγ) |a2ρ
γ |.

Both outer sums converge absolutely and the sum over π ∈ Ĝ actually is a finite sum, i.e., the

summand is zero for all but finitely many π. For a given compact open subgroup U of A, both

sides represent a continuous linear functional on the space of all functions ϕ as above which

factor over A/U , where this space is equipped with the norm ‖ ϕ ‖=
∫

A
|ϕ(a)||a−2ρ| da.

Let A∗ denote the set of all continuous group homomorphisms λ : A → C×. For λ ∈ A∗ and

an A-module V , let Vλ denote the generalized λ-eigenspace, i.e.,

Vλ
def
=

∞⋃

k=1

{v ∈ V | (a − λ(a))kv = 0, ∀ a ∈ A}.

Then
∫

A−

ϕ(a) tr(a | Hq
c (M, πN ⊗ σ)) da =

∑

λ∈A∗

dimHq
c (M, πN ⊗ σ)λ

∫

A−

ϕ(a)λ(a) da.

For λ ∈ A∗, define

mσ,ω
λ

def
=

∑

π∈ bG NΓ,ω(π)
dim M∑

q=0

(−1)q dim Hq
c (M, πN ⊗ σ)λ.

The sum is always finite.

On the other hand, for [γ] ∈ EP (Γ), let

cγ
def
= λγ χr(Γγ) |a2ρ

γ |.

Then the theorem is equivalent to the following Corollary.
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Corollary 3.1 (Lefschetz Formula) As an identity of distributions on A−, we have

∑

λ∈A∗

mσ,ω
λ λ =

∑

[γ]∈EP (Γ)

cγ trω(γ) trσ(mγ) δaγ
.

Proof of Theorem 3.1 Let fEP be an Euler-Poincaré function on M which is KM -central

(see [8]). For regular m ∈ M , we have

OM
m (fEP ) =

{
1, if m is elliptic,

0, otherwise.

For g ∈ G and a finite dimensional F vector space V on which g acts linearly, let E(g |V ) be the

set of all absolute values |µ|, where µ ranges over the eigenvalues of g in the algebraic closure

F of F . Let λmin(g |V ) denote the minimum and λmax(v |V ) the maximum of E(g |V ). For

am ∈ AM , define

λ(am) def
=

λmin(a | n)

λmax(m | g)2
.

Note that λmax(m | g) is always ≥ 1 and that λmax(m | g)λmin(m | g) = 1. We will consider the

set

(AM)∼ := {am ∈ AM | λ(am) > 1}.

Let Mell denote the set of elliptic elements in M .

Lemma 3.1 The set (AM)∼ has the following properties:

(1) A−Mell ⊂ (AM)∼,

(2) am ∈ (AM)∼ ⇒ a ∈ A−,

(3) am, a′m′ ∈ (AM)∼, g ∈ G with a′m′ = gamg−1 ⇒ a = a′, g ∈ AM .

Proof The first two are immediate. For the third, let am, a′m′ ∈ (AM)∼ and g ∈ G with

a′m′ = gamg−1. Observe that by the definition of (AM)∼, we have

λmin(am | n) ≥ λmin(a | n)λmin(m | g)

> λmax(m | g)2λmin(m | g)

= λmax(m | g)

≥ λmax(m | a + m + n)

≥ λmax(am | a + m + n),

that is, any eigenvalue of am on n is strictly bigger than any eigenvalue on a + m + n. Since

g = a + m + n + n and the same holds for a′m′, which has the same eigenvalues as am, we infer

that Ad(g)n = n. So g lies in the normalizer of n, which is P = MAN = NAM . Now suppose

g = nm1a1 and m̂ = m1mm−1
1 . Then

gamg−1 = nam̂n−1 = am̂ (am̂)−1n(am̂) n−1.

Since this lies in AM , we have (am̂)−1n(am̂) = n which, since am ∈ (AM)∼, implies n = 1.

The lemma is proven.
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Let G act on itself by conjugation. Write g.x = gxg−1, and write G.x for the orbit, so

G.x = {gxg−1 | g ∈ G} as well as G.S = {gsg−1 | s ∈ S, g ∈ G} for any subset S of G.

Fix a smooth function η on N which has compact support, is positive, invariant under

K ∩ MAN and satisfies
∫

N η(n)dn = 1. Extend the function ϕ from A− to a conjugation

invariant smooth function ϕ̃ on AM such that ϕ̃(am) = ϕ(a) whenever m is elliptic and such

that there is a compact subset C ⊂ A− such that ϕ̃ is supported in CM ∩ (AM)∼. It follows

that the function

am 7→ fEP (m) trσ(m) ϕ̃(am) |a2ρ|

is smooth and integrable on AM . Given these data let f = fη,τ,ϕ : H → C be defined by

f(knma(kn)−1) := η(n)fEP (m) trσ(m) ϕ̃(am) |a2ρ|

for k ∈ K, n ∈ N, m ∈ M, a ∈ A−. Further f(x) = 0 if x is not in G.(AM)∼.

Lemma 3.2 The function f is well defined.

Proof By the decomposition G = KP = KNMA every element x ∈ G.(AM)∼ can be

written in the form knma(kn)−1. Now suppose that two such representations coincide, that is,

knma(kn)−1 = k′n′m′a′(k′n′)−1

or gmag−1 = m′a′, where g = (n′)−1(k′)−1kn. Lemma 3.1 implies that g ∈ MA and a = a′, so

that gmg−1 = m′. Write k1 = (k′)−1k. Then k1 ∈ K ∩ n′MAn−1, and hence k1 ∈ K ∩ MAN .

So k1 = m1a1n1 with a1, m1, n1 ∈ K. Now write g = (n′)−1m1a1n1n = m1a1(n
′)−a1m1n1n.

Since g ∈ MA, it follows that g = m1a1 ∈ K ∩ MA, and the well-definedness of f follows.

We will plug f into the trace formula. For the geometric side, let γ ∈ Γ. We have to

calculate the orbital integral:

Oγ(f) =

∫

Gγ\G

f(x−1γx)dx.

By the definition of f it follows that Oγ(f) = 0 if γ /∈ G.(AM)∼. It remains to compute Oam(f)

for am ∈ (AM)∼. Again by the definition of f , it follows that

Oam(f) = OM
m (fEP ) trσ(m) ϕ̃(am) |a2ρ|

=

{
trσ(m)ϕ(a) |a2ρ|, if m is elliptic,

0, otherwise.

Here OM
m denotes the orbital integral in the group M . Recall that Proposition 2.1 says

vol(Γγ\Gγ) = (−1)q(G)+r λγ χ
r
(Γγ),

so that for γ ∈ EP (Γ),

vol(Γγ\Gγ)Oγ(f) = (−1)q(G)+r λγ χr(Γγ) trσ(mγ)ϕ(aγ) |a2ρ
γ |.
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To compute the spectral side let π ∈ Ĝ. We want to compute trπ(f). Let ΘG
π be the locally

integrable conjugation invariant function on G such that

trπ(f) =

∫

G

f(x)ΘG
π (x)dx.

This function Θπ is called the character of π. It is known that the Jacquet module πN is a

finitely generated admissible module for the group MA and therefore it has a character ΘMA
πN

.

In [4], it is shown that

Θπ(am) = ΘMA
πN

(ma) for ma ∈ A−Mell.

Let h be a function in L1(G) which is supported in the set G.MA. Comparing invariant

differential forms as in the proof of the Weyl integration formula one gets that the integral∫
G

h(x) dx equals

1

|W (G, A)|

∫

A

∫

M

∫

G/AM

h(yamy−1) |det(1 − am|n + n)|dy da dm,

where W (G, A) is the Weyl group of A in G.

For a ∈ A− and m ∈ Mell every eigenvalue of am on n is of absolute value < 1 and > 1 on

n. By the ultrametric property this implies

|det(1 − am | n + n)| = |det(1 − am | n)| = |det(am | n)| = |det(a | n)| = |a−2ρ|.

We apply this to h(x) = f(x)ΘG
π (x) and use conjugation invariance of ΘG

π to get that trπ(f)

equals
1

|W (G, A)|

∫

AM

fEP (m) trσ(m) ϕ̃(am)ΘM
πN

(am) da dm,

which is the same as
∫

A−M

fEP (m) trσ(m) ϕ̃(am)ΘM
πN

(am) da dm.

We recall the Weyl integration formula for M . Let (Hj)j be a maximal family of pairwise

non-conjugate Cartan subgroups of M . Let Wj be the Weyl group of Hj in M . For h ∈ Hj ,

let Dj(h) = det(1 − h|m/hj), where m and hj are the Lie algebras of M and Hj respectively.

Then, for every h ∈ L1(M),

∫

M

h(m) dm =
∑

j

1

|Wj |

∫

Hreg

j

∫

M/Hj

h(mxm−1)Dj(x) dm dx

=
∑

j

1

|Wj |

∫

Hj

OM
x (h) dx,

where Hreg
j is the set of x ∈ Hj which is regular in M . We fix a ∈ A− and apply this to

h(m) = fEP (m)ϕ̃(am)trσ(m)ΘM
πN

(am). Since ϕ̃ is conjugation invariant we get for x ∈ Hreg
j ,

OM
x (h) = OM

x (fEP ) ϕ̃(am) trσ(m)ΘAM
πN

(ax).
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This is non-zero only if x is elliptic. If x is elliptic, then ϕ̃(ax) equals ϕ(a). So we can replace

ϕ̃(ax) by ϕ(a) throughout. Thus trπ(f) equals

∫

A−M

fEP (m)ϕ(a) trσ(m)ΘM
πN

(am) da dm.

The trace trπ(f) therefore equals

∫

A−M

fEP (m)ϕ(a)ΘπN⊗σ(am) da dm.

We write H•
c (M, V ) for the continuous cohomology of M with coefficients in the M -module V .

By [8, Theorem 2],

tr(πN ⊗ σ)(fEP ) =

dim M∑

q=0

(−1)q dimHq
c (M, πN ⊗ σ).

The cohomology groups Hq
c (M, πN ⊗ σ) are finite dimensional A-modules and

trπ(f) =

dim M∑

q=0

(−1)q

∫

A−

tr(a|Hq
c (M, πN ⊗ σ))ϕ(a) da.

The Lefschetz Theorem follows.
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